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At-home wearable-based monitoring
predicts clinical measures and biological
biomarkers of disease severity in
Friedreich’s Ataxia
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Abstract

Background Friedreich ataxia (FRDA) results in progressive impairment in gait, upper
extremity coordination, and speech. Currently, these symptoms are assessed through
expert examination at clinical visits. Such in-clinic assessments are time-consuming,
subjective, of limited sensitivity, and provide only a limited perspective of the daily disability
of patients.
Methods In this study,we recruited 39 FRDApatients and remotelymonitored their physical
activity and upper extremity function using a set ofwearable sensors for 7 consecutive days.
We compared the sensor-derived metrics of lower and upper extremity function as
measured during activities of daily living with FRDA clinical measures (e.g., mFARS and FA-
ADL) and biological biomarkers of disease severity (guanine-adenine-adenine (GAA) and
frataxin (FXN) levels), using Spearman correlation analyses.
ResultsThe results showsignificant correlationswithmoderate to high effect sizes between
multiple sensor-derivedmetrics and the FRDA clinical and biological outcomes. In addition,
we develop multiple machine learning-based models to predict disease severity in FRDA
using demographic, biological, and sensor-derived metrics. When sensor-derived metrics
are included, the model performance enhances 1.5-fold and 2-fold in terms of explained
variance, R², for predicting FRDA clinical measures and biological biomarkers of disease
severity, respectively.
Conclusions Our results establish the initial clinical validity of using wearable sensors in
assessing disease severity and monitoring motor dysfunction in FRDA.

Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative dis-
ease caused by deficiency of the protein frataxin (FXN). The primary clinical
manifestations of FRDA include progressive ataxia, cardiomyopathy, sco-
liosis and, in some individuals, diabetes1–4. Ninety-six percent of causative
mutations in the FXN gene consist of expanded guanine-adenine-adenine
(GAA) repeats; such repeats partially silence the FXN gene and markedly
decrease levels of frataxin protein2. The remaining mutations include point
mutations and deletions, all of which decrease levels of functional FXN2. The

FXN is essential for the proper function of mitochondria and the regulation
of iron-sulfur clusters, which are essential for the proper function of enzymes
involved in cellular respiration and ATP production. FXN deficiency ulti-
mately results in progressive muscle weakness, coordination problems, and
difficulty with balance and movement.

The prevalence of FRDA is estimated to be about 5000 individuals in the
US, and about 22,000 patients worldwide5. There is currently no cure for
FRDA, and therapeutic focus continues to be directed at slowing disease
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Plain language summary

Friedreich ataxia (FRDA) is a condition that
impairs movement and coordination. Current
clinical assessments are subjective,
highlighting the need for better ways to
monitor disease severity. By using wearable
devices to track symptoms in everyday life,
we can gain better insights into how patients
function outside the clinical environment,
offering a more comprehensive
understanding of the disease’s impact. In this
study, 39 patients were observed using
wearable sensors for a week to track their
physical activity and arm movements. The
data collected was compared with traditional
clinical tests and biological markers of the
disease. The findings demonstrate that
wearable sensors can accurately predict
disease severity, offering continuous real-
world monitoring that could enhance patient
care and treatment outcomes.
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progression, managing symptoms, and optimizing quality of life. While a
variety of agents have reached clinical trials, meaningful results remain dif-
ficult partially due to insensitivity of clinical outcome measures of physical
function in FRDA. The standard remains the modified Friedreich’s Ataxia
Rating Scale (mFARS) exam, a quantified neurologic exam directed toward
crucial components of disease progression in FRDA5–12. While sufficient in
some situations, the mFARS has subjective components, ceiling effects, sig-
nificant day-to-day variability, and a modest sensitivity to change. Based on
longitudinal natural history studies, clinical trials using mFARS as a primary
outcome may require greater than 100 subjects for adequate power10. Simi-
larly, the presently used FRDA-specific ADL instrument (Friedreich Ataxia
Rating Scale Activity of Daily Living or FA-ADL) is insensitive to change and
highly subjective13. Thus, while mFARS and other exam-based scales are
adequate for establishing differences in large cohorts, novel measures might
prove more sensitive as well as more relevant to daily activities.

