
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

Xin et al. Virology Journal          (2024) 21:266 
https://doi.org/10.1186/s12985-024-02523-7

Virology Journal

†Qi Xin and Xiao Liang contributed equally to this work.

*Correspondence:
Chengsheng Zhang
cszhang99@126.com
Bingyin Shi
shibingy@126.com
1Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong 
University, 277 Yanta West Road, Xi’an 710061, China

2The MED-X Institute, The First Affiliated Hospital of Xi’an Jiaotong 
University, Building 21, Western China Science and Technology 
Innovation Harbor, Xi’an 710000, China
3Department of Endocrinology, The First Affiliated Hospital of Xi’an 
Jiaotong University, 277 Yanta West Road, Xi’an 710061, China
4Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, 
277 Yanta West Road, Xi’an 710061, China
5Department of Medical Oncology, The First Affiliated Hospital of Xi’an 
Jiaotong University, Xi’an, China

Abstract
Background  The metabolomic profiles of individuals with different clinical manifestations of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) infection have not been clearly characterized.

Methods  We performed metabolomics analysis of 166 individuals, including 62 healthy controls, 16 individuals 
with asymptomatic SARS-CoV-2 infection, and 88 patients with moderate (n = 42) and severe (n = 46) symptomatic 
2019 coronavirus disease (COVID-19; 17 with short-term and 34 with long-term nucleic-acid test positivity). By 
examining differential expression, we identified candidate metabolites associated with different SARS-CoV-2 infection 
presentations. Functional and machine learning analyses were performed to explore the metabolites’ functions and 
verify their candidacy as biomarkers.

Results  A total of 417 metabolites were detected. We discovered 70 differentially expressed metabolites that may 
help differentiate asymptomatic infections from healthy controls and COVID-19 patients with different disease 
severity. Cyclamic acid and N-Acetylneuraminic Acid were identified to distinguish symptomatic infected patients 
and asymptomatic infected patients. Shikimic Acid, Glycyrrhetinic acid and 3-Hydroxybutyrate can supply significant 
insights for distinguishing short-term and long-term nucleic-acid test positivity.

Conclusion  Metabolomic profiling may highlight novel biomarkers for the identification of individuals with 
asymptomatic SARS-CoV-2 infection and further our understanding of the molecular pathogenesis of COVID-19.
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Introduction
The 2019 coronavirus disease (COVID-19), caused 
by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), has created a global public health cri-
sis. A proportion of SARS-CoV-2–infected individuals 
are asymptomatic subjects (ASs) [1]; these individuals 
are difficult to identify and can rapidly spread the dis-
ease to unprotected and otherwise susceptible people. 
In addition, nucleic-acid test results remain positive 
for long periods for some symptomatic patients (SMs) 
under treatment [i.e., long-term nucleic-acid test positiv-
ity (LTNP)], whereas they become negative after shorter 
periods for others [i.e., short-term nucleic-acid test posi-
tivity (STNP)]. The asymptomatic harboring of SARS-
CoV-2 and LTNP contribute greatly to economic burdens 
and reduced quality of life and further threaten global 
public health. However, biological metabolites and mech-
anisms distinguishing ASs from healthy controls (HCs) 
and individuals with LTNP from those with STNP had 
not been previously identified.

Viruses, including SARS-CoV-2, hijack host cells to 
obtain nucleotides, lipids, and amino acids for replica-
tion [2]. In addition, viral infections can cause metabolic 
changes in host cells via various mechanisms [3, 4]. For 
example, lipidome reprogramming by Zika virus con-
tributes to placental damage [5], and serum plasmalo-
gen phosphatidylethanolamine levels are increased in 
patients infected with this virus [6]. Aberrant neutrophil 
metabolism, which can contribute to cellular dysfunc-
tion, has been observed in patients with severe COVID-
19, and glyceraldehyde-3-phosphate dehydrogenase has 
been found to suppress neutrophil extracellular trap for-
mation via a cell-intrinsic mechanism [7].

