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Abstract

Disparities in cancer diagnosis, treatment, and outcomes based on self-identified race and ethnicity (SIRE) are well documented, yet
these variables have historically been excluded from clinical research. Without SIRE, genetic ancestry can be inferred using single-
nucleotide polymorphisms (SNPs) detected from tumor DNA using comprehensive genomic profiling (CGP). However, factors inherent
to CGP of tumor DNA increase the difficulty of identifying ancestry-informative SNPs, and current workflows for inferring genetic
ancestry from CGP need improvements in key areas of the ancestry inference process. This study used genomic data from 4274 diverse
reference subjects and CGP data from 491 patients with solid tumors and SIRE to develop and validate a workflow to obtain accurate
genetically inferred ancestry (GIA) from CGP sequencing results. We use consensus-based classification to derive confident ancestral
inferences from an expanded reference dataset covering eight world populations (African, Admixed American, Central Asian/Siberian,
European, East Asian, Middle Eastern, Oceania, South Asian). Our GIA calls were highly concordant with SIRE (95%) and aligned well with
reference populations of inferred ancestries. Further, our workflow could expand on SIRE by (i) detecting the ancestry of patients that
usually lack appropriate racial categories, (ii) determining what patients have mixed ancestry, and (iii) resolving ancestries of patients
in heterogeneous racial categories and who had missing SIRE. Accurate GIA provides needed information to enable ancestry-aware
biomarker research, ensure the inclusion of underrepresented groups in clinical research, and increase the diverse representation of
patient populations eligible for precision medicine therapies and trials.
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Introduction
Clinical research has historically relied on participants from a
single self-identified race to mitigate the effects of underlying
population differences. This has led to large gaps in our under-
standing of how cancer impacts diverse populations and reduces
the generalizability of clinical research findings. Knowledge gaps
and the limitations of research generalizability hinder cancer
prevention efforts and optimization of patient treatment strate-
gies for minority groups, leading to racial disparities in cancer
outcomes [1–4]. Black and American Indian and Alaskan Native
men have the highest overall cancer mortality rates, 18% higher
than White men, and Black women have 40% higher breast cancer
death rates than White women [5]. Patients from diverse commu-
nities face barriers at the individual, interpersonal, institutional,
and policy levels that limit participation in clinical research
[6]. Additionally, clinical studies seeking to understand patient

differences based on genetic ancestry have relied on self-
identified race and ethnicity (SIRE) as a proxy measure. However,
SIRE is not consistently assessed using a universal standard and is
often derived from questions with a small number of broad racial
or ethnic categories that may or may not relate to a given patient,
and concordance between SIRE and genetic ancestry can vary [7,
8]. These challenges, among others, have impeded advancements
in including diverse populations in clinical research.

In place of SIRE, recent cancer studies have incorporated
genetic ancestry information inferred from common single-
nucleotide polymorphisms (SNPs) in a patient’s genome detected
using different molecular approaches including whole-genome,
whole-exome, whole-genome or targeted genotyping, targeted
gene panels, and RNA sequencing [9]. Overall, genetic ances-
try provides a more precise and objective assessment of an
individual’s “biogeographical” ancestry compared to SIRE [7, 9–
11]. However, accurate ancestry inference from tumor-derived
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DNA sequences is challenging due to the presence of somatic
mutations, loss of heterozygosity, microsatellite instabilities, and
other genomic abnormalities that can disrupt the accurate calling
of germline SNPs [9]. Moreover, the targeted gene panels that
typify comprehensive genomic profiling (CGP) assays in standard
clinical use present additional challenges as they only measure
a fraction of the genome, are enriched in genes prone to somatic
mutations compared to other genomic regions, and target coding
regions of genes where ancestry-informative variants are sparse.
While sequencing or whole-genome genotyping of normal tissue
can avoid some issues with tumor DNA [12], this testing is not
yet feasible in the real-world cancer care setting, which is usually
restricted to patient tumor biopsies taken during standard care.

Despite the challenges, clinical studies have attempted
ancestry inference from CGP of patient tumors using a variety
of workflows [9, 12–32]. These workflows typically involve (i)
assignment of discrete ancestries through principal component
analysis (PCA) of patient SNPs followed by classification with a
machine learning algorithm and/or (ii) calculation of ancestral
admixtures of patients providing quantitative measurements of
ancestry. Both approaches involve training algorithms on genetic
data from large, diverse reference populations, usually the 1000
Genomes (1000G) dataset [33]. There remain areas to be improved
upon, however, two key areas being the inference method and
reference dataset used for ancestry inference. Previous workflows
have relied on separate use of one or two types of algorithms to
make ancestry inferences, which opens their ancestry inferences
to method choice bias, reduces the ability to detect “inconclusive”
ancestry inferences, and potentially increases the likelihood of
false positives. They also performed ancestry inferences using
five (or less) of the main 1000G populations (African, European,
Admixed American, East Asian, South Asian), which do not fully
capture all the potential ancestries a patient might have.

