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Abstract

Evading programmed cell death (PCD) is a hallmark of cancer that allows tumor cells to survive 

and proliferate unchecked. Endocytosis, the process by which cells internalize extracellular 

materials, has emerged as a key regulator of cell death pathways in cancer. Many tumor 

types exhibit dysregulated endocytic dynamics that fuel their metabolic demands, promote 

resistance to cytotoxic therapies, and facilitate immune evasion. This review examines the roles 

of endocytosis in apoptotic resistance and immune escape mechanisms utilized by cancer cells. 

We highlight how inhibiting endocytosis can sensitize malignant cells to therapeutic agents and 

restore susceptibility to PCD. Strategies to modulate endocytosis for enhanced cancer treatment 

are discussed, including targeting endocytic regulatory proteins, altering membrane biophysical 

properties, and inhibiting Rho-associated kinases. While promising, challenges remain regarding 

the specificity and selectivity of endocytosis-targeting agents. Nonetheless, harnessing endocytic 

pathways represents an attractive approach to overcome apoptotic resistance and could yield more 

effective therapies by rendering cancer cells vulnerable to PCD. Understanding the interplay 

between endocytosis and PCD regulation is crucial for developing novel anticancer strategies that 

selectively induce tumor cell death.

Introduction

Cancer remains a leading cause of mortality worldwide, with many tumor types exhibiting 

resistance to standard chemotherapies and radiation treatments that aim to induce cancer cell 

death [1,2]. Overcoming this therapeutic challenge requires developing novel strategies that 

not only induce or enhance cancer cell death but also circumvent mechanisms of resistance 

inherent in conventional treatments [3–5]. Unlike traditional approaches that broadly target 

cellular proliferation, these new strategies focus on selectively exploiting vulnerabilities 
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within cancer cells to initiate programmed cell death (PCD), while preserving healthy 

tissues.

Endocytosis, the mechanism by which cells internalize extracellular materials and 

molecules, has emerged as an attractive target for cancer therapy [6–9]. Cancer cells often 

exhibit dysregulated endocytic pathways that support their increased metabolic demands 

and rapid division [6,10]. For example, many cancer cells overexpress receptors like the 

transferrin receptor or growth factor receptors, which are internalized via clathrin-mediated 

endocytosis (CME) to fuel tumor growth [7,9,11]. Disrupting endocytosis in these malignant 

cells can deprive them of essential nutrients and signaling factors, thereby sensitizing 

them to PCD [12]. Furthermore, inhibiting endocytosis can prevent the internalization and 

trafficking of therapeutic agents, rendering cancer cells more susceptible to cytotoxic drugs 

and other anti-cancer modalities [9,13].

In this review, we first define PCD and the mechanisms of how cancer cells evade this 

process. We will then examine the current understanding of how endocytic pathways are 

altered in cancer and discuss strategies to target these processes as a means to enhance 

cancer cell susceptibility to PCD. We highlight recent studies demonstrating the therapeutic 

potential of modulating endocytosis in various tumor types. Finally, we consider the 

challenges and future directions in translating approaches targeted at endocytic pathways 

into effective cancer treatments that selectively trigger cell death in tumors.

PCD in cancer

Cancer is a complex and heterogeneous disease that is characterized by uncontrolled cell 

proliferation and evasion of cell death mechanisms [14–17]. PCD, composed of apoptosis, 

autophagy, and programmed necrosis, is essential for maintaining tissue homeostasis and 

eliminating aberrant cells [5,17]. However, in cancer, the balance between cell survival and 

death is disrupted, leading to tumor progression and treatment resistance [3,16,17].

Apoptosis, the most extensively studied form of PCD, serves as a critical mechanism 

for eliminating damaged or unwanted cells. The process of apoptosis is orchestrated by 

two primary pathways: the extrinsic pathway and the intrinsic pathway [18–20]. In the 

extrinsic pathway, external death signals activate death receptors on the cell surface, 

such as Fas (CD95) and tumor necrosis factor receptor 1, leading to the formation of 

the death-inducing signaling complex (DISC) [21–23]. The DISC recruits and activates 

procaspase-8, initiating a cascade of caspase activation and ultimately resulting in cell death. 