The limited sensitivity of the mFARS has a significant impact on the
outcomes of clinical trials. In several studies, therapeutic agents, which
demonstrated acceptable side effect profiles, positive subjective responses
from patients, and substantial mechanistic data supporting their use, fell
short of achieving their mFARS-based endpoints14. Outcome measure
insensitivity played a crucial role in their failure to reach potential approval
from the regulatory agencies. More sensitive outcome measures are thus
critical for developing novel therapies in FRDA.

Inherent lack of sensitivity is not the only weakness of the mFARS.
Exam-based measures are performed on an intermittent schedule in
supervised conditions in the clinic. Thus, they donot necessarily reflect real-
world situations, and data is collected at a single point in time, making day-
to-dayfluctuation a significant issue. A previous novel approachwas the use
of performance measures: single quantitative tasks (timed 25-foot walk test
(25FWT), the 9-hole peg test (9 HPT)) closer to events of daily living4,15.
Such measures capture dysfunction in FRDA, and composites from such
measures have roughly equal sensitivity to change as the mFARS. Several
reasonshave kept suchmeasures frombeingwidely adopted. In longitudinal
analysis, the 9 HPT has substantial trial-to-trial variability; this could be
avoided by collection of a greater volume of data, a condition not readily
achievable in clinic-basedmeasures. In addition, the timed 25FWTdoes not
directly reflect the ambulatory issue in FRDA, as FRDA patients do not
change in walking speed initially, but rather in accuracy and stability.

In contrast, using home-based wearable sensors to continuously
monitor motor functions in FRDA during activities of daily living can
address these shortcomings. In this study, we used suchmeasures to capture
both lower and upper extremities motor dysfunction in FRDA and com-
pared results to those measures with FRDA clinical measures (e.g., mFARS,
and FA-ADL) and biological biomarkers of disease severity (GAA and FXN
levels). The study aims to leverage the capabilities ofwearable sensors,which
allow for the collection of granular, real-time data on various aspects of
physical activity and upper limb goal-directed movements (GDMs). This is
critical to understanding the daily functional capacities of individuals with
FRDA and minimizing reporting bias. By comparing these sensor-derived
metrics with established clinical measures and biological biomarkers of
disease severity, this study aims to establish the initial clinical validity of
using wearable sensors in tracking disease symptoms related to FRDA. In
addition, we developedmachine learningmodels that utilize sensor-derived
measures to predict clinical and biological outcomes related to the disease
severity of FRDA.

In this study, we demonstrate that wearable sensor-derived metrics
significantly correlate with key clinical measures, such as mFARS and FA-
ADL, as well as biological markers, including GAA and FXN levels. These
correlations are moderate to high in effect size, emphasizing the clinical
relevanceof sensor-derivedphysical activity andupper limb functiondata in
FRDA. Moreover, we show that integrating these sensor-derived metrics
into machine learning models improves the prediction of disease severity.
These findings establish the clinical utility of wearables for real-world
monitoring of FRDA symptoms and underscore their potential to refine
disease assessments and support therapeutic interventions.

Methods
Study population and clinical assessments
39 ambulatory participants with FRDA (Age = 26.8 ± 1.6 years old, body-
mass-index (BMI) = 22.9 ± 0.7, average disease duration = 13.6 ± 1.1 years)
were recruited at the Children’s Hospital of Philadelphia/ Perelman School
ofMedicine at theUniversity ofPennsylvania (Philadelphia, PA,USA)– See
Table 1 for participants demographics, clinical, and biological character-
istics. The inclusion criteria for the study required participants to meet
several conditions. Non-ambulatory status was defined as a score of 5 or
higher on the FARS disability scale. Both male and female children aged 12
years and older, as well as adults of any age, were eligible for enrollment. A
genetically confirmed diagnosis of FA was required for participation,
though for carrier/control cheek swab and blood samples, genetic con-
firmation was not necessary. Participants with a clinically or genetically
confirmed diagnosis of FA, pending confirmatory genetic testing through a
commercial or research laboratory, were also eligible.

Participants were excluded from the study if they were unable or
unwilling to provide informed consent or had any acute or ongoingmedical
conditions thatwould interferewith the study’s assessments. Additionally, if
the investigator determined that the participant was unlikely or unable to
comply with the study protocol, they were excluded from participation.

It is important tonote that around8 subjectswerenon-ambulatory and
defined as those with a Friedreich’s Ataxia Rating Scale (FARS) disability
scale score of 5 or higher.

