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Abstract
Motivation: Meta-analysis methods widely used for combining metabolomics data do not account for correlation between metabolites or miss-
ing values. Within- and between-study variability are also often overlooked. These can give results with inferior statistical properties, leading to 
misidentification of biomarkers.
Results: We propose a multivariate meta-analysis model for high-dimensional metabolomics data (MetaHD), which accommodates the correla-
tion between metabolites, within- and between-study variances, and missing values. MetaHD can be used for integrating and collectively analy-
sing individual-level metabolomics data generated from multiple studies as well as for combining summary estimates. We show that MetaHD 
leads to lower root mean square error compared to the existing approaches. Furthermore, we demonstrate that MetaHD, which exploits the 
borrowing strength between metabolites, could be particularly useful in the presence of missing data compared with univariate meta-analysis 
methods, which can return biased estimates in the presence of data missing at random.
Availability and implementation: The MetaHD R package can be downloaded through Comprehensive R Archive Network (CRAN) repository. 
A detailed vignette with example datasets and code to prepare data and analyses are available on https://bookdown.org/a2delivera/MetaHD/.

1 Introduction
Meta-analysis refers to the statistical synthesis of quantitative 
results from multiple independent studies on a particular re-
search question or hypothesis, with the goal of making infer-
ences about the population effect size of interest (e.g. see 
Borenstein et al. 2009). Statistical meta-analysis methods 
have emerged as valuable tools in the analysis of metabolo-
mics data (Llambrich et al. 2022). In this context of metabo-
lomics data, meta-analysis methods have been used to 
integrate individual-level data from different cohorts (Tofte 
et al. 2020, Wang et al. 2022, Nogal et al. 2023) as well as to 
combine summary estimates obtained from multiple indepen-
dent studies (Guasch-Ferr�e et al. 2016). The use of a suitable 
meta-analysis model for integrating individual-level data may 
also be considered an alternative way of handling unwanted 
variation commonly encountered in metabolomics studies 
(De Livera et al. 2012, 2015).

Traditionally, meta-analysis methods have combined 
results from multiple independent studies, each measuring an 
effect size related to a single outcome of interest (e.g. 
Borenstein et al. 2009). In modern evidence synthesis, partic-
ularly in fields like metabolomics, the focus has been on com-
bining results from studies measuring multiple effect sizes 
associated with correlated outcomes. Thus, the use of multi-
variate meta-analysis methods that can be implemented 
within a single modelling framework is of significant value, 
particularly because the same set of metabolites are not 

usually measured across multiple metabolomics studies (Wei 
and Higgins 2013, Sera et al. 2019). However, a challenge 
for researchers is that there are often a large number of 
metabolites of interest, and hence this high-dimensional set-
ting needs further attention above and beyond what is tradi-
tionally considered for multivariate meta-analysis (Jackson 
et al. 2011, Vuckovic et al. 2015). Additional challenges in-
clude the unavailability of within-study correlations and the 
parameter estimation of the between-study correlations 
(Riley 2009, Kirkham et al. 2012, Wei and Higgins 2013).

According to recent literature, the most commonly used 
meta-analysis methods in the context of metabolomics data 
are: combining fold-changes by logarithmically transforming 
fold-change values, which are then averaged with weighting 
by study size (Llambrich et al. 2022), P-value combinations, 
one of which is a variant of Fisher’s method (Huo et al. 2020, 
Llambrich et al. 2022), using either a fixed-effects model (e.g. 
Wang et al. 2022) or a random-effects meta-analysis model 
often selected based on a heterogeneity statistic (e.g. Lee et al. 
2020), or the vote counting approach (e.g. Goveia et al. 
2016, Llambrich et al. 2022, Pu et al. 2022). Despite being 
able to implement with limited data, the fold-change combi-
nation approach described above does not take between and 
within study variability into account, while the p-value com-
bination approach assumes that the distribution of p-values is 
uniform and does not often account for p-value adjustments 
which are often made for multiple comparisons in 
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metabolomics studies. The vote counting approach cannot be 
used to obtain effect sizes and/or confidence intervals. 
Univariate meta-analysis models, such as fixed-effects or 
random-effects models, are limited in their ability to model 
metabolomics data, where the focus is on combining results 
from studies that have measured multiple effect sizes associ-
ated with multiple correlated outcomes. Although being com-
monly implemented in the metabolomics literature, the use of 
either a fixed-effects or a random-effects meta-analysis model 
based on a heterogeneity statistic such as I2 (Higgins and 
Thompson 2002), is not a recommended approach in the 
mainstream statistical literature (von Hippel 2015, 
Borenstein et al. 2017). None of the existing methods men-
tioned above account for the correlation between the metabo-
lites or missing values. Overlooking these issues when 
conducting a meta-analysis can yield results with inferior sta-
tistical properties such as increases in mean square error 
(MSE) of parameter estimates, standard error of the final esti-
mates, and bias in the case of non-ignorable missing values 
(Riley et al. 2007, Riley 2009, Wei and Higgins 2013). These 
can lead to false identification of biomarkers (Type 1 error) 
or missing out on true biomarkers (Type II error).

