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Abstract 

Importance Decision-making in trauma patients remains challenging and often results in deviation from guidelines. 
Machine-Learning (ML) enhanced decision-support could improve hemorrhage resuscitation.

Aim To develop a ML enhanced decision support tool to predict Need for Hemorrhage Resuscitation (NHR) (part I) 
and test the collection of the predictor variables in real time in a smartphone app (part II).

Design, setting, and participants Development of a ML model from a registry to predict NHR relying exclusively 
on prehospital predictors. Several models and imputation techniques were tested. Assess the feasibility to collect 
the predictors of the model in a customized smartphone app during prealert and generate a prediction in four level-1 
trauma centers to compare the predictions to the gestalt of the trauma leader.

Main outcomes and measures Part 1: Model output was NHR defined by 1) at least one RBC transfusion in resuscita-
tion, 2) transfusion ≥ 4 RBC within 6 h, 3) any hemorrhage control procedure within 6 h or 4) death from hemorrhage 
within 24 h. The performance metric was the F4-score and compared to reference scores (RED FLAG, ABC). In part 2, 
the model and clinician prediction were compared with Likelihood Ratios (LR).

Results From 36,325 eligible patients in the registry (Nov 2010—May 2022), 28,614 were included in the model 
development (Part 1). Median age was 36 [25–52], median ISS 13 [5–22], 3249/28614 (11%) corresponded to the defi-
nition of NHR. A XGBoost model with nine prehospital variables generated the best predictive performance for NHR 
according to the F4-score with a score of 0.76 [0.73–0.78]. Over a 3-month period (Aug—Oct 2022), 139 of 391 eligible 
patients were included in part II (38.5%), 22/139 with NHR. Clinician satisfaction was high, no workflow disruption 
observed and LRs comparable between the model and the clinicians.

Conclusions and relevance The ShockMatrix pilot study developed a simple ML-enhanced NHR prediction tool 
demonstrating a comparable performance to clinical reference scores and clinicians. Collecting the predictor variables 
in real-time on prealert was feasible and caused no workflow disruption.
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Key points
Question
Is it feasible to develop a machine-learning-enhanced 
decision support tool capable to predict the need for 
trauma hemorrhage resuscitation on hospital arrival rely-
ing exclusively on prehospital predictors, able to handle 
missing data and collect the predictor variables in real-
time without workflow interruption?

Findings
This pilot study developed a machine learning enhanced 
need for hemorrhage resuscitation decision support tool 
and tested the collection of the predictor variables in a 
smartphone tool.

Meaning
The study demonstrates the feasibility to develop and 
deploy a user-friendly decision support tool to predict 
the need for hemorrhage resuscitation after trauma.

Introduction
Emergency situations, such as major trauma manage-
ment, place considerable cognitive and emotional bur-
dens on even the most experienced clinicians [1]. Under 
these constraints, clinical decision-making fluctuates 
between a heuristic and a rational cognitive mode [2]. 
This pattern contributes to inconsistent and non-repro-
ducible decision-making, leading to deviations from evi-
dence-based guidelines and compromises subsequently 
care quality and patient outcomes [3, 4].

Trauma-specific decision-support systems offer the 
potential to mitigate variable decision-making and guide-
line deviation. These systems range from simple check-
lists [5], flowcharts [6, 7] to digital tools [8, 9]. Recent 
advances in mathematical and technological paradigms 
have enabled the exploration of algorithm-based strate-
gies for enhanced real-time decision-making and com-
plex prediction in trauma. These developments led to 
numerous machine learning models with a heterogenous 
set of predictor variables, often including intrahospital 
predictors, heterogenous target outcomes (outputs) and 
performance levels [10, 11].

Most studies focus on model development, few per-
form external validation and rarely prospective, and 
even fewer attempt a prospective workflow integration 
or real-life validation [12, 13] Although a recent guide-
line highlights the need to consider usability, ergonom-
ics, explicability, and human–machine interaction when 
dealing with decision support tools [14], a knowledge gap 
persists about patient or workflow impacts and real-life 
feasibility.