All participants over the age of 18 gave written informed consent, and
the study received approval from the Institutional Review Board as a sub-
study of CHOP IRB 2609, FriedreichAtaxia Clinical OutcomeMeasures, in
accordance with the Declaration of Helsinki. Parental or guardian per-
mission, which constituted informed consent, was required for participants
under the age of 18, alongwith child assentwhere appropriate.Additionally,
the study is registered on ClinicalTrials.gov under the identifier

Table 1 | Participants demographics, clinical and biological
characteristics

Characteristic FA (n = 39)

Demographics

Age in years (Mean ± SE) 26.8 ± 1.6

Sex, Female (%) 19 (48.7%)

Ethnicity, Caucasian (%) 39 (100%)

Race, Hispanic (%) 1 (2.5%)

Height in cm (Mean ± SE) 166.9 ± 1.7

Weight in kg (Mean ± SE) 64.5 ± 2.6

BMI in kg/m2 (Mean ± SE) 22.9 ± 0.7

Right- handed, % 32 (82%)

Non-ambulatory, % 8 (20.5%)

Clinical characteristics

Disease duration in years (Mean ± SE) 13.6 ± 1.1

mFARS score (Mean ± SE) 40.0 ± 2.0

FA-ADL score (Mean ± SE) 13.2 ± 0.9

Dominant Hand 9 HPT score (Mean ± SE) 71.8 ± 10.5

Non-Dominant Hand 9 HPT score
(Mean ± SE)

58.8 ± 6.6

25FWT in seconds * (Mean ± SE) 17.6 ± 3.7

Biological characteristics

GAA repeats (Mean ± SE) 581.4 ± 40.1

FXN (%of control individuals) * (Mean ± SE) 40.0 ± 2.0

FXN and 25FWT data marked with an asterisk (*) were available for 28 participants.
mFARSmodifiedFriedreich’sAtaxiaRatingScale,FA-ADLFriedreichAtaxiaRatingScaleActivity of
Daily Living, 9 HPT 9-Hole Peg Test, GAA Guanine-adenine-adenine, FXN frataxin, SE
Standard Error.
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NCT06016946. The in-clinic assessments included the standard FRDA
assessments evaluated by the neurologist, including mFARS, FA-ADL,
25FWT, and 9 HPT.

During 25FWT, participants were instructed to walk along a marked
path of 25 feet, whichwasmeasured and laid outwith visible start and finish
lines. It was conducted in a quiet, well-lit hallway free from obstructions,
ensuring a consistent environment for all participants. Each participant was
asked to start from a stationary position, with the front foot placed at the
starting line. On the command ‘go,’ the timer was started, and the partici-
pant walked towards the finish line at a comfortable and safe pace. Assistive
deviceswere allowed if typically usedby theparticipant indailywalking.The
test was performed twice to ensure consistency, with a brief resting period in
between to prevent fatigue. The time taken to complete each trial was
recorded in seconds using a stopwatch. The final score was calculated as the
average of the two-timed trials, providing a measure of the participant’s
functional walking speed. Moreover, FXN and GAA levels were sourced
from the clinical charts of the participants, ensuring that the data were
current and reflected their health status during the study period. The cohort
presents a group of patients with moderate disease but short of loss of
ambulation.

At-home monitoring of physical activity and upper limb goal-
directed movements
Physical activity and the upper limb GDMs were monitored over 7 con-
secutive days using the PAMSysTM pendant16,17 and PAMSys ULMTM wrist
sensor18,19, respectively (BioSensics LLC, Newton,MAUSA). Those sensors
contain a 3-axis accelerometer (sampling frequency of 50 Hz) and built-in
memory for recording long-term data. The PAMSys pendant is specifically
designed to be worn around the neck at the sternum level using a lanyard
and magnetic closure. This design ensures easy wearability and removal
while minimizing the risk of choking. Participants were instructed to wear
the pendant under their shirts to secure its placement and reduce any
potential interference. Participants wore the PAMSys ULMTM wrist sensor
on their dominant hand. The PAMSysTM is a patentedwearable sensor (U.S.
Patents # 8,206,325, 9,005,141, and 9,901,209) for precision actigraphy with
sensitivity and specificity exceeding 90%16,20. Additionally, it provides a
broad range of sensor-derived metrics, which include features and para-
meters related to (1) posture, including percentage of sitting, standing,
walking, and lying; (2) locomotion, including daily steps, walking bouts, and
step duration variability, and cadence, and (3) postural transitions,
including the number of sit-to-stand transitions and stand-to-sit transitions
during activities of daily living. The sensor-derived metrics from the
PAMSys ULM wrist sensor include features and parameters related to
GDMsof upper extremity function including counts andduration, aswell as
velocity and accelerometer features. The sensors detect the time periods that
theyarenotworn. In our analysis,weonly considereddayswhen the sensors
were worn by the participant for at least 18 h. During the clinical visit,
participants received instructions on using the sensors and were directed to
wear them continuously.

