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ABSTRACT With a rise in antibiotic resistance and chronic infection, the metabolic 
response of Salmonella enterica serovar Typhimurium to various dietary conditions over 
time remains an understudied avenue for novel, targeted therapeutics. Elucidating how 
enteric pathogens respond to dietary variation not only helps us decipher the metabolic 
strategies leveraged for expansion but also assists in proposing targets for therapeutic 
interventions. In this study, we use a multi-omics approach to identify the metabolic 
response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and 
high-fat diet over time. When comparing Salmonella gene expression between diets, 
we found a preferential use of respiratory electron acceptors consistent with increased 
inflammation in high-fat diet mice. Looking at the high-fat diet over the course of 
infection, we noticed heterogeneity in samples based on Salmonella ribosomal activity, 
which is separated into three infection phases: early, peak, and late. We identified 
key respiratory, carbon, and pathogenesis gene expressions descriptive of each phase. 
Surprisingly, we identified genes associated with host cell entry expressed throughout 
infection, suggesting subpopulations of Salmonella or stress-induced dysregulation. 
Collectively, these results highlight not only the sensitivity of Salmonella to its environ­
ment but also identify phase-specific genes that may be used as therapeutic targets to 
reduce infection.

IMPORTANCE Identifying novel therapeutic strategies for Salmonella infection that 
occur in relevant diets and over time is needed with the rise of antibiotic resistance 
and global shifts toward Western diets that are high in fat and low in fiber. Mice 
on a high-fat diet are more inflamed compared to those on a fibrous diet, creating 
an environment that results in more favorable energy generation for Salmonella. We 
observed differential gene expression across infection phases in mice over time on 
a high-fat diet. Together, these findings reveal the metabolic tuning of Salmonella to 
dietary and temporal perturbations. Research like this, which explores the dimensions 
of pathogen metabolic plasticity, can pave the way for rationally designed strategies to 
control disease.

KEYWORDS RNA-seq, time series, respiration, microbial metabolism, pathogenesis, 
CBA/J mice

S almonella enterica serovar Typhimurium (Salmonella) is a leading cause of gastro­
intestinal disease worldwide, posing serious public health risks due to increasing 

antibiotic resistance (1, 2). One challenge of controlling this pathogen is its broad 
metabolic capacity and adaptability to its environment. Recent studies have demonstra­
ted that Salmonella infection can be modified with a robust microbiome and through 
diet manipulation (3–7). However, mechanisms explaining these diet-based phenomena 
remain understudied. In this study, we address this knowledge gap by leveraging 
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deeply sequenced, time-series transcriptomics to reveal the metabolism of Salmonella 
throughout infection.

As a facultative anerobe, Salmonella outcompetes the native microbiota through 
stimulation of the host’s inflammatory response and numerous virulence factors (8–
11). In addition to oxygen diffusion into the gut lumen, the subsequent inflamma-
tory response results in the generation of reactive oxygen and nitrogen species, 
which produce respiratory electron acceptors such as nitrate, nitrite, dimethyl sulfoxide 
(DMSO), trimethylamine N-oxide (TMAO), fumarate, tetrathionate, and thiosulfate (12–
18). Furthermore, various carbon sources become available to Salmonella with inflam-
mation. Salmonella can utilize host and microbial metabolic end products, such as 
lactate and ethanolamine, as well as microbial-derived succinate, and more energetically 
favorable carbon sources (18–24). Most studies evaluating Salmonella substrate and 
electron acceptor use focus on a single compound. Moreover, these studies often do not 
track metabolism under different dietary conditions or over time, primarily focusing on 
late-stage infection processes.

Diet is a critical driver of gut microbiomes, influencing the gut metabolic landscape 
and microbial membership, which can alter colonization resistance against Salmonella 
(25–28). For example, high-fat diets (HFDs) result in increased inflammation and 
host susceptibility to infection (29–31). Furthermore, prior research demonstrated that 
pretreatment with a high-fat, low-fiber, Western diet was sufficient to destroy pathogen 
colonization resistance, resulting in increased susceptibility to Salmonella (3). Given the 
expansion of the Western diet globally (32), studying Salmonella pathogenesis and 
physiology in more realistic diet backgrounds is needed.

Changes in the microbial membership, chemical landscape of the gut, and host 
response are dynamic factors exploited by pathogens like Salmonella (9, 11, 13). Yet, 
time-series studies are limited in this field. In this study, we analyze Salmonella gene 
expression from CBA mice fed with fibrous or high-fat diets over time. By pairing 
16S rRNA sequencing, metatranscriptomic sequencing, lipocalin-2 analysis, and both 
targeted and untargeted metabolomics, we revealed known and previously unrecog­
nized metabolic strategies that distinguish early, peak, and late infection phases. These 
data emphasize the importance of the environmental context to Salmonella metabolism 
and demonstrate preferential expression of metabolic and pathogenic pathways by diet 
and infection phase. These key pathways could be targeted to abate enteric infection.

