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1 | INTRODUCTION

Malignant central nervous system tumours are one of the major
challenges facing the modern medical field, for which there is no
effective treatment.>? Despite their low incidence, they are among
the ten leading causes of cancer-related deaths. A significant propor-
tion of these primary malignant CNS tumours are malignant gliomas.
Glioblastoma (GBM) is the most common malignant glioma in adults
and its incidence increases with age.’> GBM is a highly malignant tu-
mour that primarily affects the central nervous system and is the
most common primary intracranial tumour.*° With the development
of modern medicine, the treatment of GBM mainly includes surgical
resection, radiotherapy and chemotherapy, and the integration of
multimodal treatments has led to a gradual improvement in the prog-

nosis of patients."J However, complete resection of GBM masses is not

Glioblastoma (GBM) is a highly aggressive and treatment-resistant malignancy that
poses a significant challenge in modern medicine. Despite advances in surgical resec-
tion, radiotherapy and chemotherapy, complete eradication of GBM remains elusive
due to its diffuse invasion into the brain parenchyma and propensity for recurrence.
The tumour microenvironment (TME), particularly macrophages, has emerged as a
critical player in GBM progression, invasion and metastasis. In the immune micro-
environment of glioma, MS4A6A exhibits unique expression characteristics in mac-
rophages. This study aimed to investigate the potential role of MS4A6A, a gene
associated with aging and neurodegenerative diseases, in GBM and its potential as a

prognostic biomarker and therapeutic target.
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possible because the boundaries of GBM masses are often unclear
and GBM cells mainly invade the brain parenchyma surrounding the
tumour.” In addition, despite advances in therapeutic approaches, the
recurrence of GBM is almost inevitable due to the complex aggres-
sive growth behaviour and increasing drug resistance of GBM cells,
which can recur rapidly at the primary site or in distant regions of the
brain.81° Therefore, there is an urgent need to develop new thera-
peutic approaches to prolong the survival of GBM patients, reduce
recurrence and improve the quality of patient survival.

The tumour microenvironment (TME) is a specialized, com-
plex and highly dynamic mixture of multiple immune cells that is
thought to promote tumorigenesis and metastasis.'*™'® Therefore,
further understanding of the TME may help to elucidate the un-
derlying mechanisms of GBM development and develop better
targeted therapeutic approaches.***® Currently, in the TME,
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macrophages have attracted extensive attention from research-
ers.Y"'? This is because macrophages are closely associated with
tumour cell proliferation, invasion and metastasis, and these abil-
ities of tumour cells often determine the malignancy of the tu-
mour as well as the prognosis of patients.2>2* Macrophages have
important functions in immune defence and surveillance.??% It is
a key component of the immune system and excels at perform-
ing phagocytosis of pathogens, damaged cells and cancerous le-
sions, thereby maintaining immune homeostasis and eliminating
abnormal cellular components.“’% In addition, it has been shown
that macrophage activity has a significant prognostic impact on
treatment outcomes in cancer patients. Therefore, it is crucial to
explore in detail the role of macrophages in GBM, which may lead
to new immunotherapeutic strategies.27‘29

Publicly available data from TCGA and GEO enable the study of
clinicopathological features of GBM with larger tumour samples, fa-
cilitating the screening of GBM biomarkers and the identification of
effective drug candidates. The rapid advancement and widespread
use of single-cell RNA sequencing (scRNA-seq) technology enhance
our ability to accurately identify, diagnose, and treat GBM in its
early stages. MS4A6A has been linked to aging and the progression
of neurodegenerative diseases.’® However, the potential biological
function of MS4A6A in GBM and its prognostic value for patients
with GBM are unknown. In addition, MS4A6A has been shown to
be associated with neurodegenerative diseases and disease patho-
biology, but whether it is involved in the regulation of GBM and its
mechanisms remain unelucidated.3!*2

Recently, the use of artificial intelligence and machine learning
in cancer prognosis research has emerged as a key focus in bioinfor-
matics. These methods have shown significant promise in identifying
important genes related to diseases. In this study, we used GBM-
associated single-cell data to discover signature genes in macro-
phages and identified one of the key genes, MS4A6A, using multiple
machine learning algorithms. We used multi-omics data to explore
the prognostic value, immune profile and potential biological func-
tions of MS4A6A in GBM. More importantly, we screened targeted
therapeutic agents against MS4A6A, which contributes to new im-

munotherapeutic approaches in the future.