Statistics and reproducibility
All statistical analyses were performed using standard methods in Python
(SciPy and statsmodels libraries) and IBMSPSS (Version 29.0.1.0) Software.
Continuous variables are presented as mean ± standard error of the mean
(SEM), unless otherwise specified.

Reliability analysis. The reproducibility of our findings is supported
using Intraclass Correlation Coefficients (ICCs) to assess the test-retest
reliability of the sensor-derived metrics. By dividing the 7-day mon-
itoring period into two distinct segments, we evaluated the consistency of
the sensor measurements over time. The majority of metrics demon-
strated high ICC values (ICC > 0.75), indicating good to excellent relia-
bility, thus confirming that the wearable sensors provide stable and
reproducible measurements across the monitoring period. ICC values
were calculated using a two-way random effects model, which considers

both measurement effects and subjects as random. This model choice is
suitable for data where the aim is to assess the reliability ofmeasurements
over different time periods. ICC values above 0.75 are typically inter-
preted as indicating good reliability, values between 0.5 and 0.75 suggest
moderate reliability, and values below 0.5 indicate poor reliability21.

Correlation analysis. Spearman or Pearson correlations (chosen based
on the scale of measurement) were conducted to demonstrate the rela-
tionship between sensor-derived metrics and clinical measures and
biological biomarkers of disease severity. Furthermore, Benjamini-
Hochberg (BH) correctionmethodwas applied to all correlation analyses
to adjust for multiple comparisons. This method involves ranking the
p-values from all tests according to their size and then adjusting these
values according to their rank and the total number of comparisons. By
employing this technique, we maintained the false discovery rate (FDR)
at a predetermined level of 5% for this study. Consequently, only
hypotheses with adjusted p values below this threshold were deemed
statistically significant.

Machine Learning Model Development
Machine Learning Model Development. We trained multiple sto-
chastic gradient descent regressor models to predict clinical and biolo-
gical outcomes using different combinations of input features. Model 1
uses demographic information, disease duration, and GAA levels as
input features. Model 2 includes only sensor-derived metrics related to
physical activity as input features. Model 3 combines demographic
information, disease duration, GAA levels, and sensor-derived physical
activity metrics. Model 4 incorporates demographic information, disease
duration, GAA levels, and sensor-derived GDMmetrics. Finally, Model 5
uses a comprehensive set of input features, including demographic
information, disease duration, GAA levels, sensor-derived physical
activity, and GDM metrics. For the models where GAA levels are the
target outcome, they are not used as input features within the same
model. Instead, these predictions rely on sensor-derived metrics and
demographic data.

It is important to note that when GAA levels were the target outcome
for prediction, they were not used as an input feature within the same
models. Instead, the predictions were made using a combination of sensor-
derived metrics and demographic data. Additionally, individuals classified
as non-ambulant were included in the analysis despite their limited walking
capabilities. These participants couldperformessential tasks such asmoving
short distances within the home or using the restroom. By incorporating
these measures, we ensured that the analysis captured the full range of
physical abilities present in the study population, allowing for a compre-
hensive assessment of functional mobility across all participants, regardless
of their ambulatory status.

A comprehensive feature selection technique, known as a wrapper
exhaustive approach, systematically assesses every conceivable combination
of features to pinpoint the most suitable subset of input features for con-
structing a predictive model22.

Feature selection. A comprehensive wrapper exhaustive approach was
implemented for feature selection. This technique initially considered all
potential predictors, including demographics, disease duration, GAA
levels, and sensor metrics. We systematically assessed every possible
combination of these features to identify themost predictive subset. Each
subset was evaluated using an SGD regressor, selected for its effectiveness
in large-scale data handling and optimization.