Metabolomics – the study of metabolite species in bio-
fluids, cells, and tissues – was introduced by Nicholson 
and colleagues and is used widely for biomarker discov-
ery [8]. Such discovery, based on changes in metabolite 
profiles, continues to contribute substantially to medi-
cal diagnostics. Various metabolic biomarkers have been 
proposed to reflect the future risk of contracting severe 
infectious disease in patients with cardiovascular dis-
ease and diabetes, respectively [9, 10], and non-alcoholic 
fatty liver disease has been associated with certain meta-
bolic biomarkers and mechanisms [11]. Serum metab-
olite alterations have been observed in hospitalized 
SARS-CoV-2–infected patients [12, 13], and the sever-
ity of COVID-19 has been associated with lipid, amino-
acid, and energy metabolism [13]. Some metabolites 
in the kynurenine pathway (kynurenine, tryptophan, 
and 3-hydroxykynurenine) have been proposed to be 
COVID-19 prognostic markers [14]. Therefore, under-
standing host cell metabolism and metabolites alters 
could help to find potential biomarkers to distinguish 

different severity of COVID-19 for further medical treat-
ments, especially for asymptomatic patients and LTNP.

In this study, to explore the potential biomarkers of 
asymptomatic SARS-CoV-2 infection and LTNP, we 
characterized the metabolomes of plasma samples from 
patients with COVID-19 and HCs. We sought differen-
tially expressed metabolites associated with SARS-CoV-2 
infection, COVID-19 severity, and viral persistence. In 
addition, the associations of potential biomarkers with 
disease severity were verified using machine learning.

Methods
Ethics statement
The ethics committees of the First Affiliated Hospital of 
Xi’an Jiaotong University (XJTU1AF2020LSK-015) and 
Renmin Hospital of Wuhan University (WDRY2020-
K130) approved this study. All participants or their 
surrogates provided written informed consent. High-
throughput sequencing was performed on plasma 
samples collected during standard diagnostic testing, 
avoiding the need for further sample collection for the 
purposes of this study.

Samples and disease classification
This study was conducted with plasma samples from 
HCs, ASs, and SMs. The classification standards of SD 
and MD were identified and agreed by three professional 
doctors according to the guidelines of the World Health 
Organization and China’s National Health Commission 
[15–17]. SM cases were divided into cases of moderate 
disease (MD) and severe disease (SD) and, when nucleic-
acid test results were available, cases of LTNP (≥ 60 days) 
and STNP (≤ 45 days) based on clinical observations 
of the predominant timing of test negativity (≤ 45 days) 
among patients with COVID-19 at Renmin Hospital.

Blood sample collection and processing
At various timepoints during hospital visitation, periph-
eral blood samples were collected from study partici-
pants into EDTA-K2 Vacuette tubes (cat. no. Y09012282; 
Jiangsu Yuli Medical Equipment Co., Ltd., China) and 
were stored at room temperature for no more than 0.5 h, 
then stored at 4℃ and processed within 4–6 h. To obtain 
plasma samples, the whole blood samples were centri-
fuged at 2500  rpm for 20  min and stored at − 80℃. All 
procedures were performed in the biosafety level–2 
laboratory of Renmin Hospital’s Department of Clinical 
Diagnostics.

For metabolite analysis by liquid chromatography 
electrospray ionization tandem mass spectrometry (LC-
ESI-MS/MS), samples were thawed on ice and vortexed 
for 10s. Pure methanol (150µL/50µL plasma) was added, 
followed by vortexing for 3  min and centrifugation at 
12,000  rpm and 4℃ for 10  min. The supernatants were 
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collected and centrifuged at the same speed and temper-
ature for 5 min, followed by final supernatant collection.