2 | MATERIAL METHODS

2.1 | Single-cell data sources and analysis

We downloaded single-cell sequencing of GBM patient with num-
ber GSE162631 from the GEO database. One case of tumour core
and one case of paired peripheral tissues were selected for subse-
quent analysis. Single-cell correlation analysis was performed using
the R package ‘Seurat’. In order to reduce the influence of sequenc-
ing depth on the sequencing results, we used the ‘NormalizedData’
function to homogenize the expression matrix. The ‘RunUMAP’

function was used to further downsize the data, and the ‘DimPlot’

function was used for visualization. The ‘FindMarkers’ function
was used to analyse the differences between cancer and paraneo-

plastic tissues.

2.2 | Clinical significance of MS4A6A

We conducted Receiver Operating Characteristic (ROC) analysis with
the pROC package to calculate 95% confidence intervals, the total area
under the curve, and smooth ROC curves. This analysis evaluated the
diagnostic performance of MS4A6A expression in the tumour disease
group compared to the normal group. The calibration curves illustrate
how well the fitted model predicts agreement between the tumour
group and actual observations. Additionally, the goodness-of-fit tests
assess whether the observations deviate from the ideal model. We
compared the statistical differences in MS4A6A expression between
tumour and normal tissues using the GBM dataset.

2.3 | Biological functional analysis

The 30% of samples with the highest MS4A6A expression were de-
fined as the high expression group, and the 30% of samples with
the lowest expression were defined as the low expression group.
Difference analysis was performed using the limma package, and
gene set enrichment analysis was performed based on the KEGG
gene set to calculate the gene set enrichment score ES as well as
significance tests and multiple hypothesis tests on the ES values
of the gene sets. The 73 KEGG database metabolic gene sets were
scored using the GSVA parameter algorithm in R-package GSVA by
integrating the characteristic gene expression to reflect the activity
of a given pathway. The z-score algorithm in R package GSVA was
implemented for 14 functional state gene sets. Pearson correlation

of MS4A6A with each z-score was calculated.

2.4 | Immunity scores

The easier package was used to compute five immunity scores for
TCGA-GBM. Samples were divided into high and low expression
groups according to the median MS4A6A values, and statistical dif-
ferences in scores between these groups were analysed. Spearman
correlation analysis was employed to assess the relationship between
MS4A6A and TIP scoring, as well as the autocorrelation within TIP

scoring.

2.5 | Spatial transcriptome data analysis
To accurately assess the cellular composition of each spot on the
10xVisium slides, we applied reverse convolution analysis. This

analysis method is based on spatial transcriptomics and single-cell
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transcriptomics data. It specifically considers the corresponding
cancer type. The scRNA-seq data were collected from various sam-
ples of the same cancer type, leading to the construction of a com-
prehensive scRNA reference library. To ensure the reliability of the
results, we implemented strict quality control measures for single-
cell transcriptome data, focusing on the number of expressed genes,
unique molecular identifiers, and the percentage of mitochondrial
RNA in each cell. For the screening parameters, we referred to rel-
evant studies on the sources of single-cell transcriptome data to
ensure the scientific validity and accuracy of the screening criteria.
Subsequently, by calculating the average expression of the top 25
specifically expressed genes of various cell types in the scRNA-seq
reference for each locus, we constructed a signature score matrix.
Finally, we used the get_enrichment_matrix and enrichment_analy-
sis functions in the Cottrazm package to generate an enrichment
scoring matrix. This matrix provided strong support for the subse-
quent cellular composition analysis. The SpatialFeaturePlot function
in the Seurat package was used to visualize the enrichment scores
of each cell type; the higher the enrichment score, the darker the

colour, indicating a higher content of this cell type in the spot.

2.6 | Machine learning algorithm

The createDataPartition function from the caret package was uti-
lized to randomly split the data into two subsets, with 50% desig-
nated as the training set and 50% as the test set. Multiple machine
learning models were trained using the train function from the caret
package. The explain function from the DALEX package was em-
ployed to interpret each model, while the predict function was used
to assess model accuracy on the test set and generate ROC curves.
The variable_importance function from the DALEX package calcu-
lated the importance of variables in the models. Additionally, Lasso

regression was performed using the glmnet package.