The ShockMatrix pilot study aimed to bridge this gap 
and was conducted in two steps. The first part developed 

a machine-learning prediction algorithm relying exclu-
sively on routine prehospital variables and was capable of 
handling missing data. The primary hypothesis was that 
this algorithm would predict the need for hemorrhage 
resuscitation as reliably as established by prediction rules 
and clinical judgement (part 1). In part 2, the investiga-
tors prospectively assessed the ergonomics and usability 
of a smartphone app to collect the predictor variables 
required to feed the tool. They did so in a real-life setting 
during prealert by the trauma leader in a level-1 center 
and generated predictions. In the French EMS, prealert 
is usually given between 10 to 60 min before arrival of the 
patient (median 30 min). If proven to be deployable in a 
clinical setting, the tool could provide real-time decision 
support for a timelier mobilization of hemorrhage resus-
citation resources and pave the way to large-scale pro-
spective testing.

Methods
The study comes in two parts. Part 1 consisted in the 
development and selection of the best machine learning 
model to predict NHR. Part 2 consisted in a prospective 
observational study to evaluate the usability of a smart-
phone application to collect the information required to 
generate a prediction in a real-life setting. The descrip-
tion of the study followed the TRIPOD [15, 16] and 
DECIDE-AI [14] statements.

Machine learning model development
Sample cohort
This study was conducted on the Traumabase registry. 
The registry prospectively collects socio-demographic, 
clinical, biological, therapeutic, and in-hospital evolution 
data from the prehospital scene to hospital discharge for 
all severely injured patients admitted to a participating 
center [17]. The registry dataset contained information 
collected between November 2010 and May 2022 [18, 
19].

All consecutive patients over 18  years directly admit-
ted to one of the 26 participating trauma centers were 
considered eligible for inclusion. Patients who suffered 
from a cardio-respiratory arrest during the prehospital 
phase or with missing information to determine the out-
come criterion NHR were excluded. The study obtained 
approval from the University Paris Nord Ethics com-
mittee (CER-2021–106 /project SHOCKMATRIX,  11th 
February 2022). The Traumabase registry has obtained 
approval from the Institutional Review Board (Comité 
de Protection des Personnes, Paris VI) from the Advi-
sory Committee for Information Processing in Health 
Research (Comite Consultatif Pour le Traitement de 
l’information en matière de recherche dans le domaine 
de la santé CCTIRS, 11.305bis) and from the National 
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Data Protection Agency (Commission Nationale de 
l’Informatique et des Libertés CNIL, 911,461).

Model output
The primary outcome, Need for Hemorrhage Resuscita-
tion (NHR), was defined as a composite outcome includ-
ing any one the following criteria: 1) administration of at 
least one packed red blood cell (RBC) in the resuscitation 
room or 2) transfusion of 4 or more RBC Cells within 6 h 
since admission or 3) the need for a hemorrhage control 
procedure (interventional radiology and/or surgical con-
trol in the operating room) within 6  h of admission or 
4) death resulting from hemorrhagic shock within 24 h. 
These events were registered by trained research assis-
tants into the registry, blinded and without knowledge 
of the study objective. All participating clinicians were 
blinded to the model output.

Selection of the predictors and interpretability
The initial phase of model development was designed 
to identify the most relevant predictors. This choice 
entailed the selection of a set of variables among all pre-
hospital variables from the registry and available to the 
dispatch physician. Predictors were retained based on the 
Shapley Value approach. Shapley Value of each prehospi-
tal feature were computed to measure its weight on the 
prediction of NHR. To obtain and facilitate interpretabil-
ity the SHAP framework (Shapley Additive exPlanations) 
was applied. The frameworks assigned each feature an 
importance value for a prediction based on the game the-
ory optimal Shapley values. For every patient, the SHAP 
framework gave access to summary plots combining fea-
ture importance and effects [20]. The extensive list of ini-
tially explored and tested prehospital variables are listed 
in the supplementary material.

Model development
We divided the dataset at random into a training (50%), a 
validation (20%) and a test set (30%). Outliers and inap-
propriate observations, as defined by clinicians, were 
considered as missing values in continuous variables and 
a new category was created for categorical variables to 
be implemented subsequently in the model development 
(Supplementary Material Fig.1). Missing values were 
handled by mean imputation for continuous variables 
and augmented with missing-data mask concatenation 
for all predictors [21].

Being a rare event, the primary outcome, NHR, was 
considered as imbalanced with an asymmetric distribu-
tion. To avoid a bias in favor of the majority class in the 
prediction, the investigators adopted a random under-
sampling method (training and test set). A percentage of 
patients without the target feature NHR was randomly 

removed from the training set [22]. Model performances 
were computed on an unbalanced test set to reproduce 
real-life conditions (Supplementary Material Fig. 2, Dis-
tribution in training, validation and test set before/ after 
undersampling). Training on the undersampled balanced 
dataset implied a miscalibration of the probabilities of 
the model. To correct that effect, the Bayes Minimum 
Risk theory was used to recalibrate the probabilities and 
adjust the classification threshold [23] (Supplementary 
material Fig. 3).