RESULTS AND DISCUSSION

High-fat diet increases inflammation and Salmonella respiratory electron 
acceptor utilization

Using fecal samples, we assessed the role of diet on Salmonella infection by comparing 
the effects of a fibrous chow diet (Chow) or a high-fat diet (HFD) on Salmonella relative 
abundance, Salmonella gene expression, and mouse inflammation (Fig. 1A). First, we 
used 16S rRNA amplicon sequencing (16S) to screen the relative abundance of Salmo­
nella per mouse and compared microbial community metrics between the two diets. 
We assessed nine Salmonella-infected mice on days 8 (HFD) and 11 (Chow), along with 
paired pre-infection samples from the same mice (n = 18). HFD mice were euthanized 
on day 8 due to severe disease represented by diarrhea, animal behavior, and animal 
lethargy, following the Ohio State University Institutional Animal Care and Use Commit­
tee (IACUC; OSU 2009A0035) protocols, while Chow mice were euthanized on day 16. 
Days 8 (HFD) and 11 (Chow) were chosen as late-infection samples based on peak 
Salmonella relative abundance (33) and sample availability (Fig. S2; Data Set S1).

All selected mice, regardless of diet, were classified as high responders with Salmo­
nella relative abundance >25% (Fig. 1B) (9, 33). The HFD (97%) had a slightly higher 
average Salmonella relative abundance compared to the Chow (82%). Despite these 
slight differences, there was no significant difference in the microbial diversity between 
the two treatments at late infection (ANOVA, P = 0.386 and P = 0.133) (Fig. S1). Regardless 
of the dietary treatment, the paired pre-infection samples exhibited decreased microbial 
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richness and Shannon’s diversity compared to their respective post-infection samples. 
Consistent with reports from others (3, 34), Chow pre-infection samples had significantly 
higher microbial diversity than HFD pre-infection samples (ANOVA, P < 0.001 and P = 
0.008, respectively). This finding suggests that diet disrupts the microbiome, potentially 
impacting Salmonella physiology.

Along with Salmonella relative abundance, we measured lipocalin (Lcn-2) concen­
trations, which is a host-derived protein indicating inflammatory status (35). Lcn-2 
concentrations (ng/g of feces) illustrated a significant increase in inflammation in HFD 
mice compared to Chow mice (Fig. 1D) (ANOVA, P < 0.001). Together, the 16S and 
lipocalin analyses illustrate that while diet alone can reduce the microbial diversity, the 

FIG 1 Increased inflammation and use of respiratory electron acceptors when comparing HFD and Chow mice. (A) Experimental design figure describes the 

number of mice, the dietary treatment, and types of analyses that were conducted. A filled circle denotes that the assay was performed for that specific mouse 

(mice 1–5). 16S rRNA amplicon sequencing (16S), metatranscriptomics (MetaT), and lipocalin-2 ELISA assays (Lcn-2) were conducted on fecal samples from mice 

fed with either chow diet (Chow, blue) or high-fat diet (HFD, purple) with the timepoint (Tp) indicated. (B) Stacked bar chart shows Salmonella abundance 

(colored blue or purple based on diet) for each mouse relative to the rest of the microbial community (denoted by black bars), as determined from 16S rRNA 

amplicon sequencing. The black line denotes samples that are high responders (25% Salmonella relative abundance). (C) The bar chart shows average Salmonella 

gene expression as gene length-corrected trimmed mean of M-values (GeTMM) for key respiratory electron acceptors between Chow and HFD mice. The asterisk 

indicates that the gene was significantly expressed between dietary regimes by DESeq2 (adjusted P-value < 0.05). (D) Box plot shows the median and Q1/Q3 ± 

1.5 interquartile range of concentrations of lipocalin-2 (ng/g), as a measure of inflammation, from fecal samples for Chow and HFD mice.

Research Article mSphere

October 2024  Volume 9  Issue 10 10.1128/msphere.00534-24 3

https://doi.org/10.1128/msphere.00534-24


presence of Salmonella results in more pronounced inflammation in HFD mice during 
late infection.

To ensure higher fidelity of our experimental results and address potential strain 
heterogeneity that may have developed during laboratory maintenance of Salmonella 
enterica serovar Typhimurium strain 14028 (36–39), we constructed a draft genome 
for this Salmonella isolate. This pangenome was derived from a combination of short 
and long read sequences (see Materials and Methods). This strain-resolved genome 
shared 4,597 called genes with 99.99% average nucleotide identity to the previously 
published Salmonella ATCC genome (SAMN08777876). Our metatranscriptomic sampling 
averaged 27.19 Gbp of sequences per sample, generating 1,363,165,050 reads. The 
internally derived genome was used to map metatranscriptomic sequences from nine 
fecal samples (Chow = 4; HFD = 5) and resulted in consistent read mapping regardless of 
diet.

Prior reports have suggested that inflammation increases electron acceptor 
availability (8, 11, 12, 20), which favors Salmonella growth during infection. As such, 
we hypothesized that we would see increased respiratory electron acceptor expres­
sion concurrent with increased inflammation in the HFD. Salmonella gene expression 
revealed that oxygen (cyoA and cydA), nitrate and nitrite (narZ/narG and napA), DMSO 
(dmsA), TMAO (torC), and fumarate (frdA) utilization genes were differentially expressed 
in either the HFD or Chow diet (Fig. 1C; Data Set S2). A variety of anoxic Salmonella 
respiration genes were differentially expressed in the Chow diet. Tetrathionate reduc­
tion (ttrA), while detected, did not show significant expression differences across diet 
treatments.