2.7 | Immunomodulatory molecules

Immunomodulatory molecules are critical for cancer immunother-
apy and many immunomodulatory molecule agonists and antago-
nists are being evaluated in clinical oncology. We investigated the
expression of immunoregulatory molecules and epigenetic control

of expression.

2.8 | Analysis of immune cells

To ensure the quality and consistency of the data, immune infiltra-
tion data for all TCGA samples were collected from the publicly
available database TIMER 2.0. The Spearman correlation coeffi-
cients obtained from the analysis were fully visualized in heatmaps
in order to visualize the relationship between different cell types and
MS4A6A expression under different algorithms.

WILEY- 2™

2.9 | Exploration of targeted drugs

To investigate potential therapeutic options to counteract gene-
mediated tumour promotion, we conducted cMAP analysis. We
developed a gene-associated signature comprising the 150 most sig-
nificantly up-regulated and 150 most significantly down-regulated
genes by comparing tumours with high and low gene expression.
This signature was compared to the cMAP gene signature using the
optimal feature matching method XSum (eXtreme Sum) to derive

similarity scores for 1288 compounds.

2.10 | Validation of compound-target interactions

The crystal structures of the key protein targets were retrieved
from the Protein Data Bank (PDB, https://www.rcsb.org/). The 3D
structures of the potential active compounds were downloaded
from PubChem (https://pubchem.ncbi.nlm.nih.gov/), an open chem-
ical information repository. Molecular docking was conducted, and
binding affinities were calculated using AutoDock Vina (http://vina.

scripps.edu/).

3 | RESULTS

3.1 | AQuality control and clustering of GBM
single-cell data

To investigate gene expression at the single-cell level, we first
analysed single-cell sequencing data from one GBM sample and
one paracancerous tissue sample. Figure 1A displays three metrics
for the three samples: the number of genes detected in each cell
(nFeature_RNA), the total number of mRNA molecules (nCount_
RNA), and the proportion of mitochondrial genes (percent.mt).
nCount_RNA showed no significant correlation with percent.mt,
further indicating that the samples were of good quality for sub-
sequent analysis. We then homogenized the data, searched for
cell cycle-related genes among the highly variable genes, and per-
formed PCA dimensionality reduction on them. The results indi-
cated that the principal component features of cells in the three
cell cycles were not fully separated, suggesting that the influence
of the cell cycle on subsequent clustering could be disregarded.
We found 2000 highly variable genes, with the more significant
ones being CLDNS5, IBSP, IGFBP7 and others. Additionally, PCA di-
mensionality reduction using all highly variable genes revealed sig-
nificant differences between tumour and paracancerous tissues,
suggesting that the two are distinctly different in their biological
characteristics (Figure 1B). Furthermore, we categorized the cells
into five subpopulations. Figure 1C demonstrates the cells con-
tained in each cluster and the percentage of cells, with subgroup
0 having the highest number of cells, accounting for 33.72%. The
heatmap illustrates the top 10 characterized genes in the first 9
principal components (Figure 1D).
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FIGURE 1 Processing of single cell data. (A) Correlation plots of nFeature_RNA, nCount_RNA, and percent.mt for each cell in the
two samples, and nCount_RNA versus percent.mt and nFeature_RNA for each cell. (B) PCA plots of highly variable genes. elbowplot to
determine the most appropriate number of principal components. PCA plot of cell cycle genes. Highly variable genes with top ranked
standard deviation. UMAP plot after performing dimensionality reduction clustering (C) Cells contained in each cell subpopulation and
percentage. (D) Characterized genes in the top nine principal components.

3.2 | Characteristic genes of cell subpopulations

Figure 2A demonstrates the 2D spatial distribution of single-cell
transcriptome data from two patient screens after downscaling by
t-SNE and UMAP data. To determine the cell types of the five sub-
populations, we scored the different subpopulations, with clus-
terO and 2 macrophages having the highest scores, clusterl being
B cells, cluster3 being epithelial cells, and cluster4 being neural
stem cells. Also in R1N patients, the highest percentage of B cells
was found, while in R1T patients, the highest percentage of mac-
rophages was found. The characteristic gene expression of each
subpopulation is shown in Figure 2B. ccl2 and cxcl3 were mainly
expressed in macrophage, while HSPA1A was mainly expressed in

B cells. Bubble plots and heat maps demonstrated the expression
of marker genes in different cell types labeling each cell popula-
tion (Figure 2C,D).