Using genomic data from 4274 reference samples from eight
world populations and 491 tumor samples from patients with SIRE
data who underwent CGP testing, we developed and validated a
new workflow to obtain accurate genetically inferred ancestry
(GIA) from CGP sequencing results. Our workflow differs from
previous workflows in several notable ways. In addition to the
main 1000 Genome populations, our workflow includes inference
of Middle Eastern, Central Asian/Siberian, and Oceania ancestry.
This is a significant improvement upon previous workflows as the
addition of these populations expands the geographical coverage
of the reference dataset, allowing accurate ancestry inferences for
individuals who would otherwise be incorrectly classified without
a suitable reference population (e.g. individuals with Middle East-
ern ancestry being classified as European or South Asian [34]). Fur-
thermore, our workflow employs consensus-based classification
that utilizes two principal component-based classification meth-
ods in conjunction with genetic admixture analysis to determine
a consensus GIA call. This approach enhances the precision and
reliability of ancestry assignments, reducing potential biases and
uncertainties associated with relying solely on a single method.
The workflow was designed to run on sequencing results from the
TruSight® Oncology 500 (TSO 500) CGP assay within TSO 500 probe
regions [35], but it can easily be extended to other CGP assays,
allowing accurate GIA calls to be made across CGP assays.

Here, we provide details on the methods of our newly devel-
oped workflow, emphasizing points of improvement upon pre-
vious workflows, and report results from technically validating
the workflow against SIRE data from real-world clinical patients.
Additionally, we provide a brief review and comparison of previ-
ously published workflows to not only put characteristics of our

workflow in the context of previous literature but also provide a
resource for others, as a survey of published GIA workflows for
CGP of tumor DNA has not been completed to date.

Methods
Ethical approval
Approval for this study was obtained from the Western Institu-
tional Review Board Copernicus Group (WCG protocol # 1340120).

Reference sample processing and data
generation
To perform genetic ancestry inference, SNP data derived from a
large, diverse reference dataset with known ancestry is needed.
The most used reference dataset for ancestry inference is the
1000G project data, which currently includes deep (30×) whole-
genome sequencing of lymphoblastoid cell lines from 3202 indi-
viduals covering five major geographical populations around the
world [33], and is now part of the International Genome Sample
Resource (IGSR; https://www.internationalgenome.org). Popula-
tions covered by 1000G include African (AFR), Admixed Ameri-
can (AMR; mainly Native Central and South American ancestry),
East Asian (EAS), European (EUR), and South Asian (SAS) pop-
ulations. Two additional diverse datasets included in the IGSR
are the Human Genome Diversity Project (HGDP) [36] and the
Simons Genome Diversity Project (SGDP) [37]. The HGDP and SGDP
datasets together consist of 1072 deeply sequenced individuals
(35×–43× on average) from the same five geographical popula-
tions as 1000G and, additionally, Middle Eastern (MEA), Central
Asian/Siberian (CAS/SIB), and Oceania (OCN) populations [36, 37].
Including these datasets added 811 additional reference sam-
ples to the pre-existing 1000G populations and uniquely enabled
inference of MEA, CAS/SIB, and OCN ancestry, which have yet
to be included in previous workflows [9, 12–32]. A summary of
the reference datasets and included populations used in our
workflow can be found in Table 1 along with total reference
sample numbers pre- and postprocessing. Individual-level data
for reference samples can be found in Supplementary Table 1.

A flowchart showing the general steps taken for reference
sample processing and data generation is provided in Fig. 1.
Compressed Reference-oriented Alignment Map (CRAM) files
for the 1000G dataset and the HGDP and SGDP datasets were
obtained from the 1000G Sequence Read Archive file transfer
protocol (FTP) site (ftp://ftp.sra.ebi.ac.uk/vol1/run/) and 1000G
data collections FTP site (ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/data_collections/), respectively. Germline variant calling
of SNPs and short insertion/deletions (Indels) utilizing GATK-
DRAGEN was performed for reference samples using samtools v
1.7 [38] and GATK v 4.4.0.0 [39] targeting regions covered by the
TSO 500 bait set. Germline variant calling involved the following
steps: (i) CRAM to Binary Alignment Map (BAM) file conversion, (ii)
DRAGEN short tandem repeat (STR) model construction (required
when running GATK-DRAGEN), (iii) sample-level variant calling
with GATK-DRAGEN, (iv) consolidation of single-sample variant
calls per chromosome, (v) joint variant calling, and (vi) postvariant
call processing. Details on how each step was performed are given
below.