Conversely, the intrinsic pathway is initiated by intracellular stress signals, such as DNA 

damage or metabolic imbalance, leading to mitochondrial outer membrane permeabilization 

[20,24]. This process releases cytochrome c into the cytosol, activating the apoptosome and 

triggering caspase activation. Dysregulation of apoptotic pathways in cancer often occurs 

through genetic mutations, epigenetic alterations, or dysregulated expression of apoptosis-

related proteins, allowing cancer cells to evade apoptotic signals and promote tumor survival 

[16,17].
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Autophagy is a conserved catabolic process and plays a dual role in cancer biology. 

Under physiological conditions, autophagy maintains cellular homeostasis by degrading 

dysfunctional organelles and proteins [4,17,25]. However, in cancer, autophagy can act 

as either a pro-survival mechanism or a pro-death pathway, depending on the cellular 

context and environmental conditions. In nutrient-poor or hypoxic environments, autophagy 

promotes cancer cell survival by providing essential nutrients and energy substrates. This 

adaptive response enables cancer cells to withstand metabolic stress and resist apoptosis 

induced by therapeutic agents [3,17,26]. Alternatively, autophagy can induce a form of non-

apoptotic cell death known as autophagic cell death [26]. This process involves excessive or 

prolonged autophagy leading to cellular self-digestion and eventual cell demise, independent 

of apoptosis. The dual nature of autophagy in cancer underscores its complexity and context-

dependent effects, influencing tumor progression, therapeutic responses, and overall cellular 

fate modulation [27,28].

Programmed necrosis, once considered a chaotic and unregulated form of cell death 

[29], has recently emerged as a regulated process with distinct mechanisms, including 

necroptosis, ferroptosis, and pyroptosis [3,30,31]. Necroptosis, mediated by receptor-

interacting protein kinases, occurs when apoptosis is inhibited or compromised, leading to 

necrotic cell death with inflammatory consequences [32]. Ferroptosis, characterized by iron-

dependent lipid peroxidation and membrane damage, represents a novel form of regulated 

cell death implicated in cancer progression and therapy resistance [33]. Pyroptosis, triggered 

by inflammasome activation and caspase-1 cleavage, results in inflammatory cell death and 

immune responses [5,30]. The regulation of programmed necrosis in cancer is complex and 

context-dependent, involving cross-talk with other cell death pathways and interactions with 

the tumor microenvironment [30,31,34].

The interplay between different forms of PCD — apoptosis, autophagy, and programmed 

necrosis — is intricate and multifaceted. Cross-talk between these pathways can either 

promote or inhibit cell death, depending on the cellular context and environmental 

conditions. For example, apoptosis and autophagy can synergize to eliminate cancer cells 

under certain conditions [25], whereas in other scenarios, autophagy may promote cancer 

cell survival and therapy resistance in the absence of apoptosis [24,27,28]. Additionally, 

programmed necrosis can serve as a backup mechanism for apoptosis when caspase 

activation is impaired [32], contributing to the resilience of cancer cells against cell death 

signals.

Although numerous mechanisms drive the initiation of PCD, cancer cells have evolved 

a diverse repertoire of strategies to evade these processes. Having established an 

understanding of the various modalities of cell death, our focus will now shift towards 

exploring how cancer cells modulate these PCD pathways. Specifically, we will delve 

into the mechanisms through which cancer cells resist apoptotic signals, with a particular 

emphasis on extrinsic apoptosis.
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Extrinsic mechanisms of apoptotic resistance in cancer

Cancer cells are under constant stress, facing oncogenic stress, genomic instability, cellular 

hypoxia, and extracellular apoptotic signals [3,5,16]. Typically, cells undergo PCD in 

response to stress, but cancer cells often evade this response by disabling apoptotic 

pathways, which is a hallmark of cancer [16]. They achieve this by down-regulating pro-

apoptotic factors like caspases or up-regulating apoptosis inhibitors such as inhibitor of 

apoptosis proteins (IAPs) [25]. Additionally, cancer cells can desensitize themselves to 

extrinsic apoptotic signals by modulating death receptors [5,23]. In this context, we will 

explore two critical extrinsic mechanisms of immune-mediated cell death evasion by cancer 

cells: granule-mediated cytotoxicity and receptor-mediated cytotoxicity.