In this article, we propose a multivariate meta-analysis 
model (MetaHD) for integrating and collectively analysing 
metabolomics data from multiple independent studies, ac-
counting for both within-study and between-study variabil-
ity. We further account for within-study correlation, that is, 
the correlation due to multiple metabolites being measured 
from the same observational unit within a study, between- 
study correlation due to the same metabolites measured by 
multiple studies, and missing values. We show that our ap-
proach leads to lower MSE compared to existing methods 
used for metabolomics data, and is particularly useful in the 
presence of missing data compared to univariate meta- 
analysis methods.

This article is organized as follows. In Section 2, we review 
the existing meta-analysis methods used in the context of 
metabolomics, and introduce the proposed MetaHD frame-
work together with its estimation approach. In Section 3, us-
ing both real and simulated data, we evaluate the proposed 
MetaHD approach, summarize results, and provide a de-
tailed discussion. In Section 4, we make some conclud-
ing remarks.

2 Materials and methods
2.1 Existing methods for meta-analysis of 
metabolomics data
We start by summarizing existing meta-analysis methods 
available for metabolomics data and discussing their limita-
tions in the evidence synthesis of metabolomics data.

2.1.1 Combining fold-changes
For the ith metabolite, consider two populations, each with 
population mean μðiÞTreated and μðiÞControl and population standard 
deviations σðiÞTreated and σðiÞControl, respectively. Let �xðiÞk;Treated and 
�xðiÞk;Control denote the two sample mean estimators for the kth 
study with respective sample sizes of nðiÞk;Treated and nðiÞk;Control:

The combined fold-change is given by 

FCðiÞComb ¼ 2

PKðiÞ

k¼1
nðiÞ
k

log 2FCðiÞ
k

PKðiÞ

k¼1
nðiÞ

k

 !

; (1) 

where, 

FCðiÞk ¼
�xðiÞk;Treated

�xðiÞk;Control

;

nðiÞk ¼ nðiÞk;Treatedþ nðiÞk;Control 

and KðiÞ is the number of studies available for the ith metabo-
lite (Llambrich et al. 2022). While the approach is simple to 
implement and can be implemented using limited data, the 
combined fold-change here is only weighted by the sample 
size. The method ignores variances associated with the indi-
vidual fold-changes, missing values, and the correlations be-
tween the treatment effects.

2.1.2 Combining p-values
The p-value combination approach is widely implemented 
in metabolomics (Huo et al. 2020, Llambrich et al. 2022). 
The p-value pðiÞk in the kth study of the ith metabolite 
is transformed in this approach into a Gamma variable 
P0ðiÞk ¼ F− 1

θðiÞk ;2
ðpðiÞk Þ where F− 1 is the inverse cumulative 

distribution function of a Gamma variable with the shape pa-

rameter θðiÞk ¼ KðiÞ×nðiÞk =
PKðiÞ

k¼1 nðiÞk , scale parameter 2 and 
PKðiÞ

k¼1 θðiÞk ¼ KðiÞ. Then ~P
ðiÞ
¼
PKðiÞ

k¼1 P0ðiÞk follows a Gamma 
distribution with the shape and scale parameters of KðiÞ and 

2 respectively. For observed ~pðiÞ ¼
PKðiÞ

k¼1 P0ðiÞk , obtain the com-
bined p-value as, 

p � valueðiÞComb ¼ PΓ
KðiÞ ;2
ð~P
ðiÞ
< ~pðiÞÞ; (2) 

The approach is disjoint from the fold-change approach, and 
can lead to counter-intuitive results (see Section 3). The ap-
proach assumes that the individual p-values are independent 
and identically distributed, and does not take into account 
how the p-values have been adjusted in individual studies. 
Where sufficient summary information is available, the p- 
value combination approach should not be needed.

