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Abstract 

Background  NF1 inactivation is associated with sensitivity to MEK inhibitor targeted therapy in low-grade and some 
high-grade gliomas. NF1 loss may also be a harbinger of exploitable vulnerabilities in IDH-wildtype glioblastoma 
(GBM). Accurate and consistent detection of NF1 loss, however, is fraught given the large gene size, challenges 
with complete coverage and variant calling upon sequencing, and mechanisms of mRNA and protein regulation 
that result in early degradation in the absence of genomic alterations. Here, we seek to perform a composite analysis 
for NF1 loss accounting for genomic alterations and protein expression via immunohistochemistry. We also character‑
ize the landscape of NF1 alterations in GBM.

Methods  We assembled a single-institution, retrospective cohort of 542 IDH-wildtype GBM with somatic next gen‑
eration sequencing to investigate the frequency and nature of detected NF1 alterations. We selected 69 GBMs 
from which to build a tissue microarray (TMA) of 44 NF1-wildtype and 25 NF1-mutant cases. We performed NF1 
immunohistochemistry using two different NF1 antibodies (NFC, Sigma-Aldrich; and iNF-07E, iNFixion Bioscience) 
and correlated results with clinical, genomic, and other immunohistochemical features.

Results  In our retrospective cohort, we identified 88 IDH-wildtype GBM with NF1 alterations (16%). NF1 altera‑
tions were mutually exclusive with EGFR and MDM2 alterations (p-adj < 0.001, 0.05, respectively), but co-occurred 
with PIK3R1 alterations (Log2(OR) = − 1.6, p-adj = 0.03). Of the 63 scorable sporadic GBMs in the TMA, 14 harbored NF1 
inactivating alterations and of those, 12 (86%) demonstrated minimal NF1 immunoreactivity by NFC antibody, com‑
pared to 8 (57%) by iNF-07E antibody. Among the 42 scorable NF1-wildtype GBM in the TMA, NF1 immunostaining 
was minimal in 18 (43%) by NFC antibody compared to 4 (10%) by iNF-07E antibody, potentially reflecting false posi‑
tives or differential protein regulation. Minimal immunoreactivity by NFC antibody was associated with decreased 
median overall survival (8.5 vs. 16.4 months, p = 0.011). Cox proportional hazards model correcting for prognostic 
variables in this subset revealed HR 3.23 (95% CI 1.29–8.06, p = 0.01) associated with decreased NF1 expression 
by IHC.
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Introduction
IDH-wildtype glioblastoma (GBM) is the most common 
primary brain malignancy in adults [1]. The prognosis is 
poor, and the treatment paradigm—a combination of sur-
gical resection, radiotherapy and alkylating chemother-
apy—has remained largely unchanged for the past two 
decades [2]. Advances in tumor genomics have identified 
clinically relevant genetic alterations and epigenetic sig-
natures in GBM, but O (6)-methylguanine-DNA meth-
yltransferase (MGMT) promoter methylation remains 
one of the few molecular markers predictive of response 
to standard therapy [3]. Some oncogenic mutations have 
proven to be actionable clinical targets in other glioma 
types. Successful trials of IDH-inhibitors for IDH-mutant 
astrocytoma, BRAF inhibitors for BRAF-mutant glioma, 
and MEK inhibitors for pediatric low-grade glioma have 
demonstrated the potential impact of targeted therapy 
for gliomas, but unfortunately not yet in GBM [4–6]. 
Identification of targetable oncogenes and development 
of effective targeted therapies for GBM remains an area 
of active investigation.