3.3 | Machine learning screening of key genes in
macrophages

We performed an in-depth analysis of the top 20 genes expressed in
macrophages in an attempt to find the key. We screened these genes
using multiple machine learning algorithms. Interestingly, MS4A6A
was in the key in multiple machine learning algorithms. We therefore
performed a follow-up analysis of it (Figure 3A-F).
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FIGURE 2 Clustering of single cell data sets. (A) UMAP map after cell annotation. Percentage of cells in cancerous versus paracancerous
tissues. Scores of different cell subgroups (B) Characterized gene expression. (C) Bubble plots of marker gene expression for each cell
population. (D) Heatmap of marker gene expression for each cell population.

3.4 | Comparative analysis of different machine
learning models on residual distributions

We provide an in-depth analysis of the performance of a range
of machine learning models on specific datasets, with a particu-
lar focus on their residual distribution properties. By compar-
ing the inverse cumulative distribution function and boxplots of

different models, we aim to assess the predictive accuracy and

generalization ability of the models. In this study, we chose mod-
els including Generalized Linear Model (GLM), Elastic net regres-
sion (Elastic net), Gradient Boosting Machine (GBM), K Nearest
Neighbours (KNN), NaiveBayes, Logistic Regression (Logit),
Support Vector Machines (SVM), Random Forests (RF), Stepwise
Linear Discriminant Analysis (stepLDA), and Partial Least Squares
Regression (PLS) were compared (Figure 4). The results show that

all the models exhibit a high degree of consistency at the extremes
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of the residual distributions, with PLS, NaiveBayes, GBM, GLM, RF
and SVM reaching 100% at the cumulative percentage of 1.0, in-
dicating that the prediction errors of these models are small at the
extremes. The box plots further reveal the distribution of the re-
siduals of each model, where the red dots represent the root mean
square of residuals (RMSR), providing us with a visualization of the
prediction error of the models. In all of these models, MS4A6A is

in an important position.

3.5 | MS4A6A expression differences and clinical
significance

To determine whether MS4A6A expression is elevated in tumours and
its clinical significance for GBM, we analysed data from TCGA-GBM and
TCGA-GBM combined with GTEX, respectively. The results showed
that MS4A6A had an extremely strong diagnostic value, with AUCs of
0.995 and 0.987 in the two datasets, respectively (Figure 5A,B). The
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FIGURE 5 Clinical significance of MS4A6A. (A, B) Data from TCGA-GBM and TCGA-GBM combined with GTEx were analysed. (C) The
prognostic value of MS4A6A. (D, E) The forest plot demonstrates the specific effect of MS4A6A on survival time in three unifactorial and

multifactorial analyses.
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expression of MS4A6A in GBM tissues was much higher than that in
normal tissues. In addition, the calibration curves and goodness-of-fit
tests of the predictions of the tumour group and the normal group
indicated that MS4A6A was a predictor of diagnosis of GBM, and no
deviation from a perfect fit was detected, implying that the prediction
of whether it was a tumour tissue or not by using MS4A6A was not

(A)

significantly different from the ideal model. The KM curves indicated
that the patients with high expression of MS4A6A had a shorter OS,
DSS and PFI (Figure 5C). The forest plot demonstrated the specific
effects of MS4A6A on the three survival times (Figure 5D). In addi-
tion, unifactorial and multifactorial also showed that MS4A6A could be
used as a prognostic indicator for GBM (Figure 5E).
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FIGURE 7 Association of specific gene expression with immune infiltration and genomic status based on scoring for characterizing
immunogenicity, DNA damage, etc. spearman correlation between TIP scoring and MS4A6A expression. Five scoring differences in the
MS4A6A high/low expression group (A-D, F). The upper panel provides the distribution of scoring levels across samples in the MS4A6A
high/low expression group. The ends of the lower box indicate the interquartile range of values. The line in the box indicates the median
value (E).
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3.6 | Potential biological functions of MS4A6A

