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Abstract 

Background Pregnant women are significantly underrepresented in clinical trials, yet most of them take medication 
during pregnancy despite the limited safety data. The objective of this study was to characterize medication use dur-
ing pregnancy and apply propensity score matching method at scale on patient records to accelerate and prioritize 
the drug effect signal detection associated with the risk of preterm birth and other adverse pregnancy outcomes.

Methods This was a retrospective study on continuously enrolled women who delivered live births 
between 2013/01/01 and 2022/12/31 (n = 365,075) at Providence St. Joseph Health. Our exposures of interest were 
all outpatient medications prescribed during pregnancy. We limited our analyses to medication that met the minimal 
sample size (n = 600). The primary outcome of interest was preterm birth. Secondary outcomes of interest were small 
for gestational age and low birth weight. We used propensity score matching at scale to evaluate the risk of these 
adverse pregnancy outcomes associated with drug exposure after adjusting for demographics, pregnancy character-
istics, and comorbidities.

Results The total medication prescription rate increased from 58.5 to 75.3% (P < 0.0001) from 2013 to 2022. The prev-
alence rate of preterm birth was 7.7%. One hundred seventy-five out of 1329 prenatally prescribed outpatient medi-
cations met the minimum sample size. We identified 58 medications statistically significantly associated with the risk 
of preterm birth (P ≤ 0.1; decreased: 12, increased: 46).

Conclusions Most pregnant women are prescribed medication during pregnancy. This highlights the need to uti-
lize existing real-world data to enhance our knowledge of the safety of medications in pregnancy. We narrowed 
down from 1329 to 58 medications that showed statistically significant association with the risk of preterm birth even 
after addressing numerous covariates through propensity score matching. This data-driven approach demonstrated 
that multiple testable hypotheses in pregnancy pharmacology can be prioritized at scale and lays the foundation 
for application in other pregnancy outcomes.
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Background
Pharmaceutical companies primarily rely on pre-mar-
keting randomized clinical trials to prevent and assess 
adverse drug reactions (ADRs). Despite the effort, studies 
conducted on inpatient populations estimated a serious 
ADR incidence rate of 6.7% (N ≥ 2,216,000) with a fatality 
rate of 0.32% (N ≥ 106,000), placing ADRs as the fourth 
leading cause of morbidity and mortality in the United 
States (US) health care systems [1, 2]. The incidence rate 
of ADRs in outpatients is harder to estimate, with studies 
suggesting rates ranging from 3 to 38% [3–8]. Estimated 
incidence rate of ADRs in both inpatient and outpatient 
demonstrates that unintended drug response is common 
and expected.

Pre-marketing random clinical trials rarely include 
pregnant women unless the product targets pregnant 
women [9]. Consequently, drug efficacy, safety, and dos-
ages are determined based on data from men and non-
pregnant women. While pregnant women are the most 
underrepresented population in clinical trials, they can 
experience some of the most complex medical situations. 
During pregnancy, women undergo marked physiologi-
cal changes that significantly alter the pharmacokinetics 
and pharmacodynamics of drugs [10]. Therefore, cur-
rent knowledge in pharmacology should not be directly 
applied to pregnant women, as inadequate informa-
tion on the pharmacology of pregnancy exposes them 
to a high likelihood of experiencing unintended drug 
responses.

Despite the limited availability of safety information 
regarding medication use during pregnancy, many preg-
nant women continue to use medications. Overall, 93.9% 
of pregnant women take at least one medication (over-
the-counter or prescribed) and typically use an average 
of 4.2 during pregnancy. Usage of prescribed medication 
by pregnant women varies globally, ranging from 23 to 
96%, with the US in 2008 reporting a usage rate of 49% 
among pregnant women [11]. Given the prevalent use of 
medication among pregnant women and the challenges 
associated with conducting prospective clinical trials on 
this population, leveraging real-world data has emerged 
as a promising supplemental approach to investigate 
the effects of drugs during pregnancy. Electronic health 
records (EHRs) are particularly suitable candidates 
among these real-world data sources. EHRs contain rich 
and comprehensive information about patients’ longitu-
dinal health profiles, potential confounding factors, and 
prescription history. Active research on developing novel 
methodologies for not only ADRs [12, 13] but also for 
drug repositioning [14] and drug-drug interactions [15, 
16] is ongoing.