Neurofibromin 1 (NF1) is a potentially targetable gene 
in the MAPK pathway. NF1 is a tumor suppressor that 
functions as a RAS GTPase activating protein, nega-
tively regulating RAS/MAPK signaling by promoting the 
inactive GDP-bound form of RAS. Germline mutations 
in NF1 cause neurofibromatosis type 1 (NF-1), a tumor 
predisposition syndrome associated with benign and 
malignant tumors primarily in the peripheral and central 
nervous system. Somatic mutations in NF1 are impli-
cated in many sporadic cancers, including melanoma, 
lung cancer, ovarian cancer, and GBM [7]. In GBM, NF1 
loss is more common at recurrence and is associated with 
the mesenchymal subgroup, which has the worst clini-
cal outcomes [8]. NF1 inactivation has been shown to 
occur through multiple mechanisms. Fifteen percent of 
sporadic GBM harbor somatic mutations in  NF1 [8]. In 
addition to truncating and inactivating mutations, NF1 
inactivation occurs through other mechanisms such as 
aberrant splicing, post-transcriptional silencing, and pro-
teasomal degradation [9–12].  Preclinical studies from 
several groups, including our own, demonstrate that NF1 
inactivation confers ERK pathway dependence and par-
tial sensitivity to MEK  inhibition [13, 14]. Early-phase 
clinical trials in pediatric low-grade glioma and case 

studies in high-grade glioma confirm putative sensitiv-
ity to MEK inhibitor therapy [15, 16]. However, effective 
clinical translation of promising targeted therapy combi-
nations is stymied by challenges in accurately identifying 
tumors with functional NF1 loss.

Accurately and consistently identifying  loss of NF1 
function through next-generation sequencing is chal-
lenging for several reasons. The gene is large (350  kbp) 
and can be difficult to sequence in its entirety at suf-
ficient depth for variant calling [17, 18]. Addition-
ally, the functional implications of single nucleotide 
variants (SNVs) in NF1 are largely unclear, and non-cod-
ing intronic or promoter alterations may not be detected 
via standard clinical exome sequencing. Moreover, next 
generation sequencing (NGS) does not account for 
post-transcriptional modifications, silencing, or degra-
dation which may lead to functional loss of NF1. Here, 
we evaluate the genomic landscape of NF1 alterations 
in IDH-wildtype glioblastoma, validate an immunohis-
tochemical biomarker for NF1 loss, and identify other 
immunohistochemical, genomic, and clinical correlates 
of NF1 immunostaining.

Methods
Database construction
This study was conducted with the approval of the Johns 
Hopkins Institutional Review Board (IRB00288357). A 
REDCap database was constructed from 542 patients 
with histologically-confirmed IDH-wild type GBM, 
including 8 gliosarcomas, seen at the Johns Hopkins 
medical system between November 1, 2017, and Decem-
ber 1, 2023. All tumor specimens underwent sequencing 
of ~ 400 cancer-related genes via the JHH (Johns Hop-
kins Hospital) NGS Solid tumor panel, as previously 
described [19, 20]. For each patient, clinical and next-
generation sequencing data were extracted from the elec-
tronic medical record. NF1 genomic inactivation status 
was determined by a neuropathologist based on the NF1 
alteration(s) and comparative variant allele frequencies.

Tissue microarray construction
A tissue microarray was constructed using formalin-
fixed, paraffin-embedded (FFPE) tissue from a subset of 
patients comprising the REDCap database. Four, 0.6 mm 
tumor cores were selected from each specimen based on 

Conclusion  NF1 immunostaining may serve as a sensitive surrogate marker of NF1 genomic inactivation and a valu‑
able extension to next-generation sequencing for defining NF1 status. Minimal NF1 immunoreactivity is a poor 
prognostic marker, even in IDH-wildtype glioblastoma without apparent NF1 genomic alterations, but the underlying 
molecular mechanism requires further investigation.
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the microscopic appearance of an adjacent tissue slide as 
evaluated by a neuropathologist. Regions of high tumor 
density and cell viability were prioritized for core selec-
tion. The final tissue microarray included 69 tumors – 44 
NF1-wildtype and 25 NF1-mutant—including one from 
a patient with NF-1. Tumors were selected from patients 
who had an initial diagnosis of glioblastoma, IDH-
wildtype after November 1, 2017, and had ample surgical 
tissue available per visual review of paraffin blocks. Fol-
lowing processing and staining, all specimens except one 
had two or more evaluable cores.