Granule-mediated cytotoxicity, employed by cytotoxic T lymphocytes (CTLs) and natural 

killer (NK) cells, releases cytotoxic molecules like perforin and granzyme B toward 

target cells, inducing intrinsic apoptosis [35–37]. Cancer cells counteract this process by 

degrading granzyme B or inhibiting cytotoxicity via hypoxia-induced autophagy [38,39]. 

Interestingly, alterations in mechanical properties on the cell membrane, such as lipid 

order, has been shown to impact perforin binding and cytotoxicity, with low-order lipids 

favored for perforin-mediated apoptosis [40,41]. For example, breast cancer cells resistant 

to lymphocyte cytotoxicity exhibit elevated lipid order, rendering them less susceptible 

to perforin-induced lysis [40,42]. Other mechanical features such as cell stiffness have 

been shown to influence susceptibility to perforin, with softer cancer cells evading T cell 

cytotoxicity [43].

Granule-mediated cytotoxicity serves as the primary mechanism for eliminating target cells 

in the presence of a large number of T cells. However, this process relies on CTLs to 

initiate target recognition, leading to the expansion of specific T cell populations capable of 

identifying target cells through specific peptides presented with the major histocompatibility 

complex class I (MHC-I) [44]. This presentation of peptides by MHC-I is indispensable for 

the binding of death receptors to ligands, initiating extrinsic apoptosis.

Cancer cells paradoxically express both the Fas (CD95) death receptor and Fas ligand 

(FasL), yet often exhibit resistance to Fas-mediated apoptosis [23,45,46]. Fas, a surface 

receptor from the tumor necrosis factor receptor (TNFR) superfamily, is primarily 

recognized for initiating cell death upon binding to its ligand, FasL. Despite abundant Fas 

expression on cancer cells, they often resist this apoptotic pathway, enabling them to evade 

cell death mechanisms [45,47]. Common evasion strategies involve the down-regulation of 

key components of the Fas signaling cascade, such as caspase-8 or Fas-associated death 

domain, which are essential for transmitting apoptotic signals initiated by Fas activation. 

Additionally, cancer cells often up-regulate cellular FLICE inhibitory protein, a potent 

inhibitor at the DISC, thereby preventing caspase-8 activation and subsequent apoptosis 

despite Fas receptor engagement [48]. Deregulation of B-cell lymphoma 2 (Bcl-2) family 

proteins or inhibitors of apoptotic proteins contributes to the loss of apoptosis signaling 

through Fas, promoting tumor survival [49]. Cancer cells also use FasL expression to 

indirectly target immune cells, inducing apoptosis in Fas-expressing CD8+ T cells and 
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evading immune surveillance [50,51]. Remarkably, Fas activation can even boost cancer cell 

survival by enhancing their motility and invasiveness [45].

Similar to granule-mediated killing, receptor-mediated killing by CTLs or NK cells relies on 

the mechanical features of the cell membrane. The interaction between T-cell receptors 

(TCRs) of CD8+ T cells and MHC-I peptides is crucial for initiating apoptosis [44]. 

Soft membranes prevent effective TCR-MHC-I-peptide interactions, leading to insufficient 

downstream apoptotic signaling [52,53]. Moreover, MHC-I molecules are localized to higher 

order lipid regions, and depletion of cholesterol disrupts CTL recognition of MHC-I peptide 

complexes [36].

These findings suggest that cancer cells evade apoptosis not only through the regulation 

of biochemical players but also by modulating mechanical features, such as membrane 

stiffness. In the following section, we will examine the roles of receptor-mediated 

cytotoxicity, with a particular focus on how endocytosis contributes to cancer cell death. 