Additionally, when Salmonella encodes multiple genes for utilizing an electron 
acceptor, like oxygen and nitrogen, we observed increased expression of genes that 
function optimally at higher substrate concentrations and are more energetically 
favorable. Specifically, in the HFD, Salmonella preferentially expressed the low-affinity 
oxygen (cyoA) and nitrate (narZ/narG) utilization genes, compared to the less inflamed 
Chow treatment, where Salmonella activated the high-affinity oxygen (cydA) and nitrate 
(napA) utilization genes (40–44). Collectively, our results indicate that Salmonella gene 
expression responds to HFD-induced inflammation and suggests that Salmonella can 
finely tune its energetic strategy to local chemical conditions. These findings warrant 
further investigation and quantification of respiratory electron acceptors in vivo using 
non-invasive methods (45, 46).

Salmonella respiration is structured by the infection phase in HFD-fed mice

We next observed the progression of Salmonella metabolism throughout infection. 
We collected fecal samples from five HFD mice 1, 2, 3, and 6 days before Salmonella 
inoculation and continued daily sampling after inoculation until euthanization (day 8). 
Fecal samples were processed for 16S rRNA amplicon sequencing (16S), metatranscrip­
tomics (metaT), lipocalin-2 ELISA assays (Lcn-2), targeted short-chain fatty acid (SCFA) 
metabolomics, and untargeted metabolomics (LC-MS) (Fig. 2A). Amplicon sequencing 
was used to profile Salmonella relative abundance across all 60 samples, guiding 
metatranscriptomic sample selection (Data Set S1). We collected metatranscriptomes 
during infection days 1, 3, 5, and 8, as well as day −1, analyzing 5,339,114,584 reads from 
25 samples, with an average depth of 32.25 Gbp per sample (Data Set S2).

Time-series amplicon data showed that all HFD mice became high responders by day 
5, but we note that there was heterogeneity among mice in the timing of peak Salmo­
nella relative abundance and Salmonella cecal colony-forming unit (CFU) values (Fig. S3). 
Consequently, we used expression of the single-copy S3 ribosomal protein (rpsC) from 
Salmonella to group samples by the infection phase relative to each mouse over time 
(Fig. 2B). As shown in Fig. 2B, peak expression of Salmonella varied over time and 
between mice. Using the relative increase of S3 gene expression per mouse, we clustered 
the samples into three infection phases: early (nine samples), peak (five samples), and 
late (six samples) (Fig. 2C) (see Materials and Methods).
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FIG 2 Salmonella infection heterogeneity over time. (A) High-fat diet (HFD) experimental design of five 

mice describes the types of analyses that were conducted on fecal samples over time. 16S rRNA amplicon 

sequencing (16S), metatranscriptomics (MetaT), lipocalin-2 ELISA assay (Lcn-2), targeted short-chain fatty 

acid (SCFA) metabolomics, and untargeted metabolomics (LC-MS) were conducted prior to infection 

(light pink) and after inoculation with 109 CFU Salmonella (dark pink). Analyses were performed on fecal 

samples from all five mice, unless noted otherwise by numbers within colored boxes. (B) The line plot 

shows normalized single-copy marker gene expression (GeTMM) of the Salmonella S3 ribosomal protein 

per mouse over time. (C) Given the heterogeneity of Salmonella gene expression over time, samples were 

grouped into infection phase (early: light pink, peak: dark pink, and late: purple).
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Using our study metatranscriptomics data and the sample grouping described 
previously, we compared the expression of oxygen (cyoABCDE and cydAB), nitrate 
(narGVZ), TMAO (torA), tetrathionate (ttrS), thiosulfate (phsABC), and hydrogen (hybC) 
utilization genes (Fig. 3). These genes were differentially expressed between the infection 
phases according to DESeq2 or clustering by GeTMM normalization (Data Set S2). Our 
findings revealed selective utilization of respiratory electron acceptors during infection 
phases in HFD-fed mice (Fig. 3). Early- and late-infection phases exhibited increased 
expression of anerobic respiration genes (narGVZ and phsABC), while the peak infection 
phase showed increased expression of aerobic respiration genes (cyoABCDE and cydAB). 
Of these respiratory complexes, only the catalytic subunits for tetrathionate showed no 
differential temporal signal; however, the sensor for tetrathionate (ttrS) was distinctive in 
the early samples. Consistent with prior research, this respiratory capacity provides 
Salmonella a competitive advantage against obligate fermentative microorganisms 
prevalent in the pre-infection gut (8, 33, 47–49).