Analysis of publicly available glioblastoma cohorts
The cBioportal website (cbioportal.org) was used to 
analyze The Cancer Genome Atlas (TCGA)—Firehose 
Legacy and the National Cancer Institute’s Clinical Pro-
teomic Tumor Analysis Consortium (CPTAC) Glioblas-
toma cohorts [21–24]. We excluded 7 and 15 samples, 
respectively, from the TCGA and CPTAC cohorts that 
harbored pathogenic IDH1/2 alterations detected on 
NGS.

Immunohistochemistry
We validated two anti-NF1 antibodies—NFC (Sigma-
Aldrich, MABE1820) and iNF-07E (iNFixion Bioscience) 
in FFPE cell pellet sections made from glioblastoma neu-
rosphere lines with previously characterized levels of 
NF1 expression: JHH-520 (NF1-deficient), GBM1 (NF1-
intact), and JHH-0879 (NF1-intact) [13] (Supplemen-
tary Fig.  1). The NFC monoclonal antibody recognizes 
a C-terminal epitope within the last 281 amino acids of 
human neurofibromin [25]. iNF-07E is a monoclonal 
antibody that recognizes amino acids 863–867 of NF1. 
Both antibodies were validated first in human glioma 
cells with known NF1 expression status. Immunohis-
tochemical (IHC) staining was performed in FFPE tis-
sue microarray sections using the following antibodies 
against NF1: clone NFC (1:10) and iNF-07E (1:20), podo-
planin (clone D2-40, Dako, 1:200), phospho-ERK (#9101, 
Cell Signaling, 1:250), phospho-S6, p16, ATRX, Ki67, and 
p53. At least two scorable tissue cores per specimen were 
required for score assignment. Scoring for NF1, podopla-
nin, phospho-ERK, phospho-S6, and p16 was performed 
by two blinded, independent neuropathologists (F.J.R., 
C.H.L.) using a three-tiered scale (“preserved”, “equivo-
cal”, “lost”) based on staining intensity. Tumors with dis-
cordant scores were assigned an aggregate score of “lost” 
if at least one core was “lost.” Tissue microarray sections 
were stained for p53 and Ki67 and digitally scanned. 
QuPath (v0.4.3) was used to quantify the percentage of 
cells with positive or negative immunostaining [26].

Statistical analyses
Association between two categorical variables was sum-
marized using contingency tables and analyzed using 
two-sided Fisher’s Exact test. To account for multiple 
comparisons, p-values are adjusted using Benjamini–
Hochberg procedure to control false discovery rate of 
0.05. Overall survival time was defined from the date of 
initial surgical diagnosis to the date of death (non-cen-
sored) or the date of last known alive (censored). Sur-
vival rate was estimated using Kaplan–Meier estimator 
and compared using log-rank test in univariate analysis. 
Cox proportional hazards model was used in multivariate 
analysis. Statistical significance was set at p < 0.05. All sta-
tistical analyses were performed in R (version 4.3.1) using 
the ‘survival’, ‘survminer’, and ‘stats’ packages.

Results
Characterization of genomic NF1 status in a glioblastoma 
cohort
We first assessed the frequency and type of NF1 altera-
tion among 542 IDH-wildtype GBM. One hundred fif-
teen NF1 alterations were identified across eighty-eight 
tumors (16.2%) (Supplementary Table  1). Seventy-one 
nonsense/frameshift mutations, 13 splice-site mutations, 
30 missense mutations, and one in-frame insertion/dele-
tion in NF1 were annotated (Fig.  1A). Protein-coding 
changes in NF1 were distributed throughout the entire 
gene, with the exception of recurrent truncations at 
Y2264 which were observed in five tumors. Seventy-two 
NF1 alterations were identified by ClinVar to be either 
“Pathogenic” or “Likely pathogenic”, with 16 alterations 
of conflicting or uncertain significance and 27 not anno-
tated [27]. Of the 30 NF1 missense mutations detected in 
our cohort, seven were predicted to be cancer-promoting 
and the rest were predicted to be likely passenger muta-
tions by FATHMM [28].