However, despite these advancements in data-driven 
healthcare research, the field of pregnancy research has 

been slower in adopting these novel methodologies. In 
summary, there is a pressing need to establish a founda-
tional framework for systematically investigating drug 
responses during pregnancy at scale using real-world 
data. Such an effort is crucial, as it can lead to the gen-
eration of testable hypotheses related to drug effects on 
pregnancy outcomes, both positive and negative. Fur-
thermore, uncovering drug responses that do not pose 
risks to adverse pregnancy outcomes can provide valu-
able insights into drug safety during pregnancy. Here, 
we selected preterm birth (PTB) as our primary out-
come of interest. PTB, defined as birth occurring before 
37 weeks of gestation, significantly contributes to perina-
tal morbidity and mortality in developed countries. PTB 
accounts for 75% of perinatal mortality cases and over 
half of long-term morbidity [17].

We employed a large-scale propensity score matching 
approach on patient records to expedite the generation 
and prioritization of testable hypotheses related to the 
risk of PTB. We hypothesized there exist not yet charac-
terized pharmacological signals with medication and risk 
of PTB. Beyond hypothesis generation, we investigated a 
few detected drug effect signals using traditional phar-
macoepidemiology methods.

Methods
Study design, setting, and participants
Providence St. Joseph Health (PSJH) is an integrated US 
community healthcare system that provides care in urban 
and rural settings across seven states: Alaska, California, 
Montana, Oregon, New Mexico, Texas, and Washington. 
We used PSJH pregnant patient records who delivered 
live infants from January 1, 2013, through December 
31, 2022 (n = 543,408). We excluded multiple pregnan-
cies and deliveries with gestational age (GA) of less than 
20  weeks (n = 516,881). GA was limited to 20  weeks or 
greater because ascertainment bias is particularly high 
for EHR data earlier in pregnancy. This study popula-
tion may be biased toward lower-risk pregnancy cases. 
This is because high-risk pregnancy cases are often 
transferred to third-level academic medical centers. We 
excluded patients who were not continuously enrolled 
from 180  days before the start of pregnancy (last men-
strual period, LMP) to the time of delivery (n = 365,075). 
Our definition of continuous enrollment was at least one 
encounter 180 days before LMP and one encounter on or 
after the delivery date. This was done to partially address 
surveillance bias.

All procedures were reviewed and approved by 
the Institutional Review Board at the PSJH through 
expedited review on 11–04-2020 (study number 
STUDY2020000196). Consent was waived because dis-
closure of protected health information for the study 
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involved no more than minimal risk to the privacy of 
individuals.

Variables
Exposures
We mapped all prescription records during pregnancy 
to the RxNorm code based on ingredients. We split the 
cohort into exposed and unexposed groups for indi-
vidual medication ingredients. Women with medication 
orders that overlapped with at least 1  day of pregnancy 
were considered exposed. While medication records may 
not accurately capture actual medication exposure, there 
is generally strong agreement between the medication 
use reported by pregnant women and their medication 
records [18]. We excluded medications that did not reach 
a minimum sample size of the exposed, which was 600. 
This minimum sample size was calculated using Epitools 
[19], with the following parameters: PTB prevalence rate 
of the PSJH maternity cohort (7.7%), assumed relative 
risk (1.55), desired level of confidence (0.9), and desired 
power for the detection of significant difference (0.8). 
The calculated minimum sample size was 582, but we 
rounded it to 600.

Outcomes
The primary outcome of interest was PTB, defined 
as gestational age at birth (GA; GA < 37  weeks). Sec-
ondary outcomes were low birth weight (LBW; birth 
weight < 2500 g) and small for gestational age (SGA; birth 
weight < 10th percentile of based on gestational age).

Covariates
We extracted maternal, pre-pregnancy, and prenatal 
characteristics and comorbidities information from EHR 
data. Pregnancy and maternal characteristics were col-
lected during prenatal care or at time of delivery. These 
included parity, preterm history, delivery year, fetal sex, 
age at LMP, race, ethnicity, insurance status, pregravid 
body mass index (BMI), smoking, and use of alcohol and 
illegal drugs (Additional File 1: Table S1).