Model selection
In the training set, four tree-based algorithms were 
trained and compared CART tree, Random Forest, 
XGBoost and CatBoost. To reduce false negative results, 
training was performed and iteratively evaluated by 
F4-score through tenfold cross validation (Supplemen-
tary material, Fig. 3). The validation set allowed to deter-
mine the thresholds and adjust hyperparameters.

The models were evaluated and compared on the test 
set using a panel of both common metrics sensitivity (Se), 
specificity (Sp), accuracy, precision, recall, area under the 
Precision-Recall curve (AUC PR) and receiver operat-
ing curve (AUC ROC), positive and negative likelihood 
ratio and the more specific Fβ-measure metric chosen to 
evaluate at-once Sensitivity and Positive Predictive Value 
(PPV) with emphasis on false negative (FN) prediction 
error. Confidence intervals of each performance met-
ric were computed by Bootstrap on the test set for each 
model through 2000 samples and 70% of resampling. The 
performance of the models was compared to the refer-
ence clinical rules Red Flag [24] and ABC score [25] with 
and without imputation. These rules were chosen since 
they rely exclusively on prehospital variables. The diag-
nostic threshold was set to 0.11 after consensus of the 
clinical advisory board [26] to reduce the risk of missing 
patients in shock.

Statistical analysis and sample size
Continuous data were described as median (quartiles 
1–3) and categorical variables as count (percentages).

The sample size was determined by a bootstrap with 
2000 iterations to provide a compromise between a con-
fidence interval around the bootstrap mean of F4 with an 
inferior margin sufficiently lower than the clinician refer-
ence F4 of 0.63 and required inclusion of 1000 patients 
into the training set. All calculations performed on 
Python 3.11.0.

Part II: Pilot study
The smartphone application was developed by profes-
sional developers from the scientific partner Cap Gemini 
Invent (Issy-Les-Moulineaux, Paris, France) as part of a 
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non-for-profit contribution to for the research project. 
The application was available to participating clinicians 
free of charge on the on AppStore and Playstore server 
(see Supplementary Fig.  4 for the Android screenshot) 
and to be downloaded to their personal smartphone. A 
personal login and password granted access to the appli-
cation. The participants received specific training and 
manuals to facilitate the use of the application.

Participants and data collection
This phase was conducted over a three-month period 
from June to August 2022 in five Traumabase centers. 
After each trauma call activation (prealert) and before 
patient arrival, trauma leaders in the resuscitation room 
had to connect to the application and collect the nine 
predictor variables with the possibility to indicate that 
the variable was not known or unavailable. After collect-
ing the nine predictor variables, clinicians indicated their 
level of confidence in the information obtained from the 
dispatch center (“Very low”, “Rather low”, “Rather high”, 
“High”). At the end, each trauma leaders indicated their 
own subjective appreciation, gestalt, of the probability of 
the model output (NHR, see above) with “Yes” or “No” 
and their confidence about their own prediction (ranging 
from 0, “I am absolutely not confident in my prediction” 
to 100, “I could not be more confident with my prediction”. 
Finally, participants specified their level of experience as 
trauma leader in years (< 3, 3 to 6, 6 to 9, more than 9).

In this pilot study, users did not have access to the 
results of the model prediction for two reasons. First, for 
medico-legal and regulatory reasons, and second because 
the investigators felt it was premature to provide a pre-
diction before a prospective large-scale assessment of the 
model and to minimize patient risk.

Data processing
The smartphone application stored the data to a HIPAA 
(Health Insurance Portability and Accountability Act) 
compliant Microsoft Azur server. The data were fed 
into the prediction model to generate the output, NHR. 
Patient outcomes including the primary outcome, NHR, 
were retrieved from the Traumabase registry and com-
pared to trauma leader predictions and to calculate sen-
sitivity, specificity, positive, negative predictive value, and 
likelihood ratios. In this pilot study, this comparison was 
not intended to assess the model performance, since the 
investigators were aware of a lack of power.