2.1.3 A fixed or random effects model based on 
heterogeneity
For each metabolite, this approach uses either a fixed or a 
random effects meta-analysis model based on a heterogeneity 
statistic, with I2 being the most common statistic used to 
measure heterogeneity. I2>40% is often used as a criteria for 
this selection (see for example, Llambrich et al. 2022). 
However, regardless of the magnitude of the I2 cut-off or sig-
nificance based on a p-value, this is not a recommended ap-
proach in the mainstream statistical literature (von Hippel 
2015, Borenstein et al. 2017). Note that the fixed-effects 
model makes the explicit assumption that there is no hetero-
geneity, which is often untenable in metabolomics studies due 
to these studies being conducted in varying conditions such 
as in different laboratories, different instrumental tempera-
tures, and on different cohorts. Fixed effects models there-
fore, could result in overly narrower confidence intervals (see 
e.g. the application presented in Section 3.2). Random effects 
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models which assume that the true effects are different in 
different cohorts are more justifiable in such settings, and 
so, despite a low I2 value (von Hippel 2015, Borenstein 
et al. 2017) the metabolomics studies may have meaningful 
heterogeneity that warrants a random component in 
the model.

2.1.4 Vote counting
In this approach, for each metabolite, a value of þ1 is allo-
cated for metabolites which are up-regulated, –1 for down- 
regulated, and 0 for no change, and these counts are then 
summed for each metabolite (see for example, Llambrich 
et al. 2022). Vote counting does not generate overall effect 
sizes and associated confidence intervals. Due to this reason, 
vote counting cannot be directly compared with a specified 
statistical modelling approach which generates overall effect 
sizes and confidence intervals. However, to facilitate a com-
parison with the other statistical models described in the 
manuscript, we carry out vote counting for all the datasets 
where the true effect sizes are known, and calculate the pro-
portion of correctly identified changing and non-changing 
metabolites.

2.2 A multivariate meta-analysis model (MetaHD)
To describe the multivariate meta-analysis model (MetaHD), 
we introduce the following notation.

� Let Yik ¼ log
�xðiÞ

k;Treated

�xðiÞk;Control

 !

denote observed (estimated) 

effects size for the ith outcome (metabolite) in the kth 
study, for k¼ 1; . . . ;K and i¼ 1; . . . ;N. Note that some 
Yiks could be missing due to not being reported in some 
studies. Let Yk ¼ ½Y1k;Y2k; . . . ;YNk�

>. 
� For the ith metabolite, assume that the population effect 

size ~θ ik in the kth study, is drawn from a distribution of 
population effect sizes with true mean across the studies θi 

and variance σ2
θi

. The size of σ2
θi 

indicates the degree of 
heterogeneity in the population effect sizes for the ith out-
come, and θi describes their central tendency. 
Throughout, we let θ¼ ½θ1;θ2; . . . ;θN�

>. 
� Let τik be an error term by which the population effect 

size ~θ ik differs from the mean θi, representing true hetero-
geneity in effect sizes due to random population effects in 
the kth study. Let τk ¼ ½τ1k; τ2k; . . . ; τNk�

>. 
� Let ɛik represent an error term by which the observed ef-

fect size Yik differs from ~θ ik; representing the sampling er-
ror in the kth study. Let εk ¼ ½ɛ1k; ɛ2k; . . . ; ɛNk�

>. 