We conducted a parallel analysis with three different 
sets of covariates. First, we conducted propensity score 
matching with the covariates without comorbidities. Sec-
ond, we addressed pre-pregnancy comorbidities based on 
the obstetric comorbidity index [20]. Selected comorbidi-
ties were renal diseases, chronic lung diseases, diabetes, 
leukemia, pneumonia, sepsis, cardiovascular diseases, 
sickle cell diseases, anemia, cystic fibrosis, and asthma 
(Additional File 1: Table S2). A similar practice was done 
in an at-scale study conducted by Sentinel System, one of 
the US Food and Drug Administration (FDA) efforts in 
surveillance medical products [21]. We excluded comor-
bidities specific to the prenatal period, such as gestational 

diabetes; the obstetric comorbidity index is designed to 
assess the mortality risk at delivery. Third, we selected 
the 25 most common comorbidities before and dur-
ing the pregnancy (Additional File 1: Method S1). We 
acknowledge prenatal comorbidities do not satisfy the 
covariate definition. However, this study aims to explore 
the usefulness of EHRs and generate hypotheses. To do 
so, we employed an exploratory approach beyond the 
conventional one.

Analysis
Descriptive statistics
We described the source population on maternal char-
acteristics, outcomes, and covariates. The descriptive 
statistics are presented in Additional File 1: Table S3. We 
characterized the prescription rate within the PSJH preg-
nant population in Fig.  1. We used the chi-square test 
and linear regression to evaluate the difference in pre-
scription rate across categorical variables and continuous 
variables. Age distribution of this source population is 
described in Additional File 1: Fig. S2. Prescription pat-
terns from 2013 to 2022 based on their ingredient and 
ATC classification categories are displayed in Additional 
File 1: Fig. S3.

Propensity score matching
We calculated the risk ratio of PTB, LBW, and SGA for 
individual outpatient medications that reached the mini-
mum sample size. For each medication, the unexposed 
group was matched to the exposed group on the covari-
ates. Missing values for parity and preterm history were 
imputed as 0. Missing values for pregravid BMI were 
imputed to be in the normal BMI category. The remain-
ing covariates were imputed using the median. We used 
propensity score matching to account for covariates 
associated with adverse pregnancy outcomes. Compared 
to other propensity score methods and covariate adjust-
ment methods, propensity score matching provided 
exceptional covariate balance across most circumstances 
[22]. An unsupervised learning model with k-nearest 
neighbors (k = 1), as recommended by a prior study [23], 
was used to match with replacement by the propensity 
logit metric. We evaluated the covariate balance using 
an average standardized mean difference. We excluded 
medication ingredients with an average standardized 
mean difference below 0.2. We categorized medications 
with statistically significant associations based on their 
indication in three categories: preterm labor (PTL) or 
PTB, PTB risk factors, and infection (Additional File 1: 
Table S4 [24–96]). Here, we considered association with 
a P value below 0.1 statistically significant. This is not a 
conventional practice in hypothesis-testing studies, but 
our study is hypothesis-generating. We are suggesting 
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potential hypotheses for researchers to investigate 
further.

Validation
We selected sertraline, acyclovir, and ferrous sulfate for 
further investigation. They had relatively large exposure 
groups and were statistically significant in an analysis 
adjusted for pre-pregnancy/prenatal common diagnoses. 
Details of the method are described in the Additional File 
1: Method S2, Method S3, and Method S4.

Sertraline
Sertraline is a selective serotonin reuptake inhibitor 
(SSRI) antidepressant. Depression is a treatable disease 

and a risk factor for PTB [97]. We limited our analytic 
population to patients who had any depression diagno-
sis before pregnancy (Additional File 1: Table  S2). We 
evaluated the risk of PTB in patients exposed to sertra-
line among patients who had depression onset before 
the pregnancy. Additionally, we assessed the likelihood 
of delivering preterm in patients exposed to SSRI within 
the same analytic population that we used to evaluate the 
risk of PTB in those exposed to sertraline.