Finally, we will discuss strategies designed to enhance apoptotic sensitivity in these cells 

through targeting endocytosis.

Roles of endocytosis in apoptotic evasion

Endocytosis plays a crucial role in various cellular processes, including nutrient uptake, 

receptor internalization, and signal transduction [54,55]. Defined as the process by which 

cells engulf extracellular molecules and particles by forming vesicles derived from the 

plasma membrane, endocytosis serves as a fundamental mechanism for maintaining cellular 

homeostasis and regulating cell signaling pathways [8,56,57].

Endocytosis is tightly regulated by various cellular factors, including membrane 

composition, cytoskeletal dynamics, and signaling pathways [56,58,59]. Membrane lipid 

composition, particularly the presence of cholesterol and sphingolipids, influences the 

formation and stability of endocytic vesicles [60]. Moreover, cytoskeletal elements such 

as actin filaments and microtubules provide the structural framework necessary for vesicle 

formation and intracellular trafficking [56,58]. Signaling molecules such as small GTPases, 

including dynamin and Rab proteins, regulate the budding and fusion of endocytic vesicles 

with target membranes [54].

There are several types of endocytosis, each serving distinct functions in cellular physiology 

[61]. CME is the most well-characterized form, involving the formation of clathrin-

coated vesicles that transport cargo molecules into the cell [54,58,59]. Caveolae-mediated 

endocytosis occurs through invaginations of lipid raft domains enriched in caveolin 

proteins, facilitating the internalization of specific membrane components [62]. Additionally, 

macropinocytosis involves the nonspecific uptake of extracellular fluid and solutes through 

large, actin-driven membrane protrusions called macropinosomes [61].

CME, in particular, plays a significant role in oncogenesis and cancer cell proliferation 

[7,63]. Genetic mutations affecting endocytic proteins have been implicated in leukemia, 

underscoring the importance of endocytosis in cancer pathogenesis [64]. Moreover, 

posttranslational ubiquitination of endocytic proteins and receptors serves as a sorting signal 
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in this pathway, influencing cellular processes crucial for cancer progression [64,65]. For 

example, ubiquitination regulates the internalization and trafficking of receptors such as 

epidermal growth factor (EGFR), impacting downstream signaling pathways that promote 

tumor growth and metastasis [66,67]. Additionally, ubiquitination of the E3 ubiquitin ligase 

Nedd4 can modulate the stability and function of CME machinery, affecting the turnover of 

membrane proteins involved in cancer cell signaling and survival, including EGFR [65,68]. 

Active Src kinase has been shown to promote degradation of Cbl, an important regulator of 

CME, resulting in elevated EGFR expression and signaling in tumors [66,67].

Tumor cells significantly diverge from normal cells in their cell membrane’s structure 

and composition, resulting in the development of distinct signaling pathways that provide 

them with a survival edge [9]. Endocytosis plays a pivotal role in this process, as it can 

selectively engage in the uptake of extracellular molecules, thereby influencing apoptotic 

pathways and directly affecting cancer cell survival. By internalizing death receptors such as 

Fas/CD95 and TNFRs, cancer cells can sequester these receptors away from the cell surface, 

preventing their engagement with extracellular ligands and subsequent initiation of apoptotic 

signaling cascades [69,70]. Furthermore, endocytosis facilitates the internalization of anti-

apoptotic proteins, such as Bcl-2 family members and IAPs, which inhibit pro-apoptotic 

signaling pathways and promote cell survival [25,71]. Endocytosis also influences cancer 

immunity by modulating the presentation of tumor-associated antigens. Down-regulation 

of surface display of MHC-I, facilitated by endocytosis, can impede T-cell-mediated 

cytotoxicity and promote immune evasion by tumors [72].