(1) CRAM to BAM file conversion. To convert CRAM files to
BAM files for all datasets targeting only TSO 500 regions,
the command ‘samtools view -b -T $GRCh38.fa -M -L
$regions –write-index -o $file name.bam $file name.cram‘
was used where $file name.cram was the input CRAM
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Table 1. Whole-genome sequenced reference samples used in the GIA workflow.

Datasets

Populations 1000G HGDP SGDP Total preprocessing Total postprocessing

African 893 88 35 1016 751
Admixed American 490 51 22 563 423
East Asian 585 170 51 806 728
European 633 137 43 813 705
South Asian 601 181 35 817 728
Middle Eastern 0 153 23 176 175
Central Asian/Siberian 0 23 27 50 50
Oceania 0 25 8 33 32
All populations 3202 828 244 4274 3592

1000G, 1000 Genomes; HGDP, Human Genome Diversity Project; SGDP, Simons Genome Diversity Project. The reduction of reference sample size from pre- to
postprocessing was due to the exclusion of samples from related individuals.

file of a reference sample, $regions was the TSO 500
manifest obtained directly from Illumina (San Diego, CA)
that lists bait set regions in BED format, and $GRCh38.fa
was the GRCh38 human genome reference used to create
the CRAM files (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
technical/reference/GRCh38_reference_genome/GRCh38_
full_analysis_set_plus_decoy_hla.fa).

(2) DRAGEN STR model construction. The STR model, required
to run GATK-DRAGEN, was created using the command
‘gatk CalibrateDragstrModel –reference $GRCh38.fa –input
$file name.bam –intervals $regions –interval-padding 200
–str-table-path $GRCh38.STR.zip –output DRAGEN STR
model.txt‘ where $GRCh38.STR.zip was a STR table file
created with the GATK ComposeSTRTableFile function using
the GRCh38 reference file as input.

(3) Sample-level variant calling with GATK-DRAGEN. SNP and
Indel calling was performed using GATK’s HaplotypeCaller in
DRAGEN mode by using the command ‘gatk HaplotypeCaller
–reference $GRCh38.fa –input $file name.bam –intervals
$regions –interval-padding 200 —output $file name.g.vcf.gz
–emit-ref-confidence GVCF –dragen-mode true –dragstr-
params-path DRAGEN STR model.txt‘, producing a genomic
variant call format (GVCF) file with SNP and Indel calls for
each sample.

(4) Sample-level variant call consolidation. Individual reference
sample GVCFs were consolidated by chromosome with
the command ‘gatk GenomicsDBImport –batch-size 50 –
bypass-feature-reader true –consolidate true –intervals
$chr –genomicsdb-workspace-path $chr.db –reference
$GRCh38.fa –sample-name-map gvcf.sample map‘, pro-
ducing a GenomicsDB datastore formatted file for each
chromosome ($chr.db) that contains all SNPs and Indels
called for that chromosome from each reference sample.

(5) Joint variant calling of reference samples was performed
for each chromosome using the command ‘gatk Genotype-
GVCFs –reference $GRCh38.fa –variant gendb://$chr.db –
output $chr.vcf.gz‘, producing one VCF per chromosome
with final variant calls for all reference samples.

(6) Postvariant call processing. Per-chromosome VCFs were
combined, sorted, and indexed using the ‘concat‘, ‘sort‘, and
‘index‘ functions from bcftools v 1.7-2 [38]. Using PLINK2
(December 2023 release) [40], VCFs were converted to PLINK
binary file formats keeping only autosome and biallelic
variants. Genetic relatedness (measured via KING-robust
coefficients [41]) was calculated using PLINK2, with one
reference sample from related groups retained (KING-robust
coefficient > 0.09375, i.e. first- and second-degree relations).

African populations with observed high within-population
genetic similarity (Mbuti, Biaka, Jul’hoan/San, and Bantu in
South Africa and Tswana; N = 52) [36, 37] were also removed
before patient ancestry inference, as the inclusion of these
populations skewed PCA results.