Our findings indicate differential electron acceptor use along the infection gradi­
ent in a HFD background. It was not surprising to see oxygen use, the most energeti­
cally favorable electron acceptor, at peak infection when Salmonella ribosomal protein 
expression was also highest, as the lumen becomes more oxygenated in response to 
Salmonella (13). Interestingly, genes encoding anerobic respiration were more highly 

FIG 3 Respiratory electron acceptor utilization by infection phase in HFD-fed mice. Heatmap of the mean, normalized gene expression from respiratory electron 

acceptor utilization genes mapped to the Salmonella pangenome shows patterns between infection phases in HFD-fed mice. Genes are listed from oxic to anoxic 

(black arrow), and 15 samples are grouped by infection phase (early, peak, and late). Asterisks indicate statistical significance between phases where *** is a 

P-value of < 0.001.
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expressed in the early- and late-infection phases. These data also demonstrate that 
multiple electron acceptor genes are activated simultaneously in the same infection 
phase, possibly reflecting subpopulation responses across the gut habitats (38, 50, 51) 
or co-metabolic regulatory control under common redox transcriptional regulators (52, 
53), with the findings warranting further investigation. This dynamic gene expression 
highlights how an energetically versatile bacterium like Salmonella rapidly optimizes its 
energetic strategies to changing local chemical conditions during infection and as a 
consequence of host–pathogen–commensal microbiota interactions (23, 54–56).

Targeted and untargeted substrate profiles revealed during infection in 
HFD-fed mice

Prior studies have reported the multitude of electron donors that Salmonella can 
competitively utilize during respiration. In some cases, the pathogen utilizes lower-
energy carbon substrates not viable for commensal obligate fermenters. Some of these 
include ethanolamine and 1,2-propanediol, which have been suggested to be important 
for Salmonella expansion over commensal microbes (18, 20, 22). Additionally, higher 
energy carbon sources, such as mannitol, arabinose, and galactitol, have been studied in 
relation to intracellular survival, Salmonella expansion, or competition (4, 6, 23, 57, 58).

While tracking the expression of genes that utilize these carbon sources throughout 
different infection phases in HFD-fed mice, we noticed significant expression changes 
for galactitol (gatD) during early infection. Notably, mannitol (mtlA and mtlD) and 
arabinose (araA, araB, and araD) were expressed across all infection phases and did not 
uniformly show enrichment over any infection phase. Additionally, ethanolamine (eutC) 
and 1,2-propanediol (pduC) were not discriminative of a particular infection phase but 
instead were predominately expressed during both the peak and late infection phases. In 
summary, our study design allowed us to track the gene expression of substrate use over 
time, adding new insights into Salmonella occupancy throughout infection in an HFD 
background.

Furthermore, our untargeted approach provided the potential to discover new 
putative substrates that may support Salmonella expansion, especially in this less-
explored high-fat diet model. To do this, we examined the global clustering of substrate-
related gene expression, comparing it with our metabolite data from HFD-infected, 
HFD-uninfected, and Chow-uninfected mice (Data Sets S3 and S4). The genes for utilizing 
carbon substrates clustered by infection phase (MRPP, P = 0.002) but not by mouse 
or timepoint (MRPP, P > 0.05) (Fig. 4A). Examining the differential expression of these 
carbon utilization genes across infection phases revealed distinct metabolic patterns. 
Early samples expressed a broader range of substrates, marked by differential expression 
of D-xylose isomerase (xylA). Supporting this, our metabolite data denoted decreases in 
xylose in the infected HFD samples (Fig. S4).

We also saw expression of carnitine utilization genes (caiABCT) (Fig. 4B), which were 
differentially expressed in late infection samples compared to peak infection samples. 
Carnitine has been shown to stimulate anerobic growth of Salmonella, which based on 
our respiration data occurs at the early and late infection phases (Fig. 3) (59, 60). Along 
with gene expression in late infection samples, we detected carnitine at day 7, the late 
phase of infection in HFD-infected mice (Fig. S4). Further research is needed to under­
stand the impact of these metabolisms on Salmonella growth and physiology, as well as 
the interactions with the surrounding community.

Consistent with aerobic respiration being a hallmark of peak infection, we observed 
simultaneous differential expression of genes for utilizing isocitrate, succinate, and 
malate (icdA, mdh, sdhABCD, and sucABCD). It is possible that these genes were co-
expressed with respiration due to roles in transforming intermediates of the tricarboxylic 
acid cycle, a critical component of aerobic respiration. However, it has also been shown 
that Salmonella can utilize microbially derived succinate as a substrate during aerobic 
respiration (21). In this study, the metabolite data showed less coordination with gene 
expression data, as succinate levels increased in the HFD-infected samples (Fig. S4). It is 
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FIG 4 Differential expression of Salmonella carbon utilization genes by infection phase in HFD-fed mice. (A) Nonparametric multidimensional scaling (NMDS) 

depicts annotated Salmonella carbon utilization gene expression of samples from HFD-fed mice colored by infection phase (early: light pink, peak: dark pink, 

and late: purple). Bray–Curtis dissimilarity matrix from early, peak, and late samples (stress = 0.08) show significant grouping of Salmonella carbon utilization 

(Continued on next page)
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possible that succinate was not used by Salmonella more than its microbial production or 
that the metabolite was additionally host-derived, as indicated in other studies on HFD 
mice (61). Unraveling the complex interactions of the host–microbiome–pathogen food 
web is warranted for this important gut metabolite (62).