Model validation. To assess the model’s performance rigorously, we
implemented a leave-one-out cross-validation strategy, which system-
atically evaluates the model’s ability to generalize by leaving out one data
point at a time from the training set and assessing its prediction
accuracy23. This approach minimizes the risk of over-fitting and ensures
that our model’s performance is robust and reliable.
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Performance metrics. The model performance was evaluated in
terms of coefficient of determination (R2), the correlation between
the prediction and actual measurement (r), and the mean absolute
error (MAE). These metrics provided a comprehensive evaluation of how
well each model predicted the outcomes relative to actual measured
values.

Optimization and finalization. Once the optimal feature set was deter-
mined, the final model was retrained using only these selected features to
finalize its configuration. This process ensures that the chosen features
genuinely enhance the predictive accuracy of the model, optimizing data
utilization for reliable and robust predictions.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Study Participants
31participantswere 100%compliant inwearing the sensors at all times for 7
consecutive days. The remaining 8 participants had an average non-wear
duration of 72.3 ± 14.5min, indicating an average 95% compliance. Simi-
larly, for compliance in wearing the wrist sensor, 37 participants were 100%
compliant, and the remaining 2 participants had an average compliance of
approximately 90%. Figure 1 illustrates the correlations between sensor-

Fig. 1 | Correlations between sensor-derived physical activity metrics and clinical
scores. A Correlation map displaying correlation coefficients (r or ρ) between 45
sensor-derived measures of physical activity and clinical scores of FRDA, as well as
disease duration,GAA and FXN. Spearman correlation analysis was used to quantify
the relationship between sensor-derived metrics and clinical scores, including FA-
ADL, FA-ADL LL, mFARS, and mFARS Section E. Meanwhile, Pearson correlation

analysis was employed to evaluate the association between sensor-derived metrics
and biological outcomes, such as 25FWT, GAA, FXN, and disease duration.
BMedian steps per walking bout versus FA-ADL, mFARS, and mFARS Section E.
Data represent n = 39 participants. All physical activity metrics are averaged daily
values measured over 7 consecutive days.
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derived physical activity metrics measured by the PAMSys pendant with
clinical outcomes (i.e., FA-ADL, FA-ADL LL, mFARS, andmFARS section
E) and biological outcomes (i.e., Disease duration, GAA and FXN).

Physical activity monitoring
The correlation analysis of sensor-derived physical activity metrics with
clinical scores and biological outcomes (i.e.,GAAandFXN) revealed several
significant relationships, Supplementary Data 1. Notably, the percentage of
sitting time was significantly positively correlated with FXN (r = 0.64,
p = 0.002), indicating that higher sitting time is associated with higher FXN
levels. Conversely, the percentage of standing time showed a moderate
negative correlation with FXN (r =−0.47, p = 0.064), although this did not
reach significance.

Locomotion metrics demonstrated strong negative correlations with
clinical scores, particularly FA-ADL, FA-ADL LL, mFARS, and mFARS
SectionE. Totalwalking time (ρ ranging from−0.46 to−0.63), total steps (ρ
ranging from −0.48 to −0.67), and various step bout metrics, such as
average, median, and 90th percentile steps per bout, showed significant
negative correlations with these clinical scores. This indicates that higher
walking activity is associated with lower clinical impairment scores. Speci-
fically, median steps per walking bout correlated strongly with FA-ADL
(ρ =−0.63, p < 0.001), FA-ADL LL (ρ =−0.74, p < 0.001), mFARS
(ρ =−0.61, p < 0.001), and mFARS Section E (ρ =−0.75, p < 0.001).

Postural transition metrics generally showed weak correlations with
clinical scores, GAA, and FXN. However, the 10th percentile sit-to-stand
duration showed a moderate positive correlation with mFARS Section E
(ρ = 0.42, p = 0.040), suggesting that faster transition times might be
associated with better clinical outcomes in specific motor functions.
Additionally, 28 participants were able to perform 25FWT. The median
step count per walking bout as measured by the PAMSys pendant
demonstrated a significant correlation with the 25FWT, underscoring the
relevance of this physical activity measure in reflecting walking cap-
abilities in FRDA patients.