Acyclovir
Acyclovir is a treatment for herpes virus infection, 
including shingles, chicken pox, and genital herpes. 
Genital herpes is a sexually transmitted disease, which 

Fig. 1 Overall prescription rate of PSJH pregnant population. A Plot shows the increase in total prescription rate from 2013 to 2022. The total 
medication prescription rate increased from 58.5 to 75.3% from 2013 to 2022 (P < 0.0001). The inpatient prescription rate increased from 29.3 
to 32.4% (P = 0.2). In contrast, outpatient medication prescriptions increased from 50.5 to 70.1% (P < 0.0001). We evaluated the increase 
in prescription rate using linear regression. B Plot shows the total prescription rate across age groups (P < 0.0001). We evaluated the decrease 
in prescription rate across ages using linear regression. C Plot shows the difference in prescription rates between insurance groups (P < 0.0001). We 
evaluated the difference in prescription rate across categorical variables using the chi-square test. D Plot shows the difference in prescription rate 
across race groups (P < 0.0001). We evaluated the difference in prescription rate across categorical variables using the chi-square test. E Plot shows 
the increase in prescription rate based on comorbidity count. The increase in prescription rate across comorbidity count using linear regression
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is a risk factor for PTB. We determined the indication of 
treatment based on dosage [98]. According to the CDC 
treatment guideline [99], acyclovir is recommended start-
ing at GA 36 weeks to suppress the reactivation of genital 
herpes among pregnant women. Patients who adhered to 
this treatment guideline delivered after 36 weeks of ges-
tation, potentially introducing selection bias and leading 
to a lowered risk of PTB. Initially, we characterized the 
number of patients who initiated their prescription at 
36 weeks of gestation to assess the proportion of patients 
following this CDC treatment guideline. Subsequently, 
we examined the likelihood of PTB in patients exposed to 
acyclovir before 36 weeks of gestation. We replicated the 
analysis on a subsample of patients who had indications 
of genital herpes (Additional File 1: Table  S2). We then 
evaluated the risk of PTB among patients exposed to acy-
clovir or valacyclovir (oral prodrug of acyclovir) before 
36 weeks of gestation.

Ferrous sulfate
Ferrous sulfate is a treatment for iron deficiency anemia, 
which is a risk factor for PTB. We assessed the impact of 
ferrous sulfate in the anemic group. The anemic group 
was determined based on the presence of iron-deficiency 
anemia diagnosis within 180  days before LMP to LMP 
(Additional File 1: Table S2).

Results
Descriptive statistics
We identified 365,075 patients as our analytic popula-
tion who had continuously enrolled singleton pregnant 
patients. This population was enriched with people 
who were aged 30–34 (32.7%), White or Caucasian race 
(63.2%), non-Hispanic or Latino ethnicity (77.2%), Med-
icaid/Medicare insured, living in metropolitan areas 
(84.2%), and delivered in 2022 (12.4%). Median mater-
nal age increases from 30.3 to 31.5 (P < 0.0001) from 
2013 to 2022. The proportion of women aged 35 or older 
increased from 20.8 to 27.0% from 2013 to 2022 (Addi-
tional File 1: Fig. S2). The mean gestational age at deliv-
ery was 275.0 days. The average prevalence rates of PTB, 
SGA, and LBW were 7.7%, 12.1%, and 5.4% (Additional 
File 1: Table S3).

The total medication prescription rate increased from 
58.5 to 75.3% from 2013 to 2022 (P < 0.0001). The inpa-
tient prescription rate slightly increased from 29.3 to 
32.4% (P = 0.2) In contrast, outpatient medication pre-
scriptions increased from 50.5 to 70.1% (P < 0.0001) 
(Fig. 1). The maternal age group of 18–24 had the highest 
prescription rate of 73.0%. Mothers aged 40 or older had 
the lowest prescription rate reporting 63.4% (P < 0.0001). 
The Medicare/Medicaid insurance group had a higher 
prescription rate reporting 72.2%, than the commercial 

insurance group (62.6%; P < 0.0001). Amongst the race 
group, pregnant women who reported Black or African 
American race had the highest prescription rate of 77.3%, 
and Asian had the lowest, reporting 64.4% (P < 0.0001). 
We observed prescription rate increases as the num-
ber of comorbidities increased. This trend was simi-
lar for both pre-pregnancy and prenatal comorbidities. 
Approximately half of the pregnant people with no pre-
pregnancy/prenatal problem diagnosis had a prescription 
during pregnancy. Patients with eleven or more pre-preg-
nancy/prenatal problem diagnoses had a prescription 
rate higher than 90% (Fig. 1).