NF1 alterations were mutually exclusive with alterations 
in EGFR (log2OR –2.3, p-adj < 0.001), MDM2 (log2OR 
–2.5, p-adj = 0.05), PDGFRA, and CDK4 (Fig.  1B, Sup-
plementary Table 2). Alterations in NF1 co-occurred with 
alterations in PIK3R1 (log2OR 1.6, p-adj = 0.03). After 
adjusting for multiple hypotheses, only the associations 
between NF1 and EGFR, PIK3R1, and MDM2 remained 
statistically significant, supporting prior observations [8]. 
Mutual exclusivity of NF1 and EGFR alterations in IDH-
wildtype glioblastoma was further substantiated using 
two publicly available resources, TCGA and CPTAC, 
totaling 368 genomically-characterized glioblastomas 
after excluding samples with pathogenic IDH1/2 altera-
tions (Supplementary Table 3–4) [21–24].

To identify whether pathogenic alterations in NF1 are 
associated with changes in mRNA or protein expression, 
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we interrogated the TCGA and CPTAC glioblastoma 
cohorts [21, 22]. We observed significantly decreased 
average NF1 mRNA expression (p < 0.001 for each cohort) 
in tumors with known pathogenic NF1 alterations, 
though a subset had intact expression levels (Fig.  1E, 
F). We next evaluated whether NF1 mRNA expression 
correlated with protein expression. In 89 glioblastoma 
samples with both protein and mRNA, mRNA expres-
sion levels strongly correlated with protein expression 

(Spearman = 0.69, p < 0.001) as quantified by mass spec-
trometry (Fig. 1G).

We evaluated how NF1 alterations were associated 
with overall survival. In our institutional cohort of 542 
glioblastomas, we observed that neither truncating NF1 
alterations in the entire cohort nor NF1 genomic loss in 
the TMA cohort alone were significantly associated with 
decreased overall survival (Fig. 1H). This was supported 
by the TCGA dataset where neither NF1 alterations nor 
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mRNA expression was associated with a difference in 
overall survival (Supplementary Fig.  2A-B). Our find-
ings contrasted with the CPTAC dataset where NF1 
alterations were associated with decreased overall sur-
vival, though this was not true for NF1 mRNA or protein 
expression (Supplementary Fig. 2C-E) [23, 24].

Tissue microarray assembly and genomic characterization
In order to evaluate NF1 protein expression, we created 
a tissue microarray (TMA) from 69 representative glio-
blastomas from the cohort described above. Forty-four 
samples were NF1-wildtype and 25 were NF1-mutant on 
next-generation sequencing. All but one was obtained 
from the first tumor resection. The mutational profiles 
of glioblastomas included in the tissue microarray cohort 
are displayed in Fig. 2. The range of genomic alterations 
and their association with NF1 loss were similar to the 
overall GBM population. NF1 alterations identified in 
our cohort were manually assigned to two categories 
(pathogenic or non-pathogenic) by a neuropathologist 
based on whether they were indicative of genomic loss, 
taking into account alteration type, location in the gene, 
and potential loss of heterozygosity events. Tumors in the 
TMA were categorized as “NF1 altered” or “NF1 intact” 
by a neuropathologist based on their alterations. These 
scores were in high concordance (100%) with ClinVar 
annotations.