Goal-directed movements
The correlation analysis of sensor-derived GDM metrics with biological
outcomes and clinical scores also revealed several significant relation-
ships, see Fig. 2 and Supplementary Data 2. The velocity features of
GDMs showed strong correlations with clinical scores. Median velocity
was significantly negatively correlated with mFARS (ρ =−0.56,
p = 0.004) and 9-HPT (ρ =−0.60, p = 0.001), suggesting that lower
median velocities are associated with higher impairment. Maximum
velocity and velocity root mean squared also showed similar negative
correlations with these clinical scores. Conversely, velocity dominant
frequency was positively correlated with mFARS (ρ = 0.60, p = 0.001) and
9-HPT (ρ = 0.66, p < 0.001), indicating that higher dominant frequencies

Fig. 2 | Correlations between sensor-derived GDM and clinical scores and bio-
logical biomarkers. A Correlation map displaying correlation coefficients (r or ρ)
between 27 sensor-derivedmeasures of GDM and clinical scores of FRDA, as well as
disease duration,GAA and FXN. Spearman correlation analysis was used to quantify
the relationship between sensor-derived metrics and clinical scores, including FA-
ADL, FA-ADL UL, mFARS, and mFARS Subsection B. Meanwhile, Pearson

correlation analysis was employed to evaluate the association between sensor-
derived metrics and biological outcomes, such as GAA, FXN, average HPT, and
disease duration. B Velocity root mean squared of GDMs versus FA-ADL, mFARS,
and 9 HPT. Data represent n = 39 participants. All GDMmetrics are averaged daily
values measured over 7 consecutive days.
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are associated with lower impairment. Acceleration features also revealed
significant correlations. Median acceleration was negatively correlated
with mFARS (ρ =−0.50, p = 0.013) and 9-HPT (ρ =−0.68, p < 0.001),
indicating that higher impairments are associated with lower median
accelerations. Skewness acceleration had a significant positive correlation
with mFARS (ρ = 0.49, p = 0.016) and a significant negative correlation
with FXN (ρ =−0.59, p = 0.010), suggesting that higher skewness is
associated with greater clinical impairment and lower FXN levels.
Additionally, kurtosis acceleration was positively correlated with GAA
(r = 0.59, p = 0.004) but negatively correlated with FXN (r =−0.58,
p = 0.013). Other significant findings include the negative correlations of
entropy acceleration with GAA (r =−0.53, p = 0.013) and positive cor-
relations of kurtosis acceleration with GAA (r = 0.59, p = 0.004). Accel-
eration zero crossings count was significantly negatively correlated with
FXN (r =−0.71, p = 0.001), while acceleration zero crossings duration
entropy showed significant negative correlations with FXN (r =−0.73,
p < 0.001) and significant positive correlations with GAA (r = 0.44,
p = 0.062). Overall, the analysis indicates that several GDM metrics,
particularly those related to velocity and acceleration features, are sig-
nificantly correlated with clinical scores and FXN levels. GAA, on the
other hand, showed mixed correlations, with some metrics, such as
entropy acceleration and kurtosis acceleration, exhibiting significant
relationships.

Reliability assessment
The physical activity metrics were reported under three categories: (1)
postures, (2) locomotion, and (3) postural transitions. Our analysis of
sensor-derived physical activity metrics demonstrated generally high
reliability across variousmeasures of posture and locomotion as reported in
Supplementary Data 3. The Intraclass Correlation Coefficients (ICCs) for
themajority of themetrics, such as total sitting, standing, andwalking times,
aswell as the numberofwalking bouts and total steps, consistently indicated
good to excellent reliability (ICC> 0.80). This suggests that the wearable
sensors used in the study provided stable and consistent measurements
across the two segments of the 7-day monitoring period. Notably, the
metrics for walking activities, including total walking time and steps,
exhibited particularly high reliability, with ICCs nearing or exceeding 0.96.
This high reliability extends to metrics capturing walking bout character-
istics and cadence, where most measures showed ICCs above 0.90, high-
lighting the sensors’ capability to accurately track walking parameters (i.e.,
sensor-derived measures of locomotion). Additionally, the summary of
sensor-derived metrics for the GDM is provided in the Supplemen-
tary Data 4.

Prediction models
SupplementaryData 5 summarizes result relatedmodelperformance. There
is a noticeable trend where models incorporating a broader range of input
features (Models 3, 4, and 5) generally outperform those with more limited
inputs (Models 1 and 2) across most metrics. This suggests that the inte-
gration of both types of sensor data with demographic and disease infor-
mation leads to more accurate predictions. Model 5 shows superior
performance in predicting GAA and FXN levels, with R² values of 0.77 and
0.81, respectively, demonstrating the value of multimodal approach-based
comprehensive feature set. Model 5 also excels in predicting mFARS
(R² = 0.73) andmFARSSectionE (R² = 0.85), indicating excellent predictive
reliability and validity for these clinical measures.