After variant calling and processing, SNP data for 3592 (84%)
reference samples were available and incorporated into the GIA
workflow.

Genetically inferred ancestry workflow for
inferring patient ancestry from comprehensive
genomic profiling sequencing results
The GIA workflow described here (Fig. 2) was designed to take TSO
500 sequencing results within the validated OmniSeq® INSIGHT
laboratory-developed test [35] as input, beginning with a sample-
level DNA-sequence alignment file (GRCh37 build). From there,
the GIA workflow includes four main steps: (i) DRAGEN STR
model construction, (ii) sample-level variant calling with GATK-
DRAGEN, (iii) postvariant call processing and merging with refer-
ence dataset variants, and (iv) performing ancestry inference from
patient-reference merged data. Details on GIA workflow steps are
provided below.

(1) DRAGEN STR model construction. The STR model is created
using the command ‘gatk CalibrateDragstrModel –reference
$GRCh37.fa –input $file name.bam –intervals $regions –
interval-padding 200 –str-table-path $GRCh37.STR.zip –
output DRAGEN STR model.txt‘ where $file name.bam is
the BAM file with aligned tumor sequences from sequencing
with TSO 500, $GRCh37.fa is the human reference genome
FASTA file (as TSO 500 sequences are aligned with this
genome build by default), $GRCh37.STR.zip is a STR table
file created with the GATK ComposeSTRTableFile function
using the GRCh37 reference file as input, and $regions are
the TSO 500 bait regions in GRCh37 coordinates.

(2) Sample-level variant calling with GATK-DRAGEN. Com-
mands for sample-level variant calling are the same as
those used for calling variants of reference samples with the
following modifications: GRCh37 reference genome and STR
table files are used in place of GRCh38 files, patient sample-
level variant calling is performed per chromosome to speed
up processing, and no joint variant calling is performed as
the workflow is performed for one patient sample at a time.

(3) Postvariant call processing and merging with reference
dataset variants. Like processing of reference samples, per-
chromosome VCFs are combined, sorted, and indexed using
the ‘concat‘, ‘sort‘, and ‘index‘ functions from bcftools and
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Figure 1. Reference sample processing and data generation. White boxes indicate files that have been previously generated or are produced as part
of the workflow. Numbers correspond to the main steps of the reference sample processing: (1) CRAM to BAM file conversion, (2) DRAGEN STR model
construction, (3) sample-level variant calling with GATK-DRAGEN, (4) sample-level variant call consolidation, (5) joint variant calling, and (6) postvariant
call processing. Gray arrows or boxes represent processes that occur during the workflow. White boxes with bold borders correspond to inputs for
variant calling. The figure for “GATK-DRAGEN workflow” was taken and modified from https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-
Germline-short-variant-discovery-SNPs-Indels. STR, short tandem repeat; TSO, TruSight® Oncology; SNP, single-nucleotide polymorphism; GVCF,
genomic variant call format; PCA, principal component analysis; AFR, African; AMR, Admixed American; CAS/SIB, Central Asian/Siberian; EAS, East
Asian; EUR, European; MEA, Middle Eastern; OCN, Oceania; SAS, South Asian.

then converted to PLINK binary file formats keeping only
autosome and biallelic variants. However, before converting
to PLINK binary files, to harmonize variant positions between
patient variants (GRCh37 build) and reference variants
(GRCh38 build), positions are updated to GRCh38 using
the ‘LiftoverVcf‘ function from the Picard suite of tools
(version 3.1.1; https://github.com/broadinstitute/picard).
Patient sample variants are merged with reference sample
variants using the ‘bmerge‘ function in PLINK v 1.9 (function
not fully implemented in PLINK2 at the time of writing),
automatically resolving any merging errors; then, missing
genotypes are given the genotype of homozygous reference
allele to avoid batch effects due to missingness. Lastly, using
PLINK2, merged patient–reference variant data are filtered
for variants with minor allele frequency (MAF) > 0.1% and
Hardy–Weinberg equilibrium exact test P-value >1E-6 using
the “midp” modifier to apply a mid-p adjustment to the
exact test P-values [42]. This filtering step helps to ensure
any detected pathogenic somatic mutations (which will only
be seen in the patient, resulting in a very low MAF), and
problematic SNPs are removed before ancestry inference.

(4) GIA calling and consensus determination. Three methods
are used to derive GIA calls from the merged patient–
reference variant data: two different principal component
(PC)-based classification methods and admixture analysis.
Then, a consensus GIA is derived from the outputs of all
three methods.