To elucidate the role of MS4A6A in GBM, we conducted a de-
tailed analysis of its biological functions. Using the GSVA package
in R, we applied the GSVA parameter algorithm to score a set of
73 KEGG metabolic genes. Samples with the top 30% MS4A6A

expression were classified as the high expression group, while
those with the lowest 30% were classified as the low expression
group. The limma package was used to compare GSVA scores of
metabolic gene sets between these groups. The analysis revealed
that the high expression group showed activation in arachidonic
acid metabolism and significant inhibition in lysine degradation
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FIGURE 8 Relationship between MS4A6A and immune cells (A, B) Multiple algorithms to assess the Spearman correlation of MS4A6A
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(Figure 6A). Additionally, gene set enrichment analysis based
on KEGG pathways indicated that the high MS4A6A expression
group was enriched in apoptosis, T cell receptor signalling, prion
disease, and other pathways, whereas the low expression group
was enriched in DNA replication, Notch signalling, cell cycle and
more (Figure 6B). Furthermore, we calculated the z-scores of 14
tumour states using GSVA and assessed the Pearson correlation
between MS4A6A expression and GSVA scores. The results dem-
onstrated a significant positive correlation of MS4A6A expression
with DIFFERENCE and APOPTOSIS, aligning closely with the en-
richment analysis findings (Figure 6C).

3.7 | Relationship between MS4A6A and
immunization scores

Based on the quartiles of MS4A6A expression, all patients were cat-
egorized into four types, that is, Q1, Q2, Q3 and Q4, with Q1 rep-
resenting the 25% of samples with the highest MS4A6A expression
and Q4 representing the 25% of samples with the lowest MS4A6A
expression. Based on the results of previous studies of immune re-
sponse and genomic status, we calculated the average of each scor-
ing across the four patient types. The heatmap represents, from left
to right, the within-group averages of the immune response scores
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FIGURE 9 Heatmap representing from left to right the within-group mean of each immune response score versus genomic status score
for subtypes Q1, Q2, Q3, Q4, normalized by rows thus allowing all scores to be scaled to the same range(A). mRNA expression is the median
of the normalized expression levels. Expression versus methylation is the correlation between gene expression and dna methylation g values.
Amplification frequency is the difference between the proportion of samples amplified by immunoregulators in a particular isoform and the
proportion amplified in all samples. Absence frequency is the difference between the proportion of samples in which immunoregulators are
absent in a particular isoform and the proportion of samples in which they are absent in all samples (B).
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FIGURE 10 Spatial transcriptomic analysis. (A)MS4A6A expression in various immune cells such as Tumour Cells, CD4 T Cells, CD8 T
Cells, NK Cells, Macrophages, DCs, Neutrophils, Endothelial Cells, Fibroblasts and CNS Cells. Each dot is a microregion (spot) of spatial
transcriptome sequencing, darker colour (red) means higher expression of that gene in the spot. (B) Spearman correlation analysis was
performed to calculate the correlation between cellular content and cellular content, as well as the correlation between cellular content and
gene expression in all spots. Red lines represent positive correlations, green lines represent negative correlations, grey lines represent no
significance and the thickness of the line represents the absolute magnitude of the correlation coefficient. The correlation of the triangular
region is indicated by the colour shade and size of the squares. (C) Expression of MS4A6A.
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versus genomic status scores for each of the Q1, Q2, Q3, Q4 sub-
types, with the Q1 group with high MS4A6A expression also hav-
ing higher scores. We sought to analyse the relationship between
MS4A6A and the anti-cancer immune status of the seven-step
cancer immune cycle. Specifically, these include cancer cell antigen
release, cancer antigen presentation, initiation and activation, im-
mune cell transport to the tumour, immune cell infiltration into the
tumour, and T cell recognition of cancer cells and killing of cancer
cells. TIP (Tracking Tumour Immunophenotype) was used to quan-
tify the scoring for each tumour, at each step. The results showed a
significant positive correlation between MS4A6A and these immune
states. easier is a tool for predicting biomarker-based immunothera-
pies based on a model of cancer-specific immune responses, with
the goal of predicting anti-tumour immune responses from RNA-seq
data. We used TCGA-GBM data to calculate the differences in five
scores, cytolytic activity, tertiary lymphoid structure, interferon-y
signature, inflammatory T cells and chemokines, in the MS4A6A

high/low expression group. The results showed that all four scores,

FIGURE 11 Target drug for MS4A6A.
(A) cMAP analysis to explore potential
therapeutic options that can counteract
MS4A6A-mediated tumour promotion. (B)
Molecular docking indicates that TTNPB
and MS4A6A can bind efficiently.

except for the chemokine score, were higher in the high expression
group (Figure 7A-F).