Qualitative assessment of the usability
Every participating trauma leader responded to an online 
questionnaire (see Supplementary material). This ques-
tionnaire evaluated the following dimensions on a scale 
from 1 to 10:

– App ergonomics (touch screen, readability, ease of 
use, input time, workflow disruption, feasibility,…)

– Acceptability (clinical relevance, response rate, com-
mitment to use, patient impact,

– Overall impression (interest raised, satisfaction, like-
lihood to participate in follow up study)

– Protocol compliance (level of concordance between 
server and clinical data, inclusion capacity, missing 
data,..)

– Project feasibility (recruitment capacity, sample size 
calculation,…)

Results
Part 1: Model development
Sample cohort
Between November 2010 and May 2022, 36 325 patients 
were registered in the Traumabase. Among them, 28 
614 patients met the inclusion criteria and 3 249 (11%) 
were diagnosed with Need for Hemorrhage Resuscitation 
(NHR, flowchart Fig. 1). Median age was 36 years [IQR 
25–52] and the cohort was mainly composed of men 79% 
(22 356 male, 6 062 female). Median ISS was 13 [5-22]. 
Table 1 provides a detailed description of the cohort.

Predictor selection
Based on the Shapley values, nine predictor variables 
were identified: type of trauma (blunt or penetrating), 
minimal diastolic blood pressure, minimal systolic blood 
pressure, maximal heart rate, capillary hemoglobin con-
centration, volume of crystalloid fluid expansion, intuba-
tion, catecholamine use, clinically obvious pelvic trauma. 
Those with the highest weight were the minimum systolic 
blood pressure, the capillary hemoglobin, the total vol-
ume of fluid expansion and the maximum heart rate. Low 
values of minimum systolic blood pressure and capillary 
hemoglobin with high values of heart rate and crystal-
loid fluid expansion volume implied a high risk of NHR 
according to the model (Fig. 2).

Model development and selection
The recalibration method applied to the predictions of 
the model indicated a decision threshold of 11%; patients 
with a probability above that threshold were considered 
at risk of a NHR. The best predictive performance for 
NHR based according to the F4-score was obtained with 
the XGBoost technique with a score of 0.76 [0.73–0.78] 
(Table 2). This threshold limited the rate of false negative 
cases (174 FN) (Fig. 3).

Cumulated distribution of probabilities over the nega-
tive class predicted by the XGBoost model on the vali-
dation set generated the results illustrated in Table  3. 
Setting the threshold for the positive cases lower than the 
default reduced misclassification of false negative cases 
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and accounting appropriately the true negative cases 
(Fig. 4).

Part 2: pilot study
The three-month pilot study included 139 of 361 eligible 
patients (38.5%). The input time was less than 2 min (SD 
1 min). In total 22/139 (15.8%) patients presented with a 
NHR. Twenty-three out of 54 (42%) targeted clinicians 
participated, and all responded to the survey. In the sam-
ple cohort median ISS was 9 [4; 20], with road traffic acci-
dents as predominant mechanism and a higher amount 
of penetrating trauma compared to the derivation sample 
(21% versus 11%). Participants indicated a global satisfac-
tion of 87% with the tool and 91% of interest in the study 
and 91% found the smartphone application ergonomic 
and user-friendly. Figure  5 illustrates participant appre-
ciation of the protocol feasibility and app ergonomics.

In the small sample of the pilot study, the F-4 score for 
the XGBoost model was 0.49 (with imputation of missing 

data using MIA) against 0.69 for the clinician gestalt (no 
imputation). This corresponds for the XGBoost model to 
a sensitivity of 50% versus 64% for the clinician gestalt for 
the target output NHR, a specificity of 85%, versus 79%, 
a PPV of 39% versus 37% and a NPV of 90% versus 92%. 
These results indicate a positive LR of 3.44 and a negative 
LR of 0.59 for the model and positive LR of 3.1 and nega-
tive of 0.46 for the clinicians and corresponding accura-
cies of 0.8 and 0.77, respectively.