Models using only sensor-derived metrics related to physical activity
(Model 2) were particularly effective in predicting mFARS Section E and
FA-ADL LL with relatively high R² values, highlighting the importance of
activity data in assessingmotor functions. Moreover, the inclusion of GDM
metrics significantly enhanced the accuracy for GAA and FXN predictions
in Model 4, showing R² values of 0.74 for both, pointing to the relevance of
goal-directed movements in understanding biological variations. The per-
formance metrics across the models indicate that the complexity and
diversity of input features directly contribute to the robustness of themodel

outputs. Notably, the comprehensive inputs in Model 5 lead to the most
consistent high performance across nearly all outcome measures, estab-
lishing it as the most effective model configuration in this study. Features
included after feature selection process are reported in the Supplemen-
tary Data 6.

Discussion
In the present study, wearable sensors for at-home monitoring and
capturing motor function were used in FRDA. Sensor-derived metrics
correlated with the most commonly used clinical outcomes (i.e., FA-
ADL, FA-ADL UL, mFARS, and mFARS section B, Average 9 HPT) and
biological outcomes (i.e., GAA and FXN). Our findings also indicate that
sensor-derived measures of physical activity and upper limb function can
effectively support the implementation of a data-driven approach based
on machine learning for predicting disease severity. When combined
with demographic and biological assessments, these sensor-derived
metrics offer a comprehensive and more accurate understanding of the
disease symptoms. Moreover, the diverse sub-sections of the mFARS
assessment focus on specific symptoms of FRDA since it affects multiple
systems in the body. Our results showed that machine learning models
could predict subsections, including FA-ADL UL, FA-ADL LL, and
mFARS section E. This is significant because the models specifically
developed to predict the extent of impairment in each area would enable
a more targeted approach to treatment and rehabilitation. Lastly, as
indicated in our data (Supplementary Fig. S1), we have validated the
findings of prior research, which demonstrated a correlation between the
age of onset and disease severity, as well as a shorter GAA-repeat
length24–26.

We observed a high level of compliance with wearable sensors for
remote monitoring of physical activity and upper limb function. This sig-
nifies that FRDApatients are consistently and effectively using these devices
and at-home monitoring of their physical activity and movement patterns
using wearable sensors is feasible in FRDA.

Recent studies have yielded encouraging outcomes by using wear-
able sensors to quantify clinical evaluations such as SARA and mFARS,
aiming to mitigate the inaccuracies associated with subjective clinical
assessments in ataxia27–30. However, these approaches still require
supervised assessments, which is only feasible within clinical settings.
Our study findings shares similarities with the recent work by Fichera
et al. (2024), which highlights the versatility and potential of wearable
sensors in enhancing our understanding of FRDA’s impact on patient
mobility and daily life activities31. While our study explores a broader
range of sensor-based metrics, the reviewed study specifically focuses on
detailed activity classifications like sedentary, light, and Moderate-
Vigorous Physical Activity (MVPA), and uses Vector Magnitude (VM3)
as a composite measure of movement intensity across three axes. Spe-
cifically, Fichera et al. (2024) demonstrated that VM3, which quantifies
the total movement in three-dimensional space, is significantly correlated
with clinical scales such as the Scale for the Assessment and Rating of
Ataxia (SARA) and the mFARS. This aligns with our findings, which
revealed significant negative correlations between locomotion-related
metrics and disease severity, underscoring the relevance of three-
dimensional movement analysis in capturing the functional impairments
associated with FRDA.

Using wearables is of paramount importance due to the potential
discrepancy between a brief examination in an outpatient clinic, where an
individual with ataxiamay appear towalk andmaintain balance better than
what caregivers report witnessing in their daily lives. Furthermore, relying
on a single, or infrequently administered, mobility assessment cannot
adequately capture day-to-day variations or other clinically pertinent per-
iods of change, such as daily fluctuations inmotor function or the influence
of fatigue24. In a large natural history study in FRDA (n = 812), neurological
outcomes including the 25FWT showed a linear progression of the disease
over a 5-year study period. The significant correlation observed between the
median step count per walking bout and the 25FWTunderscores the utility
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of this physical activitymeasure in reflecting walking capabilities in patients
with FRDA.