Concurrently, cancer cells evade immune surveillance by decreasing ‘eat me’ signals 

that promote their engulfment, such as exposure of phosphatidylserine on the outer 

membrane, modifying surface glycosylation patterns and epitopes of intercellular adhesion 

molecules, while increasing signals that inhibit phagocytosis (such as CD47, PD-L1, 

and beta-2 microglobulin) [73]. Alternatively, cancer cells release ‘find me’ signals 

that recruit monocyte or macrophage recruitment toward apoptotic cells, including lipid 

lysophosphatidylcholine, sphingosine 1-phosphate, fractalkine CX3CL1, and nucleotides 

ATP and UTP [73]. Although these signals can facilitate the efficient removal of these dying 

cells before they undergo secondary necrosis, which can trigger inflammation and tissue 

damage, cancer cells can evade detection and clearance due to their lack of expression of 

‘eat me’ signals [73,74].

Dysregulating endocytic pathways has been linked to the altered expression and activity of 

key oncogenes and tumor suppressor genes, further influencing cancer cell fate [6]. In colon 

cancer, inhibiting CME has been found to impede tumor growth and enhance the therapeutic 

efficacy of immune checkpoint blockade, indicating that selective targeting of endocytic 

pathways could be a viable strategy in cancer treatment [72]. In addition, inhibiting 

endocytosis, particularly of death-inducing proteins [12], could enhance antitumor efficacy 

by preventing immune evasion mechanisms employed by cancer cells. Understanding the 

intricate mechanisms underlying endocytic regulation and its impact on apoptotic signaling 

pathways is essential for developing targeted therapeutic strategies aimed at overcoming 

cancer resistance to PCD.
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Inhibiting endocytosis sensitizes cancer cells to PCD

Endocytic dynamics are increasingly recognized as a valuable target in anticancer strategies, 

mainly because of their role in facilitating targeted and efficient drug delivery [13] (Figure 

1). Targeted drug delivery systems aim to minimize off-target effects, overcome multidrug 

resistance, ensure specific distribution to cancerous tissues, and improve the permeability of 

anticancer agents across cell membranes, ultimately enhancing the vulnerability of cancer 

cells to treatment [75]. Endocytosis plays a vital role in the uptake of drug-delivery vehicles, 

allowing therapeutics such as antibody-drug conjugates (ADCs) and radioligands to be 

efficiently transported into tumor cells [76].

One promising approach to target endocytosis in cancer is to inhibit the GTPase dynamin, 

a central regulator of multiple endocytic pathways [77]. In particular, dynamin-1, typically 

neuron-specific, has been shown to be activated in nonneuronal cells via cancer-relevant 

signaling pathways, establishing a feedback loop between CME and signaling to enhance 

cancer cell survival, migration, and proliferation [78,79]. Chemical inhibitors of dynamin, 

such as Dyngo [80], Dynasore [81], and phenothiazine [82] block the cell’s GTPase 

activity, disrupting a wide range of dynamin-dependent endocytic processes. This inhibition 

of endocytosis has shown remarkable efficacy in suppressing proliferation and inducing 

apoptotic cell death across various cancer cell lines, including leukemia and lymphoma 

[83,84]. Notably, the disruption of endocytosis through dynamin inhibition has also been 

observed to overcome chemoresistance in leukemia stem cells, highlighting its potential to 

sensitize even the most recalcitrant tumor cells to cell death [85].

Beyond dynamin, other endocytic targets have been explored as a means to sensitize 

cancer cells. Compounds like Pitstop, which interfere with the clathrin-mediated endocytic 

machinery [86,87], have demonstrated the ability to enhance cancer cell susceptibility to 

cell death [88]. However, despite mutations in clathrin heavy chain that would theoretically 

block its supposed binding site, Pitstop 2 inhibits endocytosis indiscriminately [87,89–91]. 

This non-specific action indicates that Pitstop 2 may not be suitable for clinical use. 

Although Filipin III, which blocks caveolae/raft-mediated endocytosis [92], has been shown 

to overcome EGFR inhibitor resistance in lung cancer cells [93], it would not be effective 

on cells such as PC3 cells that lack cavin-1, a protein essential for caveolae formation [94]. 

These findings underscore the importance of various modes of endocytic regulation and 

combination therapies in modulating the response of cancer cells to targeted therapies.