Propensity score matching
From the initial pool of 1329 medications, 175 prena-
tally prescribed medications met the minimum sample 
size. None of the medications had an effect size below 0.2 
after matching all three analyses. When we adjusted for 
baseline characteristics, pregnancy, and maternal charac-
teristics, we identified a total of 76 (RR < 1: 20, RR ≥ 1:56) 
associations with a p-value below 0.1. The number of 
associations with statistical significance narrowed when 
additionally accounting for pre-pregnancy comorbidi-
ties in the obstetric comorbidity index. We observed 75 
(RR < 1: 5, RR ≥ 1:70) medications associated with the 
risk of PTB with statistical significance. Finally, we iden-
tified 58 (RR < 1: 12, RR ≥ 1:46) medications associated 
with the risk of PTB in an analysis adjusted for common 
diagnoses during the pre-pregnancy and prenatal period 
(Fig.  2, Fig.  3, and Table  1). Statistically significant cor-
relations were categorized into three categories based on 
their indication: PTL/PTB, risk factor of PTB, and infec-
tion (Additional File 1: Table  S4) [24–96]. Forty-three 
medications had indications categorized into at least one 
category. Four medications fell into the category of PTL/
PTB indication. Thirty-two medications had indications 
that were risk factors for PTB. Nine medications were 
prescribed in case of infections, including bacterial, fun-
gal, and viral.

Validation
Sertraline
There were 29,352 patients who had depression diagno-
sis before the pregnancy. Respectively, 3214 and 5910 
patients were exposed to sertraline or any SSRI. They 
were 1.28 times [1.14, 1.45] and 1.16 times [1.05, 1.28] 
more likely to deliver preterm than patients without 
exposure.

Acyclovir
The majority of patients (58.8%; 4947 out of 8420) who 
had prenatal acyclovir exposure started their prescrip-
tion at or after 36 weeks of gestation. Those exposed to 
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acyclovir before 36  weeks of pregnancy had 1.77 times 
(1.77 [1.52, 2.07]) higher likelihood of delivering preterm 
compared to patients without prenatal acyclovir expo-
sure. However, within the subsample of patients diag-
nosed with genital herpes, we did not observe an elevated 
risk of PTB (OR = 1.19 [0.94, 1.50]). Additionally, there 
was no observed association between exposure to acyclo-
vir and elevated risk of PTB when comparing individuals 

exposed to acyclovir and valacyclovir before 36 weeks of 
gestation (OR = 0.86 [0.74, 1.00]).

Ferrous sulfate
There were 774 patients diagnosed with iron defi-
ciency anemia within a 180-day pre-pregnancy period. 
We observed 294 patients with a prescription for fer-
rous sulfate during pregnancy. Our analysis revealed no 

Fig. 2 Forest plots of association between medication and risk of PTB. Left plot shows the forest plot of baseline analysis that adjusted 
maternal and pregnancy characteristics. The center plot shows a forest plot of analysis that adjusted for maternal and pregnancy characteristics 
and pre-pregnancy comorbidities from the obstetric comorbidity index. The right plot is a forest plot of analysis that adjusted for maternal 
and pregnancy characteristics and prenatal/pre-pregnancy common comorbidities. The Y-axis is the list of medications that met the minimum 
sample size in descending order of RR of analysis in the center plot. This figure is summarized in Table 1. RR, confidence interval, and p-values are 
reported in Additional File 2. Supplementary Data

Table 1 Summary of associations based on statistical significance and relative risk

Baseline (maternal/pregnancy 
characteristics)

Baseline + prepregnancy 
comorbidity index

Baseline + prepregnancy/
prenatal common 
comorbidity

RR < 1 0.05 ≥ P 4 3 8

0.1 ≥ P > 0.05 16 2 4

P > 0.1 23 26 36

RR ≥ 1 0.05 ≥ P 49 55 42

0.1 ≥ P > 0.05 7 15 4

P > 0.1 77 75 82
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association between the prescription of ferrous sulfate 
and the risk of PTB (OR = 0.85 [0.48, 1.50]).