The MetaHD model is then given by 

Yk ¼ θþ τkþ εk: (3) 

We assume that εk �Nð0;SkÞ: where Sk is a N by N matrix 
representing within-study variances and covariances of the 
treatment effects. The off-diagonals of Sk reflect the covaria-
tion that arises when multiple metabolites are measured on 
the same observational unit within each study. Further, we 
assume that τk �Nð0;ΨÞ where Ψ is a N by N matrix repre-
senting between-study variances and covariances of the treat-
ment effects. The off-diagonals of the between-study 
covariance matrix Ψ reflect the covariation arising when the 
same metabolites are also measured by other studies. Given 
Sk, the estimated values and corresponding standard errors of 

θ are obtained using the following equations, with some fur-
ther definition of notations to follow, 

θ̂ ¼
XK

k¼1

ðSkþ ~ΨÞ− 1

8
<

:

9
=

;

− 1
XK

k¼1

ðSkþ ~ΨÞ− 1Yk;

Covðθ̂Þ ¼
XK

k¼1

ðSkþ ~ΨÞ− 1

8
<

:

9
=

;

− 1

;

with ~Ψ¼ λΨ̂
�
þð1 − λÞΨ̂. Here, Ψ̂

�
is a diagonal matrix 

obtained using restricted maximum likelihood (Jennrich and 
Schluchter 1986), Ψ̂ is a matrix with diagonal elements equal 
to those of Ψ̂

�
and the off-diagonals reflecting the covariances 

estimated using the empirical covariance matrix of 
½Y1;Y2; . . . ;YK�. Since the number of studies is usually less 
than the number of metabolites (K<N) resulting in a singular 
(non-invertible) estimated covariance matrix of the fold- 
changes, we use a shrinkage estimator, with the shrinkage pa-
rameter, λ, is estimated following the data-driven approach 
described by (Sch€afer and Strimmer 2005). When individual- 
level data are available, we obtain an estimate for Sk from the 
individual-level data, and in other cases we obtain an empiri-
cal approximation as described by (Kirkham et al. 2012), 
with the diagonal elements of the kth within-study covariance 
matrix for the ith metabolite estimated using 

sðiÞ
2
k;Treated

nðiÞk;Treated�xðiÞk;Treated

þ
sðiÞ

2
k;Control

nðiÞk;Control�x
ðiÞ
k;Control

;

where sðiÞ
2
k;Treated and sðiÞ

2
k;Control denote sample variances addi-

tional to the notation defined earlier.
For model estimation, the missing values in the effect sizes 

and their associated variances can be handled by allocating a 
lower weight to the missing outcome. This can be achieved 
by replacing the missing effect sizes and variances by zero 
and a large constant value, respectively (Sera et al. 2019), so 
that the missing outcome is allocated a lower weight in the 
meta-analysis. We found that this approach performed well 
compared to using other strategies, such as the mean-value 
imputation method (Steuer et al. 2007), the k-nearest neigh-
bour imputation method (Troyanskaya et al. 2001), and the 
eimpute method which uses truncated singular value decom-
position (Mazumder et al. 2010) (results not shown).

3 Results and discussion
We now use three real data examples and a simulation study 
to demonstrate the performance of the MetaHD methodol-
ogy, summarize results, and provide a detailed discussion. In 
our datasets described in Sections 3.1.1 and 3.1.2 where the 
true effect sizes for the metabolites are known, we compare 
the methods using root mean square error (RMSE), defined 

as 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðθ̂ − θÞ2�
q

. In Section 3.2, we also demonstrate the ap-
plication of the methods using a dataset where the true effect 
sizes are not known, with the results presented using a forest 
plot. Following this, in Section 3.3, we carry out a simulation 
study which, in addition to the RMSE, allows us to further 
explore both bias and empirical standard error (EmpSE) de-

fined as E½θ̂ − θ� and 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðθ̂Þ
q

, respectively. In addition to the 
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above, as the vote counting approach cannot provide an over-
all effect estimate for us to calculate the RMSE, in all datasets 
where the true effect sizes are known, we calculate the pro-
portion of correctly identified changing and non-changing 
metabolites and present these using bar plots and box plots.

3.1 Combining individual-level data
The datasets analysed in this section are subsets of data 
extracted from two separate studies in previously published 
papers (De Livera et al. 2012, 2015). Both studies had been 
designed such that the true effect sizes are known with 
individual-level data being available. The use of these data-
sets allowed a direct comparison between the existing meth-
ods and the MetaHD approach, by enabling estimated values 
from each method to be compared with true effect sizes 
which were known in advance.