For all three methods, variants are first pruned for linkage
disequilibrium (LD) using PLINK2’s ‘indep-pairwise‘ function with
a 100 variant sliding window and r2 threshold of 0.2.

For PC-based methods, LD-pruned variants are used to calcu-
late the first 20 genetic PCs (via PLINK2) for patient and reference
samples. The top 20 genetic PCs are used as input to two classi-
fication methods implemented in R (version 3.6.2): a standard k-
nearest neighbor (k-NN) algorithm with k = 8 (via caret R package
v 6.0.83) and a custom correlation-based algorithm. The k-NN
algorithm is first trained on genetic PCs of reference samples;
then, the trained model is used to infer an ancestry population
for the patient. The correlation-based algorithm calculates the
Pearson correlation between genetic PCs of the patient sample
and PCs of every reference sample (3592 correlations), extracts
the top 1% of calculated correlations, and predicts the patient’s
ancestry population to be the reference population with the high-
est number of samples represented in the top correlations (see
Supplementary Fig. 1 for example visualizations of outputs). The
outputs from PC-based classifications are two discrete GIA calls
(one of AFR, AMR, CAS/SIB, EAS, EUR, MEA, OCN, or SAS from k-
NN and correlation-based classification). The correlation-based
algorithm can also produce a “Mixed Ancestry” call if two or more
populations are included in equal numbers among the top 1% of
correlations; however, this outcome was never observed during
technical validation.

For admixture analysis, LD-pruned variants are provided
directly to the program ADMIXTURE v 1.3.0 [43, 44] along with
a “population file” listing population designations of reference
samples and a hyphen for the patient (symbolizing that the
ancestry is unknown). Admixture analysis is performed using
ADMIXTURE’s ‘–supervised‘ flag and setting k to equal the
number of reference populations (seven populations; see note
below). The output from ADMIXTURE includes predicted ancestry
fractions of a patient being contributed to by each reference
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https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae557#supplementary-data
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Figure 2. GIA workflow for inferring patient ancestry from TSO 500 sequencing results. White boxes indicate files that have been previously generated
or are produced as part of the workflow. Numbers correspond to the main steps of the GIA workflow: (1) DRAGEN STR model construction, (2) sample-
level variant calling with GATK-DRAGEN, (3) postvariant call processing and merging with reference dataset variants, and (4) GIA calling and consensus
determination. Gray arrows and boxes represent processes that occur during the workflow. White boxes with bold borders correspond to inputs for
variant calling. The figure for “GATK-DRAGEN workflow” was taken and modified from https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-
Germline-short-variant-discovery-SNPs-Indels. Of note, admixture analysis is only performed for seven (excluding the Oceania population) due to a
bias noted during testing (see note in Methods). (B) STR, short tandem repeat; SNP, single-nucleotide polymorphism; VCF, variant call format; MAF,
minor allele frequency; HWE, Hardy–Weinberg equilibrium; PC, principal component; k-NN, k-nearest neighbor; AFR, African; AMR, Admixed American;
CAS/SIB, Central Asian/Siberian; EAS, East Asian; EUR, European; MEA, Middle Eastern; SAS, South Asian.

population. The population reaching an admixture fraction of
>0.54 (majority of ancestry plus an additional 0.04 to account
for noise) is considered the discrete GIA call when determining a
consensus GIA call. Of note, data for Oceania reference samples
(N = 32) are removed before running ADMIXTURE (hence k = 7)
due to a bias noted during testing where ADMIXTURE would
estimate every patient to have a fraction of Oceania ancestry,
masking ancestry fractions from other populations. This bias
might result from lower heterozygosity and higher LD previously
shown in New Guinea–based Oceania populations [45] that make
up much of the Oceania reference population used here. Oceania
ancestry estimation is still made possible, however, through PC-
based classification.

To derive a consensus call, two out of three methods are
required to call the same GIA for a patient sample (Supplementary Fig. 2).
If there is no alignment between the two PC-based classifications
and all ancestry fractions are <0.54, the patient is given a
consensus GIA call of “Mixed Ancestry.” If there is no alignment
between any of the methods when a majority ancestry fraction is
present for ADMIXTURE results, the patient is given a consensus
GIA of “Inconclusive”; however, the individual method results are
still included in the final output.

PC-based GIA calls, admixture fractions, and the consensus GIA
call for a patient are the final outputs of the workflow.