Sample analysis
The samples were analyzed using an LC-ESI-MS/MS 
system [Shim-pack ultrafast LC CBM 30  A, Shimadzu; 
triple-quadrupole linear ion trap (QTRAP®) with ESI 
turbo ion-spray interface, Sciex; Analyst 1.6.3 software, 
Sciex; ACQeITY ultra-performance liquid chromatogra-
phy (UPLC) HSS T3 C18 column (1.8 μm, 2.1 × 100 mm), 
Waters]. The UPLC conditions were: column tempera-
ture, 40℃; injection volume, 2 µL; flow rate, 0.4 mL/
min; solvent system, water (0.1% acetic acid): acetoni-
trile (0.1% acetic acid); and gradient sequence, 95:5 V/V 
at 0 min, 10:90 V/V at 11.0 min, 10:90 V/V at 12.0 min, 
95:5 V/V at 12.1 min, and 95:5 V/V at 14.0 min. Linear 
ion trap and triple quadrupole (QQQ) sequences were 
acquired, with 10- and 100-µmol/L polypropylene gly-
col solutions, respectively, used for instrument tuning 
and mass calibration. The ESI parameters for metabolite 
analysis were: source temperature, 500℃; ion spray volt-
ages, 5500 and − 4500 V; and ion source gas I, gas II, and 
curtain gas pressures, 55, 60, and 25 psi, respectively. 
Declustering potential and collision energy optimization 
was performed for the multiple-reaction monitoring of 
individual transitions. For each period, a specific set of 
transitions was monitored according to the hydrophilic 
and hydrophobic metabolites eluted during that period 
(Table S1).

Data analysis
The MS data were processed using Analyst 1.6.3 (Sciex). 
Quality control (QC) samples are mixed, with repetitive 
techniques and interspersed in the front, middle, and 
back positions of the detected samples. The TIC stack-
ing curves of mix-QC samples have high overlap, that 
is, the retention time and peak intensity are consistent, 
indicating that the signal stability of mass spectrometry is 
good when detecting the same sample at different times. 
The high stability of the instrument provides important 
guarantees for the repeatability and reliability of data. 
Standard samples were used to establish theoretical Q1 
(MS1), Q3 (MS2), and retention time (RT) databases. 
Subsequently, biological samples were directly collected 
and analyzed qualitatively and quantitatively based on 
the information stored in the databases, ensuring an RT 
deviation of less than 0.2  min. Apart from the standard 
substances, a subset of compounds in the extensive tar-
get library were based on high quality MS2 spectrum 
matched from public databases, with standard sub-
stances constituting 70% of the total compounds. The 
QQQ scans were screened to determine the character-
istic ions of each substance detected. Using MultiQuant 
software, the chromatographic peaks for each metabolite 

detected in different samples were integrated and cor-
rected according to the peak type and retention time.

Differences in metabolite expression between groups 
(SARS-CoV-2 infection vs. HC, AS vs. HC, SM vs. AS, 
SD vs. MD, and LTNP vs. STNP) were assessed using 
orthogonal partial-least-squares discriminant analy-
sis (OPLS-DA) based on the MetaboAnalyst package 
(version 1.0.1). During the OPLS-DA analysis, the data 
underwent log2 transformation and “meanCenter” pro-
cessing. These differences were used to perform Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis. Metabolites with fold change (FC) values ≥ 2 or 
≤ 0.5 (≥ 1.5 or ≤ 0.67 for LTNP vs. STNP analyses) and 
variable importance in projection (VIP) values ≥ 1 were 
selected as differentially expressed metabolites. Machine 
learning was performed using the “xgboost” (extreme 
gradient boosting) package (version 1.4.1.1) [18] to select 
relevant metabolites from the training set according to 
the intensity of differential expression. For each pair of 
groups compared, normalized metabolite intensities 
were used as modeling data (75% assigned to the training 
and 25% assigned to the testing sets). All of analyses were 
performed in R (version 4.1.2).