Immunohistochemistry for NF1 status
We performed an exhaustive literature search for NF1 
antibodies previously validated for immunochemistry in 
human glioma tissue. After thorough validation, we chose 
two antibodies: clone NFC (Sigma Aldrich, MABE1820) 
and iNF–07E (Infixion Biosciences) to evaluate NF1 pro-
tein expression (Fig.  3, Supplementary Fig.  3). Another 
NF1 antibody, clone McNFn27b (Abnova, NB300-154), 
was tested but not used due to high background stain-
ing in our hands. Immunostaining with the NFC anti-
body was negative in the tissue specimen from a patient 
with NF-1 (Fig. 3A), but immunoreactive in a specimen 
with no NF1 alterations (Fig. 3B). The NFC immunostain 
was immunoreactive in 26 tumors (41%), whereas 34 
(54%) had minimal or absent staining, one had equivocal 
staining, and seven were not scored due to the absence 
of assessable tumor tissue. Inter-core heterogeneity was 
noted within tumors, with seven displaying a mixture 
of cores showing both retained and absent NFC immu-
noreactivity. NF1 immunostaining scored by a second 
independent neuropathologist (F.J.R.) was highly con-
cordant (82%). NF1 immunostaining results were evalu-
ated for each tumor in the context of NF1 genomic status 
(Fig. 3E). Of the 14 scorable tumors assessed to be NF1-
deficient by NGS, 12 (86%) also demonstrated minimal 
to absent NF1 immunostaining with NFC antibody. Of 
the two tumors with intact NF1 immunostaining, one 
harbored an E2624* truncating mutation near the C 
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terminus. This truncation preserves a portion of the NFC 
antibody epitope and, of note, was the most C-terminal 
truncation present in our cohort. Among scorable NF1-
wildtype specimens, the NFC antibody was immunoreac-
tive in 23/42 (55%), equivocal in one (2%), and minimal 
or absent in 18 (43%). In tumors harboring NF1 variants 
of uncertain significance, NF1 immunostaining was mini-
mal or absent in four and immunoreactive in one.

The iNF-07E antibody was appropriately negative in the 
tissue specimen from a patient with NF-1 (Fig. 3C), but 
immunoreactive in a specimen with no NF1 alterations 
(Fig. 3D). The iNF-07E antibody was immunoreactive in 
46 tumors (76%). Fourteen (23%) demonstrated minimal 
or absent immunostaining, one stained equivocally, and 
seven were not scored due to the absence of assessable 
tumor tissue. Inter-core heterogeneity was minimal with 
iNF-07E immunostaining, as no tumors exhibited cores 
with both intact and absent staining. Of the 14 scorable 
tumors considered NF1-deficient by NGS, eight (57%) 

also demonstrated minimal or absent immunostaining 
with iNF-07E. Among scorable NF1 wildtype specimens, 
NF1 immunostaining was retained in 38 (90%) and mini-
mal or absent in 4 (10%). In tumors harboring NF1 vari-
ants of uncertain significance, NF1 immunostaining was 
minimal or absent in two and retained in three.

Upon comparison, the sensitivity of NFC and iNF-07E 
for tumors with confirmed NF1 loss was 86% and 57%, 
respectively (Supplementary Table 5).

Protein and genomic correlates of NF1 loss
We next evaluated potential protein correlates for 
NF1 loss as identified via immunostaining or NGS. We 
assessed the expression of proteins known to be corre-
lated with MAPK signaling (phospho-ERK, phospho-S6) 
or with NF1 status (p16, podoplanin) [29, 30]. We also 
evaluated proteins associated with proliferation and loss 
of cell cycle regulation in glioblastoma (p53, Ki-67) [30]. 
Expression of these proteins did not correlate with NFC 
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or iNF-07E staining. We next asked whether IHC would 
be associated with NF1 genomic status and found posi-
tive phospho-ERK immunostaining to be associated with 
NF1 genomic loss (p = 0.045, Supplementary Table  5), 
supporting prior observations of a similar correlation in 
mesenchymal GBM [21]. Unsupervised hierarchical clus-
tering by these seven proteins of interest did not identify 
distinct clusters corresponding with NF1 immunostain-
ing (Supplementary Fig.  4). We evaluated for co-occur-
ring or mutually exclusive gene alterations and found no 
statistically significant associations with NF1-deficiency 
by IHC staining.