3.1.1 Dataset 1
In this dataset, some replicates of a biological metabolite 
mixture (MIX) and another set of replicates of the same 
mixture with some metabolites in increased amounts 
(MIX-SPIKED) had been run in four different laboratory sites 
at three different temperature settings on four different gas 
chromatography-mass spectrometry devices (De Livera et al. 
2012). Each separate dataset is referred to as ‘study’, and the 
data used here consist of 32 metabolites and 12 such studies. 
Eleven metabolites were in 3-fold amounts, and one was in a 
5-fold amount relative to MIX, and the other metabolites 
remained unchanged. The first two principal components of 
the dataset are shown in Fig. 1. The figure shows that while 
there is clear separation due to biological variation, there is 
considerable between-study heterogeneity.

The combined effect estimates for all metabolites were 
obtained using different meta-analysis methods described in 
the Section 2 and were compared with the MetaHD ap-
proach. Table 1 shows the RMSE values, which give the aver-
age of the squared differences between true fold-changes and 
estimated fold-changes across the metabolites that were non- 
changing (i.e. true fold-change equal to one) and those that 
had a 3-fold and 5-fold change.

The best-performing technique should generate low 
RMSE, and the results indicate that the MetaHD approach, 
which has low RMSE values for all changing and non- 
changing metabolites, performs comparatively better than the 
univariate methods and univariate fold-change combination 
method. The proportion of correctly identified changing and 
non-changing metabolites and the upset plot showing the 
shared metabolites identified from each method (shown in 
Supplementary Figs S1 and S2, respectively) show that the 
vote counting approach performs poorly compared to 
other approaches.

3.1.2 Dataset 2
In this experiment, a batch of fetal calf serum had been 
spiked with a mix of metabolites at different concentration 
levels (De Livera et al. 2012), and three replicate samples had 
been made at each concentration level. The dataset used here 
comprised a total of 14 metabolites in two groups, where five 
of the metabolites had a known 2-fold-change in one group 
relative to the other, while the rest of the metabolites 
remained unchanged. The samples in the two groups had 
been extracted using the same method in a controlled experi-
ment, but run separately in two different instruments: Liquid 

Chromatography-Mass Spectrometry (LC/MS) and Gas 
Chromatography-Mass Spectrometry (GC/MS), leading to 
two separate datasets. Thus, in this example, each separate 
dataset from each instrument form a different ‘study’ (K¼2), 
which can be integrated using meta-analysis methods.

The combined effect estimates for all metabolites were 
obtained using meta-analysis methods described in Section 
2.1 and were compared with the MetaHD approach. Table 2 
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Figure 1. The first two principal components of the whole dataset. There 
is clear separation due to biological variation, and between-study 
heterogeneity is also visible.

Table 1. Combining individual-level dataset 1: RMSE values on log scale, 
obtained for the MetaHD approach and other existing meta-analysis 
methods for metabolomics data.b

Method Non-changing 3-fold 5-fold

MetaHD 6.8 45.1 4.6
Univariate fixed effects model 13.8 50.3 17.7
Univariate fixed/random 

effects modela
10.2 47.2 18.6

Univariate random effects model 10.2 47.2 18.6
Fold-change combination 10.2 48.6 19.7

a Based on heterogeneity.
b Values are in hundreds and the smallest value in each fold-change 

category is shown in boldface type.

Table 2. Combining individual-level dataset 2: RMSE values on log scale, 
obtained for the MetaHD approach and other existing meta-analysis 
methods for metabolomics data.b

Method Non-changing Changing

MetaHD 7.6 36.8
Univariate fixed effects model 9.6 51.9
Univariate fixed/random effects modela 12.1 42.8
Univariate random effects model 12.1 42.8
Fold-change combination 17.7 43.7

a Based on heterogeneity.
b Values are in hundreds and the smallest value in each fold-change 

category is shown in boldface type.
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shows the RMSE values on the log scale, obtained from dif-
ferent meta-analysis methods for changing and non- 
changing metabolites. Here, the values are presented 
in hundreds.

The results indicate that the MetaHD has the lowest 
RMSE values for all changing and non-changing metabolites, 
which shows the better performance of our approach over 
univariate meta-analysis methods and fold-change combina-
tion approach. The proportion of correctly identified chang-
ing and non-changing metabolites and the upset plot showing 
the shared metabolites identified from each method (shown 
in Supplementary Figs S1 and S2, respectively) show that the 
vote counting approach performs poorly compared to 
other approaches.