Discussion
The Shockmatrix pilot study demonstrated the feasibil-
ity of the development of a prediction model NHR from 
registry data based exclusively on a limited set of pre-
hospital predictors with the capacity to handle missing 
predictors. This model shows comparable performance 
to established clinical decision rules and experienced 
clinicians. Furthermore, the study demonstrated the 
capacity to implement the model into an easy-to-use 

Table 1 Sample cohort clinical characteristics

SBP Systolic blood pressure, DBP Diastolic blood pressure, HR Heart rate, RBC Red blood cells, CI Confidence interval

Minimum corresponds to the lowest recorded systolic or diastolic blood pressure during the prehospital phase; maximum corresponds to the highest recorded heart 
rate pressure during the prehospital phase

Cohort
n = 28 614

Missing values n (%) NHR
n = 3 249

No-NHR
n = 25 365

Predictors
Demography
 Median age [Q1-Q3] 36 [25–52] 0 (0%) 40 [27–59] 36 [25–51]

 Male, n (%) 22 356 (78.1%) 190 (0.7%) 2 305 (70.9%) 20 051 (79%)

 ISS [Q1-Q3] 13 [5-22] 1 147 (4%) 26 [17 -38] 10 [5-20]

Continuous
 Prehospital Median minimum SBP [Q1-Q3] 116 [100–130] 3 325 (11.6%) 87 [70–106] 119 [104–130]

 Prehospital Median minimum DBP [Q1-Q3] 70 [59–80] 3 428 (12%) 50 [40–65] 70 [60–80]

 Prehospital Median maximum HR [Q1-Q3] 94 [80–110] 3 404 (12%) 114 [93–130] 92 [80–107]

 Prehospital Median capillary hemoglobin [Q1-Q3] 14 [12.8–15] 5 835 (20.4%) 12.4 [11-14] 14 [13–15.2]

 Prehospital Median crystalloid fluid expansion volume [Q1-Q3] 500 [250–1000] 785 (2.7%) 1 000 [500–1 500] 500 [100–750]

Categorical
 Prehospital Cristalloid Fluid expansion, n (%) 21 560 (75.4%) 785 (2.7%) 2 842 (87.5%) 18 718 (73.8%)

 Prehospital Intubation, n (%) 6 344 (22.2%) 472 (1.7%) 1 688 (52%) 4 656 (18.4%)

 Prehospital Catecholamine use, n (%) 2 557 (8.9%) 813 (2.8%) 1 283 (39.5%) 1 274 (5%)

 Prehospital suspected pelvic trauma, n (%) 1 376 (4.8%) 348 (1.2%) 496 (15.3%) 888 (3.5%)

 Prehospital suspected penetrating trauma, n (%) 3 621 (12.7%) 126 (0.4%) 546 (16.8%) 3 075 (12.1%)

Output variables
 Median number of packed RBC transfused in the trauma room 
[Q1-Q3]

0 [0–0] 1 067 (3.7%) 2 [0–3] 0 [0–0]

 Median number of packed RBC transfused within 6 h [Q1-Q3] 0 [0–0] 161 (0.6%) 4 [0–6] 0 [0–0]

 Hemostatic interventional procedure, n (%) 2 074 (7.3%) 2 264 (7.9%) 2 068 (63.7%) 6 (0.02%)

 Median duration before surgery in minutes [Q1-Q3] 174.5 [104–309.25] 1 329 (4.6%) 120 [70–189] 235 [142–450]

 In hospital mortality, n (%) 2 201 (7.7%) 1 725 (6%) 916 (28.2%) 1 285 (5.1%)

 Death of hemorrhagic shock, n (%) 1 242 (4.3%) 954 (3,3%) 688 (21.2%) 554 (2.2%)

 Median duration of hospitalization in days [Q1-Q3] 8 [3-19] 3 624 (12.7%) 18 [4–42] 7 [3-17]
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smartphone-based tool to capture the necessary predic-
tors and make the prediction model available to clini-
cians without workflow interruption.

Two recent reviews provide an extensive overview of 
algorithm-based prediction of haemorrhage and trauma 
outcomes [10, 11]. These models can be classified accord-
ing to the outcome, predictors, data source and methods 
applied. These models frequently predict mortality, trans-
fusion, perform either risk quantification or detect hem-
orrhage and coagulopathy. Specific patient needs other 
than transfusion occur rarely as target and most model 
outputs are not actionable.