Survival analysis of tissue microarray cohort stratified 
by NF1 immunostaining
We evaluated whether NF1 loss by IHC—as assessed 
by two different antibodies—correlated with survival. 
Baseline demographic features of tumors included in 
the TMA were comparable between the two groups, 
demonstrating no differences between the two antibod-
ies except for higher baseline Karnofsky performance 
score observed in patients with loss of immunostaining 
by iNF-07E antibody (p = 0.025) (Supplemental Table 7). 
Notably, patients with NF1 loss by NFC immunostaining 
had decreased survival compared with NF1 intact tumors 
(8.5 (4.5–12.6) vs. 16.4 (13.2–25.4) months, p = 0.011; 
Fig. 4A). This difference was not observed with the iNF-
07E antibody (9.8 (6.5—18.0) vs. 11.4 (4.5—NR) months, 
p = 0.63). In a Cox proportional hazard regression model, 
we adjusted for known and potential confounding varia-
bles: age at diagnosis, sex, MGMT promoter methylation, 

baseline Karnofsky performance score, treatment with 
temozolomide or radiotherapy, extent of resection, and 
the presence of any NF1 genomic alteration (Supplemen-
tary Table  8). Minimal or absent NFC immunostaining 
remained significantly associated with decreased overall 
survival (HR 3.23, 95% CI 1.29–8.06, p = 0.01).

Protein and genomic correlates NF1 expression 
in NF1‑wildtype subset
We evaluated whether loss of NF1 expression in NF1-
wildtype tumors was associated with other gene altera-
tions on NGS or IHC stains. We focused our analysis on 
the subset of NF1-wildtype tumors that demonstrated 
minimal to absent staining by NFC antibody. None of the 
genes or proteins that we tested were significantly associ-
ated with NF1 expression in this subset (Supplementary 
Tables 9–10). Notably, despite the absence of associated 
gene alterations, minimal or absent NF1 protein by NFC 
remained significantly associated with decreased over-
all survival in patients without genomic NF1 alteration 
(Fig. 4B). Loss of NF1 expression remained significantly 
associated with decreased survival on multivariate analy-
sis including age at diagnosis, KPS, degree of resection, 
prior chemoradiation, and MGMT promoter methylation 
status (HR 2.55, 95% CI 1.00–6.49, p = 0.049, Supplemen-
tary Table  11). On univariate analysis, age at diagnosis, 
KPS less than 80, subtotal resection, lack of radiation/
temozolomide, and unmethylated MGMT promoter were 
also associated with inferior survival, but no other immu-
nostain or genomic alteration was significantly associated 
with outcome.

1.0

0.5

0
0               8             16             24            32
                 Months from diagnosis

Su
rv

iv
al

 p
ro

ba
bi

lit
y

34             18              6              4               1
26             18             12             5             2

No. at risk

p = .011

NFC IHC (total)
Lost
Retained

A B 1.0

0.5

0
0               8             16             24            32
                 Months from diagnosis

Su
rv

iv
al

 p
ro

ba
bi

lit
y

18              9               2              1               0
23             15             10             4               2

No. at risk

p = .015

NFC IHC (NF1 WT)
Lost
Retained

Fig. 4  Kaplan–Meier curves displaying overall survival in TMA cohort by NF1 immunohistochemistry. Curves are stratified by A NFC 
immunostaining, B iNF-07E immunostaining among entire TMA cohort
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Discussion
NF1 loss is a marker of RAS/MAPK signaling dysregu-
lation and a putatively targetable event in gliomas, but 
rapid, accurate identification remains fraught. Here, we 
describe the landscape of NF1 alterations in a large insti-
tutional cohort of 542 molecularly profiled IDH-wildtype 
glioblastomas, identifying clinical and molecular cor-
relates of NF1 loss. We then evaluated two immunohis-
tochemical antibodies in glioblastoma tissue. Both were 
effective at identifying NF1 protein loss in tumor speci-
mens predicted to have genomic loss of NF1 but may also 
identify a subset of NF1-wildtype tumors with protein 
loss.