3.2 Combining summary estimates
The metabolomics dataset analysed herein was obtained 
from (Llambrich et al. 2022) and was originally designed to 
describe the association of metabolites (amino acid concen-
tration) with lung cancer. Estimates for the means and stan-
dard deviations of the cancer and control groups were 
available along with the corresponding sample sizes. In this 
dataset, 21 metabolites were available in six studies. Not all 
metabolites were present in all six studies, creating some 
missing values.

For all metabolites, we used the fold-change/p-value 
combination approach, fixed-effects model, random- 
effects model, fixed-effects/random-effects based on het-
erogeneity and the MetaHD model to obtain combined ef-
fect estimates and standard errors. Vote counting cannot 
be included in Fig. 2, as it does not generate overall effect 
sizes and associated confidence intervals. A visual sum-
mary of the effect sizes, 95% confidence intervals of indi-
vidual studies, and those of the combined effect estimates 
obtained from different meta-analysis methods for some of 
the selected metabolites are shown in Fig. 2. The figure 
shows that the fold-change/p-value combination approach 
(obtained using Equations (1) and (2), respectively) and 
the fixed-effects model result in overly narrow confidence 
intervals, leading to conclusions that may not be justifiable 
given the observed estimates of the individual studies. For 
example, the results obtained from the above method for 
Histidine (named ‘His’ in the figure) and ‘Asparagine’ 
(named ‘Asn’ in the figure) show that the individual results 
from two to three studies have had minimal effect on the 
overall result from this method. In contrast, the 
approaches that include a random-effect component in the 
model (MetaHD, random-effects model, fixed/random 
based on heterogeneity) take into account the variability 
across the studies. Despite the seemingly better perfor-
mance, as there is no ‘ground truth’ of the values we are 
trying to estimate for this dataset, in the next section we 
present an extensive simulation study to further explore 
the MetaHD approach.

3.3 Simulation experiments
We conducted a series of simulation studies to evaluate and 
compare the MetaHD approach with the existing metabolo-
mics meta-analysis methods. The treatment effects for each 
study (Yk ¼ ½Y1k;Y2k; . . . ;YNk�

>) were generated as Yk �

MVNð~θk;SkÞ; where ~θk �MVNðθ;ΨÞ. The unknown parame-
ter values were chosen to mimic those that were obtained from 
real data: Average within-study variance (log scale)¼ −1:5, 

Average between-study variance (log scale)¼ − 5:5, Average 
between-study correlation¼ 0:25. In doing so, we included 
both up-regulated and down-regulated metabolites. We fur-
ther explored the scenarios by changing the within-study cor-
relations by choosing values ranging from low to high at 
regular intervals.

For each scenario, 1000 meta-analysis data sets were gen-
erated and analyzed separately using: (i) MetaHD (esti-
mated): MetaHD model as described in Section 2.2; (ii) 
Univariate fixed: Univariate fixed-effects model; (iii) 
Univariate fixed or random: Univariate fixed or random- 
effects model based on a heterogeneity statistic (I2>40%, a 
widely-used measure in the field); (iv) Univariate random: 
Univariate random-effects model; and (v) fold-change and 
p-value combination method

For comparison purposes, in the figures, we also included 
the MetaHD model with known covariance structures, as 
MetaHD (true). To represent the high-dimensional nature of 
metabolomics data we have encountered in the above exam-
ples, we set N as 30 and K as 12.

Three separate simulation studies were conducted under 
the above-mentioned scenarios, with (i) one having com-
plete data in all the studies, (ii) one with 5% of the effect 
sizes and their corresponding variances missing completely 
at random (MCAR), and (iii) with data missing at ran-
dom (MAR).

MAR data were generated by specifying a logistic regres-
sion model that predicts the probability of missing values 
given the value of the other metabolites. The logistic model 
used is: logitðPðRk ¼ 1ÞÞ ¼ −3þ0:9M1kþ0:03M2kþ

1:3M3k −0:4M4k −0:07M5k; where Rk is a binary indicator 
that determines whether the metabolite in the kth study is 
missing ðRk ¼ 1Þ or not ðRk ¼ 0Þ. We have selected 5 metabo-
lites as missing data predictors (designated as M1, M2, M3, 
M4, and M5 in the logistic model) and generated missing val-
ues in 5 other metabolites on average, with approximately 
50% −60% (this can vary depending on the calculated proba-
bilities) of the data being missing in each selected metabolite. 
This was achieved by generating a binary variable using bino-
mial distribution for each respective metabolite separately, 
indicating whether the data is missing or not based on the cal-
culated probabilities.