Results
Sample characteristics
The study comprised 220 plasma samples from 166 indi-
viduals (62 HCs, 16 ASs, and 88 SMs). Of the SMs, 42 
had MD and 46 had SD; 17 cases of LTNP and 34 cases 
of STNP were identified. Two or more samples were 
included from each of 5 HCs, 12 SMs with MD, and 23 
SMs with SD. The characteristics of the patients from 
which the samples were obtained are provided in Table 
S2. In total, 417 metabolites were identified in this study 
(Table S3). The total ion chromatogram (TIC), extracted 
ion chromatogram (XIC), and superposition diagram of 
TIC detected by mix-QC sample mass spectrometry for 
healthy controls and COVID-19 patients were shown in 
Figure S1.

Metabolites associated with SARS-CoV-2 infection and 
COVID-19 characteristics
SARS-CoV-2 infection
Differential metabolite expression between groups is 
summarized in Table S4, and OPLS-DA model results 
are shown in Figure S2. Eighteen metabolites were dif-
ferentially expressed between patients with SARS-CoV-2 
infection and HCs (Fig.  1A, B). Their KEGG pathways 
were related mainly to caffeine metabolism (ko00232) 
and retinol metabolism (ko00830; Fig.  1C, Table S5). 
Three metabolites in this set were prioritized in the 
machine learning model: lysophosphatidylcholine, pal-
mitadehyde, and 9,10-epoxy-12Z-octadecenoic acid 
(Fig.  1D, F, G, H). The areas under the curve (AUCs) 
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Fig. 1  Metabolites associated with SARS-COV-2 infections. (A) The OPLS-DA scores plot of COV vs. HC. The Y axis represents orthogonal T score, and the 
X axis represents T score; (B) The volcano plot of COV vs. HC. Red dots represent the up-regulated metabolites (log2FC ≥ 1, VIP ≥ 1); blue dots represent 
the down-regulated metabolites (log2FC≤-1, VIP ≥ 1); gray dots represent metabolites without significant changes (-1 < log2FC < 1, VIP ≤ 1). (C) The KEGG 
analysis of the DEMs in COV vs. HC. (D) The important metabolites prioritized by xgboost analysis. (E) Receiver operating characteristic (ROC) and perfor-
mance of the xgboost model in the test sets. (F) The heatmap of 18 metabolites in COV vs. HC. (G) The correlation heatmap of DEMs. (H) the raw intensity 
of 4- hydroxyretinoic acid, palmitadehyde and 9,10-EpOME
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for the training and testing sets were 0.9822 and 0.9952, 
respectively, with 94.35% and 97.62% accuracy (Fig.  1E; 
Figure S3).

Asymptomatic SARS-CoV-2 infection
Forty-one metabolites were differentially expressed 
between ASs and HCs (Fig. 2A, B). Their KEGG pathways 
were related mainly to ether lipid metabolism (ko00565), 
caffeine metabolism (ko00232), and synthesis and deg-
radation of ketone bodies (ko00072; Fig.  2C). In addi-
tion, deoxyguanosine 5’-monophosphate (FC = 3.146), 
3’-aenylic acid (FC = 3.076), hypoxanthine (FC = 3.024), 
and adenosine 5’-monophosphate (AMP; FC = 3.087), 
involved in purine metabolism, were upregulated in ASs 
relative to HCs, whereas lumichrome (FC = 0.304) and 
Sn-glycero-3-phosphocholine (FC = 0.329) were down-
regulated (Table S5). The machine learning analysis pri-
oritized eight metabolites, the top three of which were 
those identified in the SARS-CoV-2 infection vs. HC 
analysis (Fig. 2D, F, G). The AUC was 1 for the training 
and test sets, with 100% and 95% accuracy, respectively 
(Fig. 2E; Figure S3.

Symptomatic COVID-19
Twenty-five metabolites, including theobromine 
(FC = 87,787.345, VIP = 1.534) and lumichrome 
(FC = 3.883, VIP = 2.848), were differentially expressed 
between ASs and SMs (Fig. 3A, B). KEGG pathways asso-
ciated with symptomatic COVID-19 were related mainly 
to cyclic guanosine monophosphate-protein kinase G 
signaling pathway and purine metabolism (Fig. 3C). For 
the machine learning model, only one metabolite (mono-
methyl glutarate) had a high importance score (Fig.  3D, 
F, G). The AUCs for the training and testing sets were 
0.9924 and 0.9773, respectively, with 98.72% and 96.15% 
accuracy (Fig. 3E; S3).