Discussion
To our knowledge, this was the first study to use pro-
pensity score matching at scale on EHR to generate and 
prioritize testable hypotheses on drug effects associ-
ated with the risk of PTB. We retrospectively assessed 
365,075 people who were continuously enrolled in PSJH. 
The majority of women took prescribed medication dur-
ing pregnancy. From an initial pool of 1762 medications, 
we narrowed it down to 172 medications for hypothesis 
evaluation. Three of these detected signals were selected 
based on their relatively large exposure groups and sta-
tistical significance in an analysis adjusted for pre-preg-
nancy/prenatal common diagnoses. We investigated the 
heightened likelihood of delivering preterm associated 
with sertraline exposure and decreased chance related 
to acyclovir and ferrous sulfate exposures. We confirmed 
the association with sertraline, while the associations 

with acyclovir and ferrous sulfate lacked statistical 
significance.

We employed propensity score matching at scale on 
EHR and produced hypotheses for 172 medications. 
Among them, 57 of 172 mediations had statistically sig-
nificant associations with the risk of PTB. There were a 
few prior studies with similar aims. Maric et  al. (2019) 
[100] assessed administrative claims data on 2,538,255 
deliveries and identified 863 medications with statisti-
cally significant associations. Their number of signals, 
statistically significant association, far exceeds ours 
because their sample size was greater and did not elimi-
nate medication that did not meet the minimum sample 
size. That study had only 5 medications with an odds ratio 
below 1, whereas we had 12. Another effort to establish a 
framework to detect drug effect signals in maternal–fetal 
medicine was conducted by the Sentinel working group. 
Sentinel initiative, led by the US Food and Drug Admin-
istration (FDA), has created novel methods to evalu-
ate the safety of approved medical products, including 

Fig. 3 Forest plot of statistically significant association with risk of PTB. This plot is a forest plot of analysis that adjusted for maternal and pregnancy 
characteristics and prenatal/pre-pregnancy common comorbidities. Selection of prenatal and pre-pregnancy common comorbidities is described 
in Additional File 1: Method S1. RR, confidence interval, and p-values are reported in Additional File 2. Supplementary Data
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medications, vaccines, and devices. They used propen-
sity score matching tree-based scan statistics methods 
on Medicaid data to discover infant outcomes associated 
with prenatal cephalosporin exposure in the first trimes-
ter [21]. That study utilized a different approach as they 
focused on multiple outcomes and single exposures; our 
study assessed single outcomes and multiple exposures. 
Both prior studies utilized claims data, whereas we used 
EHR.

The majority of patients were prescribed medications 
during pregnancy. This finding corresponds to obser-
vations in earlier studies. According to Mitchell et  al. 
(2011) [11], in the US, 48% of women were exposed to 
prescribed medication during pregnancy in 2008. A sys-
temic review study conducted on peer-reviewed litera-
ture from 1989 to 2010 in developed countries reported 
that 27% to 93% of pregnant women used prescription 
drugs, depending on the country [101]. In our study, we 
observed an increase in prenatal prescription rate from 
58.5% to 75.3% from 2013 to 2022. This rate is higher 
than the prescription rate reported in 2008. The discrep-
ancy in the prescription rate for medication during preg-
nancy may be attributable to a gradual increase in usage. 
Mitchell et al. in 2011 described an incremental increase 
in the use of prescription medications by 60% from 1986 
to 2008. We also observed a rise in the prescription rate 
from 2013 to 2022. As discussed in the introduction, the 
common use of medication during pregnancy under-
scores the necessity to promote pharmacology research 
in pregnant women and to leverage already generated 
real-world data to expand our understanding of the effi-
cacy and safety of medications during pregnancy.

Surprisingly, the prescription rate decreased as the 
maternal age increased. We first assumed that the 
increased prescription rate over the study period was 
attributable to increasing maternal age based on obser-
vation from Mitchell et  al. (2011) [11]. Indeed, the 
median maternal age increased, and the proportion of 
women aged 30 or older gradually increased over our 
study period. However, the prescription rate did not 
correlate with the maternal age, contrary to our specu-
lation. Women in the oldest age group, 40 or older, had 
the lowest prescription rate, whereas women aged 24 or 
younger had the highest. The major difference between 
our study and Mitchell et  al. (2011) [11] is the study 
period and population. Their observation was based on 
5008 deliveries from 1997 to 2003 in the US. In contrast, 
our observation was relatively similar to that from a more 
recent study [102] on 2.3 million patients who delivered 
live births from 2000 to 2019. Their study reported that 
the most prevalent medication exposures (antibacte-
rial agents, antiemetics, and contraceptives) during 
pregnancy had a prescription pattern across age groups 

similar to our study. The younger group, 24 or younger, 
had much higher prescription rates for these medications 
than those of the older group, 35 or older. This counterin-
tuitive finding regarding the decreasing prescription rate 
with age might be partly explained by the overall increase 
in prescription rates over time. Historically, there may 
have been more reluctance to take medication, but this 
hesitancy may be diminishing in recent years. Yet, older 
mothers may still retain some of this reluctance.