TruSight® Oncology sequencing of the technical
validation cohort
DNA and RNA were co-extracted from formalin-fixed paraffin-
embedded (FFPE) tissue specimens and submitted for library
preparation and sequencing using the hybrid-capture-based
TSO 500 assay (Illumina, San Diego, CA) as part of OmniSeq®

INSIGHT (OmniSeq, Buffalo, NY). Within the TSO 500 assay,
DNA sequencing with hybrid capture was used to detect small
nucleotide variants in exonic regions of 523 genes (single-
and multinucleotide substitutions, insertions, and deletions)
and copy number variants in 59 genes (gains and losses), as
well as analysis of microsatellite instability (MSI) and tumor
mutational burden (TMB) genomic signatures. RNA sequencing
with hybrid capture detects fusions and splice variants in
55 genes. Only DNA sequencing results were used as input
to the GIA workflow for deriving GIA calls of the validation
cohort.

Technical validation of genetically inferred
ancestry workflow
GIA was determined for a validation cohort of 504 patients who
underwent CGP testing via TSO 500 at a reference laboratory
(OmniSeq/Labcorp, Buffalo, NY, USA) during standard care
(Table 2). Data for 484 patients (96%) were collected as part of
the PREFER (PRospective rEgistry oF advanced stage cancER)
clinico-genomic patient registry. Patients with advanced-stage
solid cancers consented to participate in PREFER from multiple
oncology practices focused on serving underrepresented popu-
lations [46]. The remaining 20 patients underwent CGP testing
during standard care at an Alaskan-based facility that serves
native Alaskan populations and were included to provide cases
with American Indian or Alaska Native race, which were lacking in
the PREFER registry. Of the 504 patients, 491 (97.4%) had available
SIRE data to compare with GIA calls. These patients were assigned
a reference population (one of AFR, AMR, CAS/SIB, EAS, EUR, and
SAS) based on their SIRE data to provide a direct comparison
to GIA calls (Table 2). Middle Eastern and Oceania populations

https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae557#supplementary-data
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Table 2. Validation cohort characteristics.

Variable N Summary stats

Total number of patients 504
Self-reported race and ethnicity (N, %) [Given 1000 Genomes population] 491

White [EUR] 367 (74.7%)
Black or African American [AFR] 82 (16.7%)
Hispanic or Latino [AMR] 19 (3.9%)
American Indian or Alaska Native [CAS/SIB] 20 (4.1%)
Asian—Indian [SAS] 2 (0.4%)
Asian—Vietnamese [EAS] 1 (0.2%)

Sex (N, %) 504
Female 233 (46.2%)
Male 271 (53.8%)

Age, years (mean ± SD) 504 68.5 ± 12
Cancer type (N, %) 504

Nonsmall cell lung cancer 138 (27.4%)
Colorectal cancer 79 (15.7%)
Breast cancer 57 (11.3%)
Pancreatic cancer 33 (6.5%)
Head and neck cancer 24 (4.8%)
Esophageal cancer 22 (4.4%)
Prostate cancer 22 (4.4%)
Neuroendocrine tumors 19 (3.8%)
Melanoma 16 (3.2%)
Stomach cancer 16 (3.2%)
Unknown primary cancer 15 (3%)
Liver and bile duct cancer 11 (2.2%)
Bladder cancer 8 (1.6%)
Kidney and renal pelvis cancer 7 (1.4%)
Sarcoma 7 (1.4%)
Uterine cancer 6 (1.2%)
Cervical cancer 5 (1%)
Ovarian cancer 5 (1%)
Small intestine cancer 5 (1%)
Other cancer 9 (1.8%)

Known clinical stage (N, %) 385
Stage II 3 (0.8%)
Stage III 109 (28.3%)
Stage IV 273 (70.9%)

Tumor specimen location (N, %) 490
Metastatic 164 (33.5%)
Primary 326 (66.5%)

TMB (mutations/Mb) (mean ± SD) 484 13.5 ± 28.4
TMB level (N, %) 484

High (≥10) 138 (28.5%)
Not high (<10) 346 (71.5%)

MSI level (N, %) 489
MSI high 13 (2.7%)
Stable 476 (97.3%)

Number of neoplastic cells per slide (N, %) 504
<1000 120 (23.8%)
≥1000 112 (22.2%)
≥2000 272 (54%)

Tumor specimen cellularity (N, %) 504
≤2 395 (78.4%)
>2 109 (21.6%)

N, number of patients with data; SD, standard deviation; AFR, African; AMR, Admixed American; CAS