Our targeted and untargeted transcriptomic approaches revealed the significance of 
lactate to overall Salmonella energy metabolism. Of the three lactate dehydrogenase 
genes in Salmonella (ldhA, dld, and lldD), the ldhA and dld genes encode an enzyme 
specific for the D-isomer of lactate, while the lldD gene encodes a protein with specificity 
for the L-isomer (19). It is thought that the host only produces the L-lactate isomer, 
while the microbial members can produce both isomers. Studies with gnotobiotic 
or microbiota-reduced mice have demonstrated the importance of L-lactate dehydro­
genase (lldD) for Salmonella in utilizing host-derived lactate (19). Our targeted data 
show that the lldD gene was a core member of the transcriptome, detected across all 
timepoints but not distinguished by infection phase (Fig. S5A). However, our untarge­
ted approach revealed that genes for utilizing D-lactate (ldhA and dld), likely derived 
from microbial production, were differentially expressed during peak infection when 
Salmonella was likely most rapidly growing based on respiration gene and ribosomal 
protein expression (Fig. 4B). Additionally, the metabolite data confirmed elevated levels 
of this compound at day 7 of infection relative to non-Salmonella-inoculated mice on 
either diet (Fig. S4), possibly indicating production exceeding consumption during the 
late phase of infection. This finding suggests new cross-feeding between the micro­
biome and Salmonella.

Non-nutritional gene expression patterns have implications on pathogenesis 
and horizontal gene transfer

Beyond nutritional requirements, we mined our data for other genes that were 
differentially expressed between phases and found categories of Salmonella patho­
genesis genes that could be potential targets for therapeutic interventions. Volcano 
plots revealed gene expression patterns associated with differentially expressed genes 
between phases (early to peak/peak to late) with the following categories: (i) not 
significant (5,549/6,473), (ii) conjugation genes (22/NA), (iii) motility genes (9/28), (iv) 
outer membrane genes (33/13), (v) phage-like genes (22/4), (vi) other significant genes 
(940/141), and (vii) hypothetical genes (127/17) (Fig. 5; Data Set S2).

In early infection samples, we observed an upregulation of conjugation-, motility-, 
and fimbriae-related genes (Fig. 5A; Fig. S6). Conjugation facilitates the spread of 
virulence genes within Salmonella populations, influencing pathogen evolution (63). 
Additionally, motility and fimbriae genes support Salmonella movement and adhesion, 
which assist interactions with colonocytes and trigger the immune response (64–67). 
Notably, motility genes were also differentially expressed in the late phase compared to 
the peak phase. We consider it possible that Salmonella has enhanced chemotaxis to 
explore nutrient sources during the late infection phase or for environmental entry (68, 
69).

The expression of many pathogenesis genes could not be discriminated by infection 
phase. For instance, type III secretion protein genes (invAG, sptP, sspH12, and srfJ) (Fig. 
S5; Data Set S2) were detected and highly expressed in all infection phases. Given their 
presumed role in initiation of infection and the inflammatory response, it was somewhat 
surprising that these genes were not discriminant of early expression but, instead, 
seemed active over the course of infection. We consider it possible that subpopulations 

Fig 4 (Continued)

genes by infection phase (MRPP, P = 0.002) as found in Data Set S3. (B) Heatmap of the mean, normalized carbon utilization gene expression from our Salmonella 

pangenome shows patterns of carbon utilization by infection phase in HFD-fed mice. Genes were normalized across samples and via GeTMM normalization. 

Genes are grouped by carbon categories (literature described carbon: white; SCFA: blue; TCA cycle: purple; other differentially expressed carbon: bright pink). 

Genes that were characteristic of a specific phase (DESeq2 Padj. > 0.05) are denoted on the side by colored circles (early: light pink, peak: dark pink, and late: 

purple) (Data Set S2).
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of Salmonella may be infecting host cells continually or inflammation-induced envelope 
stress might alter the expression of these genes, explaining their chronic expression (50, 
70–72).

Comparatively, peak samples differentially expressed various outer membrane-asso­
ciated genes (Fig. 5B; Fig. S7). Many of these genes were responsible for colanic acid 
synthesis (wcaACDEFIJLM). These genes protect bacteria from osmotic stress and are 
linked to biofilm formation (73–75). Additionally, cellulose synthase (bcsA), a sigma 
factor regulating genes controlling biofilm formation (rpoS), and a biofilm-dependent 
modulation protein were differentially expressed in the peak phase. Other biofilm-rela-
ted genes (adrA, csgACEFG, bcsBCE, mrlA, and ompR) are highly expressed in the peak and 
late infection phases. This aligns with previous findings identifying Salmonella lumi­
nal biofilms, where nitrate mediates two Salmonella populations, resulting in virulent, 
planktonic cells and survival-adapted biofilm cells (76). Moreover, we detected differen-
tial expression of phage-like genes in both early and late infection. These prophage 
regions of the Salmonella genome carry virulence factors and are important for infection 
(49, 77, 78). Inflammation has been shown to boost prophage transfer between 
Salmonella species (79), but the role of phage in controlling Salmonella pathogenesis 
requires further investigation.