The mesenchymal subtype of glioblastoma, defined by 
frequent NF1 alterations and low mRNA expression of 
NF1, is associated with a poor prognosis [8, 31, 32]. Cells 
within the mesenchymal subtype are also characterized 
by hypoxia and an abundance of immune cell infiltrates, 
and may be present as a subset of cells in a heterogenous 
glioblastoma [33]. Analysis of a separate institutional 
cohort of IDH-wildtype glioblastomas also identified 
NF1 alterations to be associated with decreased over-
all survival [34]. Here, we evaluated the public literature 
supporting the role of NF1 as a prognostic biomarker 
and found that the presence of an alteration does not 
correlate with survival in IDH-wildtype glioblastoma. 
Even when restricted to known pathogenic truncating 
alterations, no clear survival difference emerged. While 
mRNA does correlate with survival, it is costly and time-
consuming. In this study, loss of NF1 immunostaining by 
NFC antibody correlated negatively with survival, regard-
less of genomic status.

NF1 status is challenging to evaluate via standard next-
generation sequencing for many reasons. The NF1 gene is 
both large (350 kbp) and structurally complex (60 exons), 
making it difficult to sequence accurately in its entirety 
[35]. Targeted next-generation sequencing panels may 
also fail to report NF1 structural and copy number vari-
ants as well as alterations in noncoding regions, such 
as promoter or intronic alterations which are known to 
impact expression of the functional protein [7, 36]. Fur-
thermore, NF1 has few recurrent or hotspot mutations 
[7]. Instead, like other tumor suppressor genes, NF1 pos-
sesses a diverse mutational spectrum with over 13,000 
unique somatic mutations reported in the Catalogue of 
Somatic Mutations in Cancer [37, 38]. For many of these 
somatic mutations—especially missense and other non-
truncating mutations—their functional consequence is 
poorly understood [7]. Here we evaluated the utility of 
an immunohistochemistry-based approach for identify-
ing NF1 loss. The NFC antibody demonstrated minimal 
immunoreactivity in 86% of tumors with known NF1 
genomic inactivation. It was immunoreactive in one 

tumor with an NF1 truncating mutation that was distal 
to the antibody recognition site (Supp Fig. 3). These find-
ings highlight the importance of interpreting the IHC in 
concordance with the genomic picture.

Interestingly, both antibodies identified a subset of 
glioblastoma that was apparently genomically intact for 
NF1 but demonstrated minimal to absent protein expres-
sion—the NFC antibody more so than iNF-07E (18/42 vs. 
4/42). While the current study did not assess NF1 mRNA 
for correlation, this may indicate a subset of glioblastoma 
is inactivating NF1 post-transcriptionally through mech-
anisms such as proteasomal degradation or post-tran-
scriptional silencing, or through other negative feedback 
mechanisms. Prior studies suggest that as many as 30% of 
neurofibromatosis type 1-associated missense mutations 
in NF1 result in aberrant pre-mRNA splicing which may 
explain the observed loss of NF1 protein in these speci-
mens [39]. Validation studies with a larger cohort of glio-
blastomas having known mRNA expression levels and 
genomic status will be necessary to further evaluate this 
observation and determine the underlying mechanism 
driving minimal NF1 expression.

Overall, these findings highlight the potential value of 
NF1 immunostaining as a sensitive surrogate marker of 
NF1 genomic inactivation. We also show that minimal 
to absent NF1 immunoreactivity is a poor prognostic 
marker in IDH-wildtype glioblastoma, but the underlying 
molecular mechanisms leading to decreased NF1 expres-
sion in NF1-wildtype GBM require further investigation.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40478-​024-​01875-z.