COVID-19 severity
Thirteen metabolites, including cyclamic acid (FC = 7.088, 
VIP = 2.630) and uridine triphosphate (UTP; FC = 54.618, 
VIP = 1.261), were differentially expressed between MD 
and SD cases (Fig. 4A, B). KEGG analysis of these metab-
olites yielded no meaningful result (Fig.  4C). Eleven 
metabolites with high importance scores were included 
in the machine learning model (Fig. 4D, F, G). The AUCs 
for the training and testing sets were 1 and 0.7992, 
respectively, with 100% and 73.91% accuracy (Fig.  4E; 
Figure S3).

Viral persistence
Fourteen metabolites were differentially expressed 
between STNP and LTNP cases (Fig.  5A, B). Caffeine 
metabolism (ko00232) was identified as a significant 
KEGG pathway for these metabolites (Fig.  5C). The 

machine learning model was based on 11 metabolites 
with high importance scores (Fig.  5D, F, G). The AUCs 
for the training and testing sets were 0.9808 and 0.7111, 
respectively, with 88.89% and 78.57% accuracy (Fig.  5E; 
Figure S3).

Discussion
In this study, we performed metabolomic profiling of 
220 plasma samples and identified candidate metabo-
lites associated with SARS-CoV-2 infection and COVID-
19 symptomatic status and severity. We identified 417 
metabolites, 70 of which were differentially expressed in 
at least one of the five group comparisons performed. 
Machine learning led to the identification of multiple 
biomarkers distinguishing COVID-19 cases of different 
severities from HCs.

4-Hydroxyretinoic acid, which participates in retinal 
metabolism, was down-regulated in patients with SARS-
CoV-2 infection relative to HCs in this study. The iden-
tification of the associated mechanism could provide a 
new perspective on COVID-19 treatment [19]. Palmital-
dehyde and phosphoethanolamine are produced by the 
cleavage of sphingosine-1-phosphate (S1P) by S1P lyase 
[20]. Compared to HCs, down-regulated palmitaldehyde 
levels in SARS-CoV-2 infection indicated by our data 
suggest that S1P levels are also decreased in individu-
als with COVID-19, consistent with the finding that the 
significant reduction of the serum S1P level is a potential 
indicator of COVID-19 severity [21]. The inflammatory 
cell function involve S1P signaling via S1P receptors, and 
B and T cells have distinctive profiles of these receptors, 
which were found to provide significant beneficial effects 
towards counteracting SARS-CoV-2 infection [22, 23].

Metabolites involved in purine metabolism, including 
AMP [generated from adenosine triphosphate (ATP)], 
were upregulated in ASs relative to HCs in this study. 
Extracellular ATP signaling alerts the immune system to 
tissue damage [24]. ATP is primarily pro-inflammatory 
and is released by necrotic, endothelial, and activated 
immune cells and under hypoxia [25]. In addition, lumi-
chrome, a riboflavin derivative, was down-regulated in 
AS relative to HCs. The functions of riboflavin include 
protection against oxidative inflammatory lung dam-
age, neutrophil infiltration, and peripheral activated 
granulocyte accumulation (which reduces inflammatory 
responses), and riboflavin deficiency exacerbates oxi-
dative stress [26–28]. Thus, the low lumichrome levels 
indicated by our data suggest that ASs also have low ribo-
flavin levels, with important immune consequences [29]. 
Besides, ketogenic Diet and ketone bodies are suggested 
to be potential clinical nutritional interventions to assist 
in the treatment of COVID-19, which is consistent with 
our functions of the identified metabolites associated 
with Synthesis and degradation of ketone bodies [30].
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Metabolites found to be associated with symptomatic 
infected vs. asymptomatic infection included N-acetyl-
neuraminic acid. N-acetylneuraminic acid, which had 
high VIP and FC values, has been found to be associated 

with a key SARS-CoV-2 spike protein domain and thus 
the virus’s cell entry [31]. In addition, the performance 
of its derivatives luciferyl N-acetylneuraminic acid and 
luciferyl 4,7-di-O-methyl-N-acetylneuraminic acid in 