The methods cover a large spectrum from regression 
(e.g. stepwise, Poisson, logistic, Cox) over neural, artifi-
cial, or deep networks to tree- or kernel-based methods. 
No method seems superior to another regarding predic-
tive performance. Most studies are retrospective and do 
not test feasibility in a real-life setting. Studies differ in 
the time points to collect the required predictors, rely on 
late or intrahospital predictors. In consequence, results 
become available late in the patient pathway to become 
actionable. Reports do not follow a stringent reporting 
structure and use different metrics. A combination of 
systematic reporting of a complete panel of indicators 
from sensitivity to F4- and Fβ-Score seems appropriate [9, 
11, 14], including the specification of diagnostic thresh-
olds. Imputation is not always performed or not men-
tioned systematically. Numerous imputation techniques 
are available, their explanation is beyond the scope of this 

paper. The fact that an information is missing represents 
itself an information, since information is rarely miss-
ing at random. For this reason, the input of some crucial 
missing information has been provided in the SHAP dia-
gram in Fig. 2.

The following examples illustrates these observations. 
Maurer et  al. developed a smartphone-based predictor 
tool, including age, systolic blood pressure, respiratory 
rate, mechanism, temperature,  SpO2, comorbidities, GCS 
and AIS, based on the large reliable Trauma Improve-
ment Quality database [27]. The predictive performance 
achieves an AUROC of 0.92 for penetrating and 0.83 for 
blunt trauma. Yet the model predicts mortality, a non-
actionable outcome and relies on AIS data, that require 
a complete body-scan, usually obtained after the resus-
citation phase. The need for complete injury description 
also applies Lee et al. and Nederpelt et al. and Follin et al. 
[28–30]. Despite excellent performance, the need for 
detailed injury data makes these models less applicable. 
Liu et al. developed a model based primarily on prehos-
pital data, including heart rate variability to predict life-
saving interventions (transfusion, angioembolization, 
intubation, thoracotomy, needle decompression…) with 
variable performance between AUROC 0.9 and correla-
tion coefficient of 0.77 [31]. Yet, the predicted outcome 
is not specific enough to allow targeted anticipation 
and preparation. Perkins et  al. demonstrated a very ele-
gant tool based on an innovative Bayes network [32]. 
The model shows excellent diagnostic performance for 

Fig. 1 Study flowchart
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coagulopathy and need for critical resource, but requires 
an extensive dataset, available only after resuscitation 
room work up, which provides limited use before the 
admission to the hospital.

In this context, the Shockmatrix model compares 
favorably. The model relies exclusively on prehospital 
routine variables, avoids dichotomization of continuous 
variables, such as Shock Index and clinical practice pat-
terns as potential source of bias. The diagnostic perfor-
mance is comparable and acceptable with an AUC of 0.89 
for the XGBoost, including the iteration with imputation. 
The investigators considered the capacity of the model to 
impute missing data and still perform adequately, since 

missing features are a reality in any clinical setting. The 
model strikes an equilibrium between diagnostic per-
formance and a minimal set of easily available exclu-
sive prehospital predictors to predict a set of composite 
actionable outcomes [33]. These features provide the 
model an operational character based on an actionable 
output that anticipates patient need and resource mobili-
zation. Numerous prehospital.

Few studies attempt a prospective workflow integration 
and real-life validation of their existing tools to assess 
usability, ergonomics, explicability, and human–machine 
and clinician uptake and compliance [14]. To close this 
gap, this pilot study represented a pivotal step towards 

Fig. 2 SHAP Diagram (XGBoost model). The SHAP value is used to report the weight of the variables in the model. Variables are ranked 
from the most important at the top (minimal SBP) to the less important at the bottom (sex). Variable influence on hemorrhagic shock prediction 
is represented from the right (positive) to left (negative) and the value of the observation is colored from red (highest for continuous variables 
and "yes” pour binomial variables) to blue (lowest for continuous variables and "No” pour binomial variables). As an example, “The minimal SPB 
is the better predictor of hemorrhagic shock (on the top) and the lower minimal SBP value (in blue) have the most positive impact on hemorrhagic 
shock prediction (right)”
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the establishment of an operational Clinical Decision 
Support Tool (CDST). It demonstrated the feasibility 
to create a tool to collect the predictor data quickly and 
feed these into the model. Clinician compliance, satisfac-
tion and interest was high, suggesting potential future 
uptake and tool compliance. The predictors selected 
(Shapley value diagram) remain in the realms of a clinical 
and physiological representation which is important for 

clinician confidence and involvement. Despite not being 
the declared objective of the study, the performance of 
the model in comparison to clinician gestalt in the pilot 
phase underscored the need to retrain and improve the 
initial model; a step rarely performed in the current liter-
ature. Retraining resulted in the inclusion of the trauma 
mechanism “penetrating”, improved the model, and inte-
grated a calibration method. A prospective study will be 