Conceptual model of Salmonella metabolism

In conclusion, this research contributes to the development of a conceptual model 
illustrating how the high-fat diet background impacts Salmonella gene expression (Fig. 
6; Data Set S2). We show that Salmonella responds to a highly inflamed gut environment 

FIG 5 Salmonella pathogenesis gene expression between infection phases. Volcano plots (left) display differentially expressed genes between (A) early and 

peak or (B) peak and late infection samples. Each point represents a single gene, with point color indicating significance (DESeq2, Padj. > 0.05) and annotation 

category. Numbers in parentheses next to each category indicate the number of genes in the Salmonella pangenome represented. Donut plots (right) highlight 

the proportion of significant genes within each category.
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and tactically uses respiratory electron acceptors and carbon sources over time. For 
example, our findings indicate differential isomer utilization of lactate, a critical gut SCFA 
(19). These findings highlight the potential microbial cross-feeding as well as affirm 
lactate utilization across infection phases, supporting the importance of this metabolite 
to Salmonella. When possible, we supported the gene expression data with metabolite 
data to provide additional insights into gut metabolite transformations (Fig. 6).

We also provide evidence for expression of genes related to pathogenesis, motility, 
and biofilms over the course of infection (Fig. 6). Surprisingly, virulence factor genes were 
not confined to the early stages when they are thought to function, but expressed 
across infection, indicating a heterogeneity in infection processes that were active 
even in a well-controlled, clonal experimental mouse model. Our discoveries benefitted 
from a well-established intellectual framework from years of detailed, curated pathogen 
physiological inquiry (11, 13, 80). This infrastructure provided a solid foundation that we 

FIG 6 Conceptual model of findings across diet treatments and infection phases. The conceptual model summarizes our findings with regard to respiration, 

carbon utilization, other pathogenesis pathways, and nondifferentially expressed active genes. Arrows indicate the treatment (chow: blue, high-fat diet: purple) 

or infection phase (early: light pink, peak: dark pink, late: purple with the letter “L”) with differential expression. The asterisk next to an arrow indicates differences 

between DESeq2 and GeTMM, where DESeq2 was prioritized for figure creation. Boxes with an “X” show metabolite presence (Data Sets S2 and S4).
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could both validate and build upon. Simultaneously, our work opens new avenues for 
research, offering fresh perspectives and opportunities for further exploration, including 
whether these trends persist in different regions of the gut or under other environmental 
conditions. For example, it would be warranted to compare the expression patterns 
from feces to those generated in the cecum in future studies. Moreover, this study 
offers a distinctive outlook on the early phases of Salmonella infection, providing gene 
expression data on days 1, 3, and 5 post-inoculation. These insights may enable research 
into curbing Salmonella proliferation during this critical period.

Conclusion

Despite being one of the most studied microbes, knowledge of Salmonella metabolism 
and pathogenesis in relevant diet contexts and across infection phases remains limited. 
In this study, we addressed this knowledge gap using a multi-omics approach, allow­
ing us to examine existing theories (targeted approach) and develop new potential 
hypotheses (untargeted approach). In the targeted approach, we applied existing 
scientific knowledge to investigate specific genes previously implicated in Salmonella 
metabolism (4, 12, 13, 19–22), while the untargeted approach mines the data generated 
here for newly expressed functionalities discriminant of different infection phases. This 
work demonstrates the importance of time-dependent analysis in comprehending the 
finely tuned gene expression of Salmonella in response to the dynamic pathobiome 
environment.

This research lays the foundation for understanding how Salmonella pathogene­
sis and metabolism change under realistic dietary conditions within a dynamic gut 
ecosystem. Unraveling the intricacies of Salmonella metabolism can reveal key interac­
tion junctures with the host and surrounding microbiota. The practical implications of 
this study may extend to the development of targeted therapeutics designed to disrupt 
specific pathogenic pathways or molecules, with the aim of minimizing adverse effects 
on host and microbiome functionalities.

MATERIALS AND METHODS

Strains and media

Salmonella enterica serovar Typhimurium strain 14028 was cultured at 37°C in Luria–
Bertani (LB) broth overnight. This culture was washed and resuspended in water for 
inoculation.

Mouse experimentation and sample collection

Female CBA/J mice from The Jackson Laboratory (Bar Harbor, ME) were housed by 
treatment, with five mice per cage. Mice were fed either a fibrous chow diet (with 5.8% 
fat and 18.3% fiber, formula 7012, Teklad Diets) or a high-fat, no-fiber diet (with 36% fat 
and 0% fiber, formula F3282, Bio Serv) for 6 days before infection. Five HFD mice and 
12 Chow mice were not inoculated with Salmonella, while the remaining mice (HFD = 
5, Chow = 43) were inoculated with 109 CFUs of S. enterica Typhimurium strain 14028 
via oral gavage on day 0 without treatment throughout the course of infection. Mice 
for multi-omics analysis were selected based on fecal sample availability. High respond­
ers among chow-fed, infected mice were chosen based on Salmonella reaching ≥25% 
relative abundance at any timepoint. Notably, unlike HFD mice, most Chow mice (n = 
30) were not high responders. Animal experimentation was approved by IACUC (OSU 
2009A0035). HFD mice were euthanized on day 8 due to severe disease represented 
by diarrhea, animal behavior, and animal lethargy, following IACUC protocols, while 
Chow mice were euthanized on day 16. Fecal samples were collected daily starting at 
diet transition until euthanization (except on days −5 and −4) on autoclaved aluminum 
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foil, transferred into labeled microcentrifuge tubes, and flash-frozen in liquid nitrogen. 
Samples were stored at −80°C until further processing.