Fig. 2  Metabolites associated with the asymptomatic infection of SARS-COV-2. (A) The OPLS-DA scores plot of AS vs. HC. The Y axis represents orthogonal 
T score, and the X axis represents T score; (B) The volcano plot of AS vs. HC. Red dots represent the up-regulated metabolites(log2FC ≥ 1, VIP ≥ 1); blue dots 
represent the down-regulated metabolites (log2FC≤-1, VIP ≥ 1); gray dots represent metabolites without significant changes (-1 < log2FC < 1, VIP ≤ 1). (C) 
The KEGG analysis of the DEMs and in AS vs. HC. (D) The important metabolites prioritized by xgboost analysis. (E) Receiver operating characteristic (ROC) 
and performance of the xgboost model in the test sets. (F) The heatmap of 41 metabolites in AS vs. HC. (G) The correlation heatmap of DEMs. (H) the raw 
intensity of Adenosine 5’-Monophosphate (AMP), deoxyguanosine 5’-monophosphate (dGMP), 3’-Aenylic Acid and Hypoxanthine
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detecting neuraminidases from influenza virus has been 
evaluated [32]. Theobromine also had high FC values for 
SMs relative to ASs. Theobromine was not detected in 
ASs; it was found only in SMs in this study. It may regu-
late systemic and intestinal antibody concentrations, and 

was found to influence immune-system regulation by 
determining the concentrations of key immunoglobulins 
in rats [33]. In addition, purine metabolism is relevant to 
viral replication and immune response, which is associ-
ated with COVID-19 [34].

Fig. 3  Metabolites associated with the disease severity of COVID-19. (A) The OPLS-DA scores plot of SD vs. MD. The Y axis represents orthogonal T score, 
and the X axis represents T score; (B) The volcano plot of SD vs. MD. Red dots represent the up-regulated metabolites (log2FC ≥ 1, VIP ≥ 1); blue dots rep-
resent the down-regulated metabolites (log2FC≤-1, VIP ≥ 1); gray dots represent metabolites without significant changes (-1 < log2FC < 1, VIP ≤ 1). (C) The 
KEGG analysis of the DEMs in SD vs. MD. (D) The important metabolites prioritized by xgboost analysis. (E) Receiver operating characteristic (ROC) and 
performance of the xgboost model in the test sets. (F) The heatmap of 13 metabolites in SD vs. MD. (G) The correlation heatmap of DEMs. (H) the raw 
intensity of cyclamic acid and N-Acetylneuraminic acid
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UTP and N1-acetylspermine distinguished MD from 
SD in this study, with the highest FC and high VIP values. 
UTP, an extracellular nucleotide, activates P2 purinergic 
receptors on phagocyte surfaces and induces immune 

and physiological responses in several other cell types 
[35, 36]. In mice, its use as a vaccine adjuvant enhanced 
the production of anti-rabies antibodies [37]. The level 
of N1-acetylspermine, which participates in polyamine 