We employed traditional pharmacoepidemiology 
methods to evaluate the detected drug effect signals for 
sertraline, acyclovir, and ferrous sulfate. Specifically, we 
focused on assessing the negative association between 
sertraline/SSRI and the risk of PTB among patients who 
had an onset of depression before the pregnancy. We 
further validated this in a separate study [103]. We con-
firmed the correlation between exposure to sertraline/
SSRI and the risk of PTB, and this correlation remained 
strong and significant through extensive sensitivity anal-
yses. However, our study faced limitations in properly 
evaluating ferrous sulfate association with a lower risk 
of PTB due to the small sample size. Only 774 patients 
received a diagnosis of iron deficiency anemia within the 
180-day pre-pregnancy period. Despite the small sample 
size of our study, a recent study reported that patients 
exposed to iron supplementation (ferrous sulfate, ferrous 
gluconate, ferrous fumarate, and ferrous glycinate) expe-
rienced reduced odds of preeclampsia and/or PTB [104].

In contrast to sertraline and ferrous sulfate, the signal 
we observed for acyclovir was misleading. According 
to CDC treatment guidelines [99], acyclovir is recom-
mended for administration at 36  weeks of gestation for 
patients with genital herpes. This practice likely intro-
duced selection bias, as the exposure group included 
patients who surpassed 36  weeks of gestation. In fact, 
60% of patients were exposed to acyclovir at or after 
GA 36  weeks. When we restricted our exposure group 
to patients exposed to acyclovir before 36  weeks, the 
protective result associated with the risk of PTB disap-
peared. Interestingly, our result slightly differed from 
prior studies. In a previous study, exposure to valacyclo-
vir, not to acyclovir, was associated with a lower risk of 
spontaneous PTB [100]. The investigation on sertraline 
and ferrous sulfate demonstrates the potential of our 
approach to produce and prioritize hypotheses to evalu-
ate. However, misleading signals do exist. Thus, we must 
take a conservative stance and carefully verify detected 
drug effect signals.

We identified 118 medications with no statistical sig-
nificance. Restricting our analyses to medications that 
satisfy minimum sample size ensures that associations 
lacking statistical significance are not dismissed as mean-
ingless. Considering that pregnant women are typically 
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excluded from clinical medication trials despite their 
medication use, the absence of an association with the 
risk of PTB is a valuable finding supporting the potential 
drug safety in relation PTB. It underscores the need for 
similar studies in pregnancy pharmacology to be con-
ducted and repeated on real-world data to gather more 
evidence on medication’s safety, risks, and benefits for 
pregnant women.

We had one of the largest sample sizes for hypothe-
sis-generating retrospective EHR studies for pregnant 
women. While similar studies exist, they often rely on 
claims data [21, 100]. Claims data may offer a larger sam-
ple size but EHR provides richer data on patient’s longi-
tudinal health conditions, encompassing lab results, vital 
signs, and surveys [105]. Moreover, our study setting 
PSJH serves community hospitals/clinics in both rural 
and urban settings in seven western states in the US. This 
setting better reflects the general population better than 
the third-level academic hospital, which may focus more 
on high-risk pregnancies.

To ensure the integrity and reliability of our analyses, 
we implemented several measures to mitigate bias and 
ensure the robustness of our findings. We reduced the 
surveillance bias by restricting to continuously enrolled 
patients and leveraging propensity score matching. 
By limiting our study population to patients who were 
continuously enrolled, we excluded transient patients 
admitted for delivery who were likely to lack prena-
tal information. Furthermore, we mitigated the bias by 
matching patients in the treatment group to those in the 
control group with similar characteristics across covari-
ates. Given that individuals exposed to medication may 
have more frequent doctor visits, ensuring comparabil-
ity of patient health was crucial. Another noteworthy 
aspect of our approach was our commitment to evaluat-
ing all medications without introducing systemic bias. In 
research, there can be a tendency to focus on variables 
or hypotheses previously explored or considered more 
interesting. By conducting assessment on all medications 
that reached minimum sample size, we aimed to prevent 
such biases from influencing our analysis, which contrib-
uted to the overall rigor of our study.