The modulation of endocytosis can also be achieved through indirect approaches that alter 

the biophysical properties of the cell membrane [95–97]. Cancer cells often exhibit distinct 

membrane characteristics, such as altered cholesterol content and fluidity [98,99], which can 

significantly impact endocytic dynamics and the associated signaling cascades crucial for 

their survival. Agents such as statins, which target membrane cholesterol, have demonstrated 

anticancer effects in both preclinical and clinical studies. Lovastatin, simvastatin, and 

rosuvastatin, have shown promise in preclinical studies by temporarily enhancing tumor 

cell surface receptor density, thereby increasing the accumulation of monoclonal antibodies 

used in cancer therapies [94]. Lovastatin has also been reported to decrease markers 

associated with metastasis in breast cancer cells [100]. Furthermore, lovastatin has been 
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shown to enhance apoptosis in brain cancer cells by increasing the activity of doublecortin, 

a brain-specific gene [101]. In some clinical studies, simvastatin, either used alone or in 

combination with other chemotherapeutic agents, has been demonstrated to significantly 

improve treatment outcomes and reduce mortality rates in patients with certain types of 

cancer [102–104].

Cancer cells are notably softer compared with healthy cells, facilitating rapid membrane 

remodeling during cancer progression [105–107]. This reduced stiffness is crucial to explain 

the observed increase in endocytosis in many cancer cells, particularly in a localized 

manner, which may be attributed to variations in local membrane composition, tension, 

and cooperative processes like actin remodeling [59]. These attributes play a vital role not 

only in facilitating cancer cell survival, invasion, and metastasis but also significantly impact 

the interactions between cancer cells and immune cells. For instance, T cells demonstrate 

diminished cytoskeletal forces and produce fewer effector cytokines when interacting 

with softer surfaces [53]. Thus, beyond biochemical immune checkpoints, mechanical 

checkpoints play a vital role in T cell-mediated cytotoxicity against cancer cells.

There has been growing interest in investigating Rho-associated kinases (ROCK) inhibitors 

as potential therapies for cancer. ROCK play a pivotal role in regulating the actomyosin 

cytoskeleton and contractile force generation [108]. This ROCK-driven contractility governs 

various cellular processes, including cell morphology, migration, invasion, proliferation, 

immune responses, and apoptosis resistance [109–111]. Inhibiting ROCK leads to increased 

membrane tension, which subsequently reduces endocytic dynamics [12]. Currently, several 

ROCK inhibitors such as Fasudil, Netarsudil, Belumosudil, and Ripasudil are approved for 

clinical use, primarily for treating hypertension [112,113]. While clinical trials using these 

inhibitors for cancer treatment have not yet been successful, numerous preclinical studies 

suggest that ROCK inhibition, when combined with chemotherapies, targeted therapies, and 

immunotherapies, leads to enhanced responses [113,114]. The promise of ROCK inhibitors 

lies in their ability to modulate the tumor microenvironment, improve drug delivery, and 

sensitize cancer cells to apoptosis, which preclinical models have shown to be effective 

in overcoming resistance mechanisms [113]. We have recently demonstrated that ROCK 

inhibition with Fasudil increases membrane tension in cancer cells and facilitates apoptosis 

by promoting the retention of Fas receptors on the cell surface [12]. This reduction in 

endocytosis has been observed to retain Fas receptors across multiple cancer cell lines 

without altering normal cells, enhancing sensitivity to the soluble Fas ligand and inducing 

cell death in two-dimensional culture, organoids, and in vivo models [12].