Table 2 Model performances metrics with 95% confidence intervals and a diagnostic threshold of 0,11

Red Flag Score: Shock Index > 1, MAP < 70 mmHg, point of care haemoglobin ≤ 13 g/dl, unstable pelvis, pre-hospital intubation

ABC Score: penetrating trauma, heart rate > 120 b/min, systolic blood pressure < 90 mmHg, positive abdominal FAST

AUC  Area under the curve, ROC Receiver operating curve, LR Likelihood ratio

F4-Score Sensitivity Precision Specificity Accuracy AUC PR AUC ROC LR + LR-

Red Flag
(1337 patients with miss-
ing values deleted 38 
in NHR)

0.78
[0.77–0.80]

0.97
[0.95–0.98]

0.19
[0.18–0.21]

0.41
[0.39–0.42]

0.48
[0.46–0.49]

0.19
[0.18–0.21]

0.69
[0.68–0.70]

1.63
[1.58–1.67]

0.08
[0.05–0.12]

Red Flag with imputa-
tion

0.76
[0.74–0.78]

0.93
[0.91–0.95]

0.19
[0.18–0.21]

0.51
[0.49–0.52]

0.56
[0.54–0.57]

0.19
[0.18–0.20]

0.72
[0.71–0.73]

1.88
[1.82–1.95]

0.14
[0.10–0.18]

ABC
(930 patients with miss-
ing values deleted 82 
in NHR)

0.70
[0.67–0.73]

0.79
[0.75–0.82]

0.25
[0.23–0.27]

0.68
[0.67–0.70]

0.69
[0.68–0.71]

0.22
[0.20–0.24]

0.73
[0.72–0.75]

2.48
[2.33–2.63]

0.31
[0.26–0.36]

ABC with imputation 0.65
[0.62–0.68]

0.72
[0.69–0.76]

0.25
[0.23–0.27]

0.72
[0.71–0.73]

0.72
[0.71–0.73]

0.21
[0.19–0.23]

0.72
[0.70–0.74]

2.55
[2.39–2.73]

0.39
[0.34–0.44]

CART 0.72
[0.69–0.74]

0.82
[0.79–0.85]

0.24
[0.22–0.25]

0.66
[0.65–0.68]

0.68
[0.67–0.69]

0.40
[0.36–0.44]

0.81
[0.79–0.83]

2.43
[2.31–2.56]

0.27
[0.23–0.32]

Random Forest 0.73
[0.71–0.76]

0.79
[0.76–0.82]

0.34
[0.32–0.37]

0.81
[0.80–0.82]

0.80
[0.79–0.81]

0.55
[0.51–0.59]

0.88
[0.86–0.89]

4.08
[3.81–4.36]

0.26
[0.22–0.30]

XGBoost 0.76
[0.73–0.79]

0.82
[0.79–0.85]

0.35
[0.32–0.37]

0.80
[0.79–0.81]

0.80
[0.79–0.81]

0.56
[0.52–0.60]

0.89
[0.87–0.90]

4.12
[3.89–4.40]

0.22
[0.19–0.26]

CatBoost 0.75
[0.72–0.77]

0. 81
[0.78–0.84]

0.34
[0.32–0.36]

0.80
[0.79–0.81]

0.80
[0.79–0.81]

0.51
[0.47–0.56]

0.88
[0.86–0.89]

4.00
[3.77–4.26]

0.24
[0.20–0.28]

Fig. 3 Confusion matrices
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completed in June 2024 (ClinicalTrials.gov Identifier: 
NCT06270615) in seven French centers to assess the pre-
dictive performance of the model and compare against 
clinician gestalt using the same information by a real-
life prealert with clinicians blinded to the prediction. A 
randomized cluster trial is in preparation with a deploy-
ment of three machine learning algorithms in 16 dispatch 
centers across France with a planned start in 2025. The 
algorithms will predict need for hemorrhage control and 

resuscitation, need for neurosurgery and need for trauma 
intervention.