DNA and RNA extraction and sequencing

Total nucleic acid was extracted using the Quick-DNA Fecal/Soil Microbe Miniprep Kit 
(Zymo Research) and stored at −20°C until amplicon sequencing could be performed. 
Amplicon sequencing was submitted to Argonne National Lab at the Next-Generation 
sequencing facility, using the Nextera XT DNA Library Preparation kit (Illumina) (data Set 
S1) and the Illumina MiSeq with 2 × 251 bp paired-end reads following HMP protocols 
(81). PCR amplification (30 cycles) of the V4 hypervariable region of the 16S rRNA gene 
was conducted with universal primers 515F and 806R, with the 515F primer containing a 
unique barcode.

RNA was extracted using the ZymoBIOMICS DNA/RNA Miniprep Kit (Zymo Research) 
and stored at −80°C until metatranscriptomic sequencing could be performed. RNA 
clean-up and library prep were performed using either the Ribo-Zero(TM) rRNA Removal 
Kit (Epicentre) with the Illumina Truseq Stranded RNA LT kit (Illumina) or Zymo-Seq 
RiboFree Total RNA Library Kit (Zymo Research) (Data Set S1). Chow samples were 
sequenced on the Illumina HiSeq2500 platform using 151-bp paired-end reads at 
the Genomics Shared Resource facility at the Ohio State University. High-fat diet 
samples were sequenced on the NovaSEQ6000 platform on an S4 flow cell using 
151-bp paired-end reads at the University of Colorado-Anschutz Medical Campus at the 
Genomics Shared Resource Center.

16S rRNA amplicon sequencing analysis

Data were processed using Qiime2 2019.10 (82) with specific steps described here. In 
short, raw data fastq files were demultiplexed in Qiime2. Then, DADA2 was used for 
quality filtering, dereplication, denoising, removing chimeras, and merging sequences. 
Amplicon sequence variant (ASV) taxonomy was determined via SILVA release 132 SSU 
Ref NR 99 (83). Counts were filtered to ASVs with at least 10 reads in at least five samples. 
ASV feature table and taxonomic assignment are included (Data Set S1).

Long read sequencing and Salmonella pangenome generation

Genomic DNA for long read sequencing was extracted from our Salmonella enterica 
serovar Typhimurium strain 14028 isolate using the Quick-DNA Fecal/Soil Microbe 
Miniprep Kit (Zymo Research). Library preparation was performed using the Genomic 
DNA by Ligation (SQK-LSK 109) kit by Oxford Nanopore following the manufactur­
er’s instructions and sequenced on the Flongle Flow Cell (R9.4.1) (Oxford Nanopore 
Technologies, Oxford, UK). Bases were called using Guppy (v 5.0.11), assembled using 
Flye (v2.8.3), and polished with long reads (84, 85). Our pangenome was created by 
concatenating called genes (DRAM [v1.4.0] [86]) from our highest-quality Salmonella 
short-read metagenome-assembled genome (33) and our best long-read Salmonella-
assembled genome. After filtering duplicate genes at 99% minimum sequence identity 
using Mmseqs2 (Release 7-4e23d)(87), our Salmonella pangenome is 99.99% identical 
to the Joint Genome Institute Salmonella isolate. Genes were annotated using DRAM 
(v1.4.0)(86).

Metranscriptomics data analysis

Reads were quality-trimmed and had adapters removed using bbduk.sh (v38.89) (88) and 
mapped to our Salmonella pangenome using bowtie2 (v2.4.5) (89) using flags -D 10 R 
2 N 0 L 22 -i S,0,2.50. Mapping files were filtered for high sequence identity (≥97%) using 
reformat.sh (88) and sorted by sequencing name using Samtools (v.1.9) (90). Counts were 
generated using htseq using flags -a 0 t CDS -i ID --stranded=reverse (v21.0.1) (91) and 
normalized using DESeq2 (92) or GeTMM (93) in R. For DESeq2 normalization, groups 
were based on infection phases (early, peak, and late). Infection phases were determined 
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by GeTMM normalized Salmonella S3 ribosomal protein (rpsC) expression. Samples were 
grouped into infection phases (early, peak, and late) based on the greatest increase in 
Salmonella S3 ribosomal protein per mouse, which is the peak sample for that mouse. 
Any samples before the peak S3 ribosomal protein expression were the early phase, 
whereas any samples after were the late phase. The five samples prior to Salmonella 
infection on day −1 were used as a control for nonspecific mapping.