A word of caution is warranted when using endocytosis disruptors, whether genetic or 

pharmaceutical, to study endocytic regulators in cancer. Many small-molecule inhibitors 

lack specificity, disrupting multiple endocytic pathways [115]. Common strategies like 

altering membrane lipid composition or receptor distribution impact all endocytic pathways 

and essential signaling [94,116]. Inhibiting one pathway may up-regulate alternative routes, 

such as dynamin-independent endocytosis when dynamin is inhibited [117]. Broad dynamin 

targeting results in poor selectivity and off-target effects [118]. For instance, Dyngo has 

been shown to inhibit Trop2 endocytosis in prostate cancer cells, which can potentially 

reduce the effectiveness of Trop2-targeting ADCs [76,119]. Agents targeting membrane 
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cholesterol like statins, while promising in cancer treatment, may interfere with uptake 

mechanisms and signaling due to altered fluidity, and affect cytoskeleton organization [120]. 

Methyl-β-cyclodextrin targeting cholesterol-rich lipid rafts is limited by cytotoxicity [121]. 

Manipulating intracellular cholesterol trafficking has shown efficacy in slowing melanoma 

growth, but strategies must carefully balance specificity and safety considerations [122].

Nevertheless, despite these challenges, targeting endocytosis to sensitize cancer cells to 

PCD remains a worthwhile endeavor in cancer therapy. Combining endocytic inhibitors 

with therapies such as ADCs and monoclonal antibodies holds promise for enhancing 

treatment efficacy while reducing off-target toxicity [85,94,123]. Temporary inhibition 

of CME can prevent the internalization of ADCs, increasing their retention on the cell 

surface, which in turn enhances antibody-dependent cellular cytotoxicity [90]. When this 

endocytosis inhibition is lifted, it has been shown that the ADC payload is then delivered 

to the endosomes in ex vivo tumor samples, enhancing its effectiveness while minimizing 

adverse effects on normal tissues [124]. By using endocytic inhibitors that offer transient and 

reversible inhibition, such as the dopamine receptor inhibitor prochloroperazine [82,123], 

systemic effects can be mitigated, ensuring the inhibition is cell-specific and temporary.

Disrupting dysregulated endocytic pathways that support tumor growth and survival holds 

promise for improving treatment outcomes across various cancer types. Endocytic inhibitors, 

whether administered alone, in combination with ADCs or radioligands, represent a critical 

strategy in cancer therapy. However, the journey to identifying optimal candidates for 

clinical use will require extensive research into their effects on the entire metastatic 

process. Addressing concerns of specificity, dosage, timing, safety, and the relevance of 

in vivo models is paramount to study and treat dysregulated endocytosis within the tumor 

microenvironment. As our understanding of the intricate relationship between endocytosis 

and cancer cell biology continues to evolve, the development of more selective and potent 

agents targeting these pathways holds the potential to significantly improve cancer treatment 

outcomes in the future.
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Abbreviations

ADC antibody-drug conjugate

CME clathrin-mediated endocytosis

CTL cytotoxic T lymphocytes

DISC death-inducing signaling complex

EGFR epidermal growth factor
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FasL Fas ligand

IAP inhibitor of apoptosis protein

MHC-I major histocompatibility complex class I

NK natural killer cells

PCD programmed cell death

ROCK Rho-associated kinases

TCR T-cell receptors

TNFR tumor necrosis factor receptor
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Perspectives

• Cancer cells evade PCD through various mechanisms, enabling unchecked 

survival and proliferation. Endocytosis plays a key role in regulating PCD 

pathways, providing opportunities to target this process and sensitize cancer 

cells to cytotoxic agents.

• Inhibiting endocytosis can prevent internalization of death receptors, restore 

immune surveillance, and enhance delivery of therapeutic payloads, rendering 

cancer cells more susceptible to PCD.

• Investigating the intricate relationship between endocytic trafficking and 

apoptotic signaling pathways is crucial for identifying new targets in cancer 

therapy. There is a growing demand to explore combined approaches that 

merge endocytic modulation with chemotherapies, targeted therapies, and 

immunotherapies to improve anticancer effectiveness.
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Figure 1. Schematic representation illustrating the potential therapeutic strategy of inhibiting 
endocytosis in cancer cells.
Inhibiting endocytosis can block the internalization of death receptors, restore immune 

surveillance, and improve the delivery of therapeutics to sensitize cancer cells to 

programmed cell death. Figure created by Biorender.com.
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