A challenge in accurately quantifying real-life physical activity lies in
the need to consider environmental factors and the context of walking. For
instance, the total number of steps recorded in a day can be influenced by
longer walks outdoors and may not accurately represent shorter walking
bouts that occur indoors. Furthermore, number of postural transitionsmay
provide another insight about physical activity as a frail individual may lack
of lower-extremity strength and perform lower postural transitions32.
Therefore, different environments and walking contexts can have varying
impacts on a person’s overall physical activity levels. Considering these
factors, we included parameters such as different percentiles (e.g., 50th
percentile) of steps per walking bout, cadence, step variability, as well as
overall time percentage spent in each posture in our analysis. We observed
the highest correlations (Supplementary Data 1) for median steps per
walking bout.

Furthermore, negative correlation of root mean squared velocity and
median acceleration as measured by the PAMSys ULM wrist sensor with
the 9HPT and clinical scores (i.e., mFARS) may indicate a decline in
motor function as the disease progresses, leading to slower hand
movements and reduced acceleration during GDMs. Further investiga-
tion would be required to determine whether the decrease in velocity and
acceleration during task performance represents a compensatory strategy
to accommodate for coordination deficits or if it is a consequence of
muscle weakness.

We developed various machine learning models to leverage
demographics information, disease duration, and GAA, as well as both
sensor-derived physical activity and GDM metrics. In Model 1, which
used demographics information, disease duration, and GAA as the
input features, the predictive performance yielded R2 values of 0.47 for
mFARS and 0.39 for FXN (see Supplementary Data 5, and

Figs. 3 and 4). The most significant improvement was observed in
Model 5, where the inclusion of sensor-derived physical activity and
GDMmetrics alongside the input features fromModel 1 resulted in an
increase in R2 values to 0.73 for mFARS and 0.81 for FXN. This
marked a 1.5-fold improvement in model performance for mFARS
and a 2-fold improvement for FXN compared to Model 1. Model 2,
which exclusively utilized sensor-derived physical activity metrics as
input features, achieved an R2 value of 0.42 for FXN. A related study
conducted by Kadirvelu et al. 27–30 reported similar predictive results.
Their models, which incorporated sensor-derived metrics for the
8-minute walk and 9HPT tests, achieved R2 values of 0.59 and 0.53,
respectively. Notably, when demographics information, disease
duration, and GAA data were included as input features in Model 3,
along with physical activity metrics, and GDM metrics in Model 4, the
R2 values exhibited further improvement. These findings highlight the
potential advantages of a multimodal approach to disease assessment
and its role in enhancing the prediction of disease severity.

While our study offers encouraging insights, it is crucial to recognize
several significant limitations. Primary limitation is the absence of
longitudinal data for the participants in this study. Consequently, our
results do not provide a comprehensive representation of the disease’s
progression and its dynamic changes over time. To mitigate these lim-
itations, future research initiatives should focus on validating our tech-
nology and methodology through a longitudinal study involving a
broader and more diverse participant cohort, including individuals with
different ambulatory statuses. Another limitation of our study is the
absence of comprehensive neurological or clinical assessments specifi-
cally designed to test for lower velocity in motor tasks. Without these
detailed evaluations, we are unable to conclusively determine whether
observed reductions in velocity are due to muscle weakness or com-
pensatory strategies for impaired motor function.

Fig. 3 | Machine learning-based models for
predicting mFARS. A mFARS predictions from
Models 1 (n = 33), 2 (n = 39), and 5 (n = 32) versus
the clinical scores. B The explained variance for
mFARS prediction for models 1-5. C mFARS Sec-
tion E predictions from Models 1 (n = 33), 2
(n = 39), and 5 (n = 33) versus the clinical scores.
D The explained variance for mFARS Section E
prediction for models 1, 2, 3, and 5. Model 4 was not
trained for the predictionmFARS Section E as it uses
sensor-derived GDM metrics.
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Data availability
The de-identified data supporting the findings of this study are available as
Supplementary Data File 8. The numerical data (source data) used to plot
Figs. 1b, 2b, 3a, 3c, 4a, and 4c are included in Supplementary Data file 7.
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