Limitations
Limitations of the study relate to the development with-
out validation in an independent dataset. The investi-
gators share the belief that prospective validation in a 
real-life workflow with real patient data and assessment 
of patient impact is crucial. For this reason, a prospective 

Table 3 Cumulated distribution of probabilities over the negative class predicted by the XGBoost model on the validation set

Adjusting the threshold for the positive cases from 11 to 5% reduces the number of False Negative predictions by half while keeping 84% of the True Negative 
predictions

Probability of ESH predicted by 
the XGBoost model

Cumulated count of True 
Negative

Cumulated percentage of 
True Negative

Cumulated count of False 
Negative

Cumulated 
percentage of False 
Negative

0% 231 5.3% 1 0.7%

1% 1 954 45.2% 13 9.2%

2% 2 653 614% 27 19.0%

3% 3 126 72.3% 45 31.7%

4% 3 431 79.4% 55 38.7%

5% 3 623 83.8% 71 50.0%

6% 3 799 87.9% 86 60.6%

7% 3 934 91.0% 99 69.7%

8% 4 046 93.6% 108 76.1%

9% 4 149 96.0% 120 84.5%

10% 4 239 98.0% 129 90.8%

11% 4 324 100% 142 100%

Fig. 4 Recall / Precision curve over threshold of the XGBoost model on the validation set. Adjusting the threshold for the positive cases from 11 
to 5% improves the Sensitivity (Recall) to 0.90 while keeping the Precision over 0.25
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real-life validation study is underway in seven centers 
comparing the performance of the retrained model with 
the prediction by clinicians. Some predictors such as 
catecholamine and capillary hemoglobin use are more 
infrequent in some systems; a prospective validation 
will assess the external validity. The model did not out-
perform clinicians in the pilot study. First this pilot was 
not powered to assess this question. Second, the sample 
contained an overrepresentation of penetrating trauma 
linked to the case load in one center, an observation that 
allowed retraining of the model. Third, the investigators 
feel participating clinicians were eager to demonstrate 
their performance compared to the model, equivalent 
to a Hawthorne effect. The observed performance might 
thus overestimate a “real-life” performance. Confronta-
tion with the algorithm output might reduce decisional 
uncertainty. Despite lack of power and a considerable 
selection bias, the model performed as well as the clini-
cians in this pilot study. The ML tool could become an 
objective reference against which the clinician could 

benchmark his own appreciation. Finally, the investiga-
tors acknowledge that only 45% of eligible patients were 
included and a 42% response rate among the targeted 
clinicians may appear low; a selection bias cannot be 
excluded. Both rates are high compared to other pilot 
studies. In consequence, the pilot study helped to devise 
steps to increase clinician involvement and participation 
to reduce selection bias.

Conclusion
The ShockMatrix pilot study bridged the gap between 
model development and prospective field test to explore 
clinician AI interaction. The study developed a robust 
machine-learning prediction capable of imputing miss-
ing data based exclusively on routine prehospital vari-
ables to predict need for haemorrhage resuscitation. In 
a second step, the investigators evaluated prospectively 
the ergonomics and usability of a smartphone-based 
application to collect the information required to feed 
the prediction tool in a real-life setting and generate 
predictions with the algorithm.

Fig. 5 App assessment by participating clinicians in six dimensions, acceptability, ergonomics, data quality, protocol implementation, sample size, 
recruitment
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Glossary
AUC    Area under the Curve
CatBoost   open data framework providing a gradient boosting 

framework which among other features attempts to 
solve for Categorical features using a permutation 
driven alternative compared to the classical algorithm

F4-Score  
F4 − Score : Fβ = 1+ β2 Pre . Se

β2 . Pre +Se

with β = 4

  

ML  Machine Learning
NHR  Need for Haemorrhage Resuscitation: 1) administra-

tion of at least one packed red blood cell (RBC) in the 
resuscitation room or 2) transfusion of 4 or more RBC 
Cells within 6 hours since admission or 3) the need for 
a hemorrhage control procedure (interventional radi-
ology and/or surgical control in the operating room) 
within 6 hours of admission or 4) death resulting from 
hemorrhagic shock within 24 hours

Oversampling and 
Undersampling  

 techniques used to adjust the class distribution of a 
data set

Precisions-Recall 
Curve 

 

 A precision-recall curve (or PR Curve) is a plot of the 
precision (y-axis) and the recall (x-axis) for different 
probability thresholds

RBC  Red Blood Cell Concentrate
SHAP framework   stands for SHapley Additive exPlanations — a way 

to express explainability in Machine Learning. SHAP 
values are used when a complex model (could be a 
gradient boosting, a neural network, or anything that 
takes some features as input and produces some pre-
dictions as output) and you want to understand what 
decisions the model is making

XG Boost  open-source software library which provides a regu-
larizing gradient boosting framework
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