Supplementary Figure 1. IHC validation of NF1 antibodies. (A) Absent NF1 
immunostaining with NFC antibody in JHH-520 (NF1 -/-) neurosphere cells 
mixed with NF1-intact B76 filler cell line. (B,C) Retained NF1 immunostain‑
ing with NFC in GBM1 and JHH-0879 neurosphere cell pellets, both with 
intact NF1. (D) Absent NF1 immunostaining with iNF-07E antibody in 
JHH-520 neurosphere cells mixed with NF1-intact B76 filler cell line. (E,F) 
Retained NF1 immunostaining with iNF-07E antibody in GBM1 and JHH-
0879 neurosphere cell pellets admixed with NF1-intact B76 filler cell line. 
(G) Absent and (H) retained NF1 immunostaining with iNF-07E antibody 
in isogenic NF1 -/- and NF1 +/+ immortalized human Schwann cells 
respectively.

 Supplementary Figure 2. Overall survival and NF1 alterations, mRNA, and 
protein expression in TCGA and CPTAC GBM cohorts. Kaplan-Meier curves 
displaying overall survival in TCGA cohort stratified by (A) presence of 
NF1 alteration and (B) NF1 mRNA expression (U133 microarray)– bottom 
quartile versus top quartile. Kaplan-Meier curves displaying overall survival 
in CPTAC cohort stratified by (C) presence of NF1 alteration, (D) NF1 mRNA 
expression – bottom quartile versus top quartile, and (E) NF1 protein 
expression – bottom quartile versus top quartile.

Supplementary Figure 3. Lollipop plot of NF1 alterations identified in TMA 
cohort with labeled NF1 immunohistochemistry results. iNF-07E antibody 
epitope and NFC antibody immunogen are labeled in brackets (red).

https://doi.org/10.1186/s40478-024-01875-z
https://doi.org/10.1186/s40478-024-01875-z
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Supplementary Figure 4. Unsupervised hierarchical clustering of TMA sam‑
ples by immunostaining. Each column represents a single tumor. Samples 
and immunostaining features were clustered based on Gower distances.

Supplementary Table 1. Summary of NF1 alterations identified on 
next-generation sequencing in institutional cohort of 542 glioblastoma. 
Supplementary Table 2. Genomic correlates of NF1 alterations within 
institutional cohort of 542 glioblastoma. Only genes altered at a frequency 
> 5% were assessed. P-values were calculated with two-sided Fisher 
exact test. Supplementary Table 3. Genomic correlates of NF1 alterations 
within TCGA glioblastoma cohort. Only genes altered at a frequency > 
5% were assessed. P-values were calculated with two-sided Fisher exact 
test. Supplementary Table 4. Genomic correlates of NF1 alterations within 
CPTAC glioblastoma cohort. Only genes altered at a frequency > 5% 
were assessed. P-values were calculated with two-sided Fisher exact test. 
Supplementary Table 5. Immunohistochemical correlates of NF1 genomic 
status in TMA cohort. Comparisons between categorical variables were 
performed using the Fisher’s Exact test, and two sample independent 
t-test was used to compare p53 and Ki67 % positivity between conditions. 
Supplementary Table 6. Immunohistochemical correlates of NF1 immu‑
nostaining in TMA cohort. Comparisons between categorical variables 
were performed using the Fisher’s Exact test. Supplementary Table 7. Base‑
line clinicodemographic features of TMA cohort and NF1 immunostaining 
subgroups. Supplementary Table 8. Univariable and multivariable Cox 
proportional hazards analysis of overall survival in TMA cohort. Supple‑
mentary Table 9. Genomic correlates of NFC immunostaining in subset 
of NF1-wildtype glioblastomas. Only genes altered at a frequency > 5% 
were assessed. P-values were calculated with two-sided Fisher exact test. 
Supplementary Table 10. IHC correlates of NFC immunostaining in subset 
of NF1-wildtype glioblastomas. Supplementary Table 11. Univariable and 
multivariable Cox proportional hazards analysis of overall survival in NF1-
wildtype subset of TMA cohort.
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