Fig. 4  Metabolites associated with the asymptomatic and symptomatic of COVID-19. (A) The OPLS-DA scores plot of SM vs. AS. The Y axis represents or-
thogonal T score, and the X axis represents T score; (B) The volcano plot of SM vs. AS. Red dots represent the up-regulated metabolites (log2FC ≥ 1, VIP ≥ 1); 
blue dots represent the down-regulated metabolites (log2FC≤-1, VIP ≥ 1); gray dots represent metabolites without significant changes (-1 < log2FC < 1, 
VIP ≤ 1). (C) The KEGG analysis of the DEMs in SM vs. AS. (D) The important metabolites prioritized by xgboost analysis. (E) Receiver operating characteristic 
(ROC) and performance of the xgboost model in the test sets. (F) The heatmap of 25 metabolites in SM vs. AS. (G) The correlation heatmap of DEMs. (H) 
the raw intensity of uridine triphosphate (UTP) and N1-Acetylspermine
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Fig. 5  Metabolites associated with the viral persistence of SARS-CoV-2 infection. (A) The OPLS-DA scores plot of LTNP vs. STNP. The Y axis represents or-
thogonal T score, and the X axis represents T score; (B) The volcano plot of LTNP vs. STNP. Red dots represent the up-regulated metabolites (log2FC ≥ 0.58, 
VIP ≥ 1); blue dots represent the down-regulated metabolites (log2FC≤-0.58, VIP ≥ 1); gray dots represent metabolites without significant changes 
(-0.58 < log2FC < 0.58, VIP ≤ 1). (C) The KEGG analysis of the DEMs in LTNP vs. STNP. (D) The important metabolites prioritized by xgboost analysis. (E) Re-
ceiver operating characteristic (ROC) and performance of the xgboost model in the test sets. (F) The heatmap of 14 metabolites in LTNP vs. STNP. (G) The 
correlation heatmap of DEMs. (H) the raw intensity of Shikimic Acid, Glycyrrhetinic acid and 3-Hydroxybutyrate
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catabolism, was found to be elevated in human breast 
cancer relative to normal breast tissue [38, 39]. Poly-
amines play critical roles in transcription, translation, cell 
cycling, and the duration of viral infection [40]; they are 
required for many steps of virus replication [41]. Never-
theless, given that COVID-19 is an acute infectious dis-
ease, it is imperative to focus on the disease progression 
in future research endeavors.

1,7-Dimethylxanthine was upregulated and shikimic 
acid (SA), 3-hydroxybutyrate, and glycyrrhetinic acid 
(GA) were down-regulated in LTNP cases relative to 
STNP cases in this study. 1,7-Dimethylxanthine is associ-
ated with cholestatic liver fibrosis and acute pulmonary 
and systemic inflammation [42, 43]. SA has been found to 
have antioxidant properties and to interfere with retinal 
inflammatory mediator release [44]. 3-Hydroxybutyrate 
exerts beneficial hemodynamic effects without reducing 
myocardial external energy efficiency in patients with 
chronic heart failure with reduced ejection fraction [45]. 
GA was found to be a potential inhibitory effect on the 
cytokine storm (CS) triggered by coronavirus disease 
2019 (COVID-19) [46].Thus, SA and GA down-regula-
tion may protect against inflammation and apoptosis in 
patients with COVID-19 characterized by LTNP.

The AUC values for the five comparison groups in 
the training data all exceeded 0.9, indicating high per-
formance. In the test data, the AUC values for COV vs. 
HC, AS vs. HC, and SM vs. AS also surpassed 0.9, while 
the AUC values for SD vs. MD and LTNP vs. STNP were 
0.7992 and 0.7111, respectively, falling below 0.8. This 
highlights a potential limitation stemming from the 
insufficient sample size for robust machine learning anal-
ysis. Therefore, additional sample collection and further 
validation of the differentially expressed metabolites are 
warranted.

Conclusions
In this study, we identified multiple metabolites and 
related pathways associated with SARS-CoV-2 infec-
tion and persistence and COVID-19 severity. Our find-
ings contribute to the understanding of metabolite 
contributions to the pathogenesis of COVID-19 and 
highlight novel biomarkers for the disease’s diagnosis and 
treatment.
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The online version contains supplementary material available at https://doi.
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Supplementary Material 1: Supplementary Fig. 1| (A) Superposi-
tion diagram of total ion chromatogram (TIC) detected by mix-quality 
control (QC) samples mass spectrometry for healthy controls. Different 
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