3.8 | Relationship between MS4A6A and
immune cells

A thorough analysis of various algorithms can enhance our un-
derstanding of the mechanisms and characteristics of immune
infiltration, thereby shedding light on tumour pathogenesis and
offering new approaches for disease diagnosis and treatment.
Therefore, we aimed to understand the relationship between
MS4A6A and immune cells in GBM. We used a multi-algorithm
approach to assess the Spearman correlation of MS4A6A expres-
sion with different immune infiltrating cells. The results indicated
a positive correlation between MS4A6A and most immune cells,
with tumour-associated fibroblasts and M1 and M2 macrophages

showing particularly strong associations. The heat map indicated

FIGURE 12 Correlation between MS4A6A and immune cells. (A-L) Correlation of MS4A6A with multiple types of immune cells. (A) B

cell plasma_CIBERSORT_B. (B) B cell_EPIC_B. (C) B cell_TIMER_B. (D) B cell_XCELL_B. (E) T cell CD4+ effector memory_XCELL_CDAT. (F)
T cell CD4+ memory resting_CIBERSORT-ABS_CDAT. (G) T cell CD4+ memory_XCELL_CDA4T. (H) T cell CD4+ Th1_XCELL_CDA4T. (I) T cell
CD8+ central memory_XCELL_CDS8T. (J) T cell CD8 +_CIBERSORT-ABS_CDS8T. (K) T cell CD8 + _MCPCOUNTER_CDST. (L) T cell follicular

helper_CIBERSORT_T.
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greater immune cell infiltration in the group with high MS4A6A
expression (Figure 8A-C).

3.9 | Relationship between MS4A6A and
immunomodulators

Based on the quartiles of MS4A6A expression, all patients were
categorized into four types, that is, Q1, Q2, Q3 and Q4 (Q1 repre-
sents the 25% of samples with the highest expression of MS4A6A,
and Q4 represents the 25% of samples with the lowest expression).
We explored the association of MS4A6A gene expression with im-
mune infiltration and genomic status based on scoring for charac-
terizing immunogenicity, DNA damage, etc (Figure 9A). Further, we
explored the relationship between MS4A6A and immunomodula-
tors. Thereby, we understood their expression and control patterns
in different states of MS4A6A (Figure 9B). All these results suggest
that MS4A6A plays an important role in the regulation of the im-

mune system.

3.10 | Exploring the association of MS4A6A with
immune cells using spatial transcriptome data

To further validate these results, we utilized spatial transcriptome
data to further analyse the potential association of MS4A6A with
immune cells. Based on the deconvolution results, we calculated
the cell type with the highest content in each microregion and vis-
ualized the cellular component maxima in each microregion using
the SpatialDimPlot function in the Seurat package (Figure 10A).
We also visualized the MS4A6A expression landscape in each mi-
croregion (Figure 10C). Meanwhile, spearman correlation analy-
sis was used to calculate the correlation between cellular content
and cellular content, and between cellular content and MS4A6A
expression in all SPOTs (Figure 10B). The results showed that
MS4A6A had a significant positive correlation with CNS cells, fi-
broblasts and CD8T cells.

3.11 | Targeted drugs for MS4A6A

To investigate therapeutic options to counteract MS4A6A-mediated
tumour promotion, we conducted cMAP analysis. We developed a
gene signature consisting of the 150 most significantly up-regulated
and 150 most significantly down-regulated genes by comparing tu-
mours with high and low gene expression. This signature was compared
to the cMAP gene signature using the XSum (eXtreme Sum) method
to obtain similarity scores for all compounds. The results indicate that
TTNPB may reverse the molecular signature associated with MS4A6A

dysregulation, counteracting its pro-cancer effects. Molecular dock-
ing showed strong binding interactions between TTNPB and MS4A6A,
with a reliable binding energy of -6.9kcal/mol. The conformations of
TTNPB and MS4A6A are illustrated in the Figure 11A and 11B.

3.12 | Association of MS4A6A with immune cells
We calculated the correlation between MS4A6A and immune cells
using various algorithms. The results showed that MS4A6A was
significantly positively correlated with CD8T cells in multiple algo-
rithms (Figures 11,12).

3.13 | Differential expression of immune-related
molecules in MS4A6A high/low expression groups

To understand the further relationship between immune-related
molecules and MS4A6A, we explored the expression differ-
ences of four types of genes (immune-stimulating genes, immune-
suppressing genes, chemokines and human leukocyte antigens) in
the high and low expression groups of MS4A6A. The results showed
that most genes were more highly expressed in the MS4A6A high
expression group (Figure 13).