In simulation scenarios adhering to the MCAR and MAR 
patterns, we imputed missing values as described in Section 
2.2. The bias, EmpSE and RMSE of combined estimates for 
each outcome were calculated, and the average of these was 
compared across the different methods. Figure 3 shows the 
line plots for the bias, EmpSE, and RMSE values obtained 
from simulation study results for complete data in the first 
column, data MCAR in the second column and data MAR in 
the last column.

Figure 3 shows that the MetaHD model performs better 
than the fold-change combination method and the univariate 
models by producing approximately unbiased combined esti-
mates with smaller EmpSEs and RMSEs in all three simula-
tion studies conducted. Especially in MAR data simulation 
scenarios, the univariate models give combined estimates that 
are biased, with this bias increasing as the within-study corre-
lation increases. However, the MetaHD model was able to 
considerably reduce this bias by borrowing strength from 
complete data points.

For each iteration of the simulations, for each method and 
each scenario described in this article, we calculated the 
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proportion of correctly identified top up-regulated and 
down-regulated metabolites and presented these using box 
plots. Box plots showing the proportion of correctly identi-
fied top up-regulated and down-regulated metabolites at 
each iteration of the simulated datasets are shown in 

Supplementary Fig. S3. While the results are consistent with 
the conclusions obtained from Fig. 3, it additionally shows 
that the proportion of correctly identified top metabolites is 
considerably low for vote counting approach compared with 
the other approaches.
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Figure 2. Forest plots showing effect sizes and 95% confidence intervals of individual studies, along with the combined effect estimates obtained from 
different meta-analysis methods for some selected metabolites.
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4 Conclusion
In this article, we presented a multivariate meta-analysis ap-
proach (MetaHD) for metabolomics data that has several 
benefits over existing meta-analysis methods. This approach 
(i) accounts for correlation between metabolites, (ii) consid-
ers variability within and between studies, (iii) handles miss-
ing values, and (iv) uses shrinkage estimation to allow for 
high dimensionality (more metabolites than studies).

MetaHD cannot be used with limited data, for example, 
when only the p-values or only the effect sizes are available. 
In such cases combining p-values and/or fold changes or vote 

counting may be the only approaches available. We have 
compared these approaches in our applications and simula-
tions and we found that out of these, vote counting per-
formed poorly in comparison.

MetaHD uses estimates of the effect sizes, within-study 
variances, between-study variances and between-study corre-
lations. In addition, MetaHD either estimates or uses avail-
able within-study correlations, as explained in Section 2.2. 
These are also further illustrated in Section 2.2 of the vignette 
on ‘Preparing the data’ and using the example datasets and 
the codes presented in detail in Section 3 of the vignette 
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Figure 3. Line plots depicting the bias, EmpSE, and RMSE values obtained from simulation study results for (i) complete data (in the first column), (ii) data 
MCAR with a 5% missing probability (in the second column), and (iii) MAR data (in the third column).
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(https://bookdown.org/a2delivera/MetaHD/). It should be 
noted that both the univariate fixed effects models and uni-
variate random effects models are special cases of MetaHD. 
For example, when both within and between study correla-
tions are set to zero, MetaHD reduces to a random-effects 
model and additionally when the between-study variances 
are set to zero, MetaHD reduces to a fixed-effects model. The 
example datasets and codes for using MetaHD R package to 
fit both fixed-effects and random-effects model are also given 
in the vignette.

The proposed MetaHD model was applied to three real 
datasets, two of which combine individual-level data, where 
our approach led to lower RMSEs compared to the existing 
approaches, and the other that combines summary measures 
with missing data in some studies. Additionally, extensive 
simulation experiments that have been conducted under dif-
ferent scenarios have also shown the better performance of 
the MetaHD approach over existing methods. MetaHD will 
serve as a valuable tool for integrating and collectively analy-
sing metabolomics data generated from multiple independent 
studies, facilitating the identification of biomarkers.
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