One major limitation of this study was the absence of 
multiple testing corrections. We recognize that conduct-
ing multiple comparisons increases the likelihood of 
producing false positives. However, we deliberately did 
not correct for multiple testing, as the primary objec-
tive of this study was to produce hypotheses rather than 
to test them. Furthermore, different methods for multi-
ple testing correction can yield varying adjusted p-val-
ues. Instead of applying specific correction methods, 
we presented confidence intervals. This decision allows 
future researchers to use them for meta-analysis, as 

recommended by a prior study [106]. We underscore the 
need for cautious consideration of these associations and 
advocate for thorough evaluation through meticulously 
designed studies that reflect the characteristics of expo-
sures of interest and their indications.

Another limitation was the high number of missing val-
ues for pregravid BMI. To address this, we imputed pre-
gravid BMI as normal, based on the assumption that the 
absence of this information suggested it was not a pri-
mary concern from the clinician’s perspective. However, 
we acknowledge that the distribution of pregravid BMI 
categories does not align with the national distribution 
for women of reproductive age. It is possible that some 
BMI information may be documented in unstructured 
notes, which could be extracted using Natural Language 
Processing (NLP) techniques. As this study is exploratory 
and aimed at generating hypotheses, we recommend that 
future research testing the generated hypothesis from 
this study address this limitation by conducting subgroup 
analysis focusing on patients with complete pregravid 
BMI information and leveraging NLP to collect more 
pregravid BMI information.

Another fundamental limitation of EHR is that medi-
cation records might not accurately reflect actual medi-
cation exposure. EHR do not capture over-the-counter 
medications unless the patient specifically reported 
them. This omission may lead to an underestimation of 
total medication use. Additionally, the EHR data do not 
provide information on whether prescribed medications 
were actually filled, which could result in an overestima-
tion of medication adherence. Nevertheless, pregnant 
women are a unique clinical cohort with regular clinic 
visits and close monitoring by healthcare providers. Due 
to the potential risks to their fetus, pregnant women are 
especially vigilant about medication use [107] and gener-
ally demonstrate high agreement between self-reported 
medication use and recorded medication data [18]. While 
some bias may remain, we assume that women adhered 
to prescribed medications and that any discontinued 
medications were properly removed from the records. A 
further limitation is that route of administration was not 
considered in this analysis.

Lastly, the use of uniform sets of comorbidities is a 
limitation. Although we conducted multiple analyses 
with several groups of comorbidities, it is essential to 
note that individual medications are prescribed for spe-
cific indications. Medications with less common indica-
tions may not be adequately represented in the covariate 
we investigated. In the future, we can address this limita-
tion by applying several promising approaches. One such 
approach is high-dimensional propensity score match-
ing [108]. High-dimensional propensity score matching 
offers a robust way to control for confounding variables in 
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observational studies. Unlike traditional propensity score 
matching, which considers a limited number of covari-
ates, high-dimensional matching can involve hundreds of 
empirical covariates. Another promising approach is lev-
eraging external databases such as ChEMBL. ChEMBL 
provides valuable information about drug indications, 
contraindications, and other clinical data. Leveraging 
external databases like ChEMBL enables researchers to 
automatically select relevant analytic cohorts and covari-
ates relevant to drug indication and treatment.

Conclusions
Most pregnant women are prescribed medication during 
pregnancy. This highlights the crucial need to advance 
pharmacology research in pregnant individuals, utilizing 
existing real-world data to enhance our knowledge of the 
safety of medications in pregnancy. We demonstrated the 
potential of using statistical data mining methods to gen-
erate and prioritize hypotheses on medication associa-
tion with the risk of PTB. This foundational framework 
can be used for adverse outcomes such as gestational 
diabetes or preeclampsia. We note that these results 
should be further validated, reflecting the characteris-
tics of exposures of interest and their indication. We only 
investigated drug effects associated with the risk of PTB. 
The mentioned drugs may be attributed to other adverse 
pregnancy outcomes or congenital disorders.
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