4 | DISCUSSION

Although there have been advances in therapeutic strategies for
gliomas over the past few decades, the median overall survival after
diagnosis remains around 15 months, indicating unsatisfactory long-
term outcomes.?® Given the poor prognosis for glioma patients, we
urgently need to identify new biomarkers or molecular targets to en-
hance the diagnosis, prognosis and treatment of glioma. This study
aims to explore new and effective targets for personalized thera-
peutic management and treatment of glioma. Macrophages play a
crucial role in cancer by promoting tumour growth, metastasis and
the formation of new blood vessels.

Currently, machine learning based on big data has made rapid
progress in the biomedical field and achieved promising results.®*
Clinical big data refers to large and diverse data originating from
complex sources.?>3¢ Machine learning refers to a discipline that
studies algorithms focused on finding a pattern in large-scale data
and using those patterns to make predictions. Using machine learn-
ing methods, researchers can analyse a variety of histological data,
including gene expression, RNA sequences, non-coding RNAs (e.g.
miRNAs) and protein expression and modifications. We can clas-
sify different cancers into more detailed subtypes to predict cancer

progression and assess treatment response. More importantly, the

FIGURE 13 Differences of immune-related genes in high/low MS4A6A groups. (A-D) Expression differences of immunostimulatory
genes (A), chemokine-related genes (B), immunosuppressive genes (C) and human leukocyte antigen-related genes (D) in MS4A6A high/low

expression groups. *p<0.05, **p<0.01, ***p<0.001.
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combination of clinical big data and machine learning can help us
find key variables among the many influencing factors.®”-%?

In our study, based on multi-omics and multiple machine learning
approaches, we not only found that MS4Aé6 is a key gene for macro-
phages in GBM, but also found that it accurately predicts poor progno-
sis in gliomas, correlating with the biologically malignant characteristics
of numerous tumours. In addition, cMAP analysis and molecular dock-
ing showed that TTNPB and MS4A6A could bind efficiently. These re-
sults reveal that MS4A6A may be involved in macrophage infiltration
in GBM and influence the outcome of immunotherapy.

In our study, we used public cancer databases to analyse data
and discovered that MS4A6A is highly expressed in glioma tissues
compared to normal tissues. We analysed the survival of GBM pa-
tients across multiple datasets and found that MS4A6A serves as
a poor prognostic factor while also demonstrating good diagnostic
efficacy. We explored the potential biological functions of MS4A6A
through enrichment analysis and GSVA scoring. The results indicate
that MS4A6A may play a role in activating arachidonic acid metabo-
lism while simultaneously inhibiting lysine degradation. Additionally,
our findings from various algorithms showed that MS4A6A is
strongly associated with apoptosis, the T cell receptor signalling
pathway, prion disease and other pathways.

In recent years, it has become clear that immune cells can either
suppress tumours or support their growth. However, the relation-
ship between MS4A6A and immune infiltration in gliomas has not
been studied. Our research demonstrated that MS4A6A is positively
correlated with most immune cells, particularly tumour-associated
fibroblasts and M1 and M2 macrophages. GBM patients with high
MS4A6A expression also showed higher levels of immune cell infil-
tration. This suggests that MS4A6A may negatively impact patient
prognosis by promoting malignant behaviour and immune cell infil-
tration. Our findings indicate that MS4A6A expression could serve
as an indicator for identifying patients who might benefit from anti-
cancer immunotherapy.

The limitation of this study lies in its reliance on existing public
databases, such as TCGA and CGGA. While these databases pro-
vide a large amount of data, they may suffer from selection bias or
data incompleteness. Despite the use of multiple omics and machine
learning methods, bioinformatics analysis may not fully capture the
complexity of all biological processes and molecular mechanisms.
The immune microenvironment of gliomas is highly complex, involv-
ing multiple cell types and signalling pathways. Although studies
have indicated the association of MS4A6A with immune cell infil-
tration, there may be other unknown factors affecting immune re-

sponse and treatment outcomes.

5 | CONCLUSION

In summary, we identified MS4A6A using single-cell data as well as
machine learning algorithms. MS4A6A plays an important role in

prognostic, immune and biological functions in gliomas.
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