Lipocalin-2 ELISA

Fecal samples were homogenized in PBS containing 0.1% Tween 20 (100 mg/mL) for 
20 minutes, and then the resulting suspension was centrifuged at 12,000 rpm for 10 
minutes at 4°C. The inflammation marker, lipocalin-2, was measured from the resulting 
supernatant using the Duoset murine Lcn-2 ELISA kit (R&D Systems, Minneapolis, MN). 
Measuring lipocalin-2 (Lcn-2) is a tractable, sensitive marker of host inflammation (35).

Metabolomics sequencing and analysis

For untargeted metabolomics, we used a 1 mL solution of three solvents (water/
methanol/dichloromethane, 1/2/3, vol/vol/vol) to extract metabolites from fecal samples, 
disrupted with a sonicator (Bioruptor, Diagenode, Belgium). The resulting aqueous layer 
suspension was analyzed using Ultimate 300 liquid chromatography coupled to Thermo 
Q-Exactive plus mass spectrometer (Thermo Fisher Scientific, CA, USA) coupled to a mass 
spectrometer with two different separation columns (reverse-phase liquid chromatogra­
phy and hydrophilic interaction liquid chromatography (HILIC)) for metabolome analysis. 
For reverse-phase separation, water with 0.1% (vol/vol) formic acid and acetonitrile 
with 0.1% (vol/vol) formic acid were used as mobile phases. The flow rate was set at 
0.3 mL/min with the gradient as follows: 2% B for 0–2 minutes; 2%–30% B for 4 minutes; 
30%–50% B for 8 minutes, 98% B for 1.5 minutes, and held at 98% B for 1 minute and 
then returning into initial gradient for equilibrium for 1.5 minutes. For HILIC separation, 
ACQUITY UPLC BEH HILIC 1.7 µm (2.1 × 150 mm) was used. Water/acetonitrile with 
0.1% formic acid and 10 mM ammonium formate were prepared as solvent A (95/5, 
vol/vol) and solvent B (5/95, vol/vol). For gradient elution, 99% B was held for 2 minutes, 
gradually reduced to 75% B for 7 minutes, and reduced again to 45% B for 5 minutes. 
The gradient was held at 45% B for 2 minutes, returned to the initial gradient, and 
re-equilibrated for 5 minutes. The flow rate was set at 0.3 mL/min. The quality control 
(QC) sample was prepared for each sample and analyzed after every six samples. For 
data processing, peak-picking and metabolome annotation were processed with MS-Dial 
(v.4.90) (94).

For targeted metabolomics, the short-chain fatty acids were extracted as described 
previously and prepared using a previously published method (95). Briefly, 200 mM 
3-NPH (3-nitrophenylhydrazine), 200 mM EDC (N-(3-dimethylaminopropyl)-N′-ethylcar­
bodiimide), and pyridine were added to extracted fecal SCFAs. Isotope-labeled SCFAs 
(13C2-acetic acid, 13C3-propionic acid, and 13C4-butyric acid) were added as an internal 
standard before derivatization. LC-MS/MS analysis of SCFAs was conducted using the 
ultimate 300 liquid chromatography and Thermo Quantiva Triple Quadrupole mass 
spectrometer (Thermo Fisher Scientific, CA, USA). Total run time for LC was 10 minutes 
with water with 0.1% of formic acid as mobile phase A and acetonitrile with 0.1% of 
formic acid as mobile phase B. The gradient started with 2% B, held for 0.5 minutes, 
linearly increased up to 98% B for 8 minutes, and re-equilibrated in 2% B for 1.5 minutes. 
Multiple concentrations of standard SCFAs (acetic acid, propionic acid, and butyric acid) 
were prepared alongside fecal SCFAs for quantitative analysis. The collected MS data 
were analyzed with Skyline (96).

Cecal CFU plates

To calculate the CFU of ceca of the HFD mice, one-third of the ceca was cut off and 
placed in 1 mL 1× sterile PBS in a pre-weighted tube. Ceca were then weighted and 
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homogenized under a tissue culture hood. One hundred microliters of the homogeniza­
tion was placed in a 96-well plate and serially diluted to 10−7 (1:10 dilution steps). Ten 
microliters of each dilution from 0 to 10−5 was drop-plated on XLD media and incubated 
at 37°C for 16 hours and held in a cold room until counting.

Statistical analysis

Alpha diversity metrics, richness and Shannon’s diversity, and significance values were 
calculated in R using the vegan package (v2.5-7) (97). To compare carbon utilization 
expression patterns among samples, Bray–Curtis dissimilarity was calculated using 406 
Salmonella carbon utilization genes annotated by DRAM (Data Set S3). Annotation calls 
for CAZymes, central carbon, hydrocarbon, and pyruvate metabolism were selected as 
well as carbon-associated genes from our Salmonella DRAM module. Nonparametric 
multidimensional scaling (NMDS) plots were created using R (ggplot2 package v3.3.5 
and the vegan package (v2.5-7) for visualization and nonparametric-fit quality was 
determined by stress value (97–99). Significance of infection phase carbon utilization 
expression differences was determined by analysis of similarity (ANOSIM) and multiple 
response permutation procedure (MRPP) (97). Heatmaps were generated with GeTMM 
normalize expression scaled by gene using the R package pheatmap (v1.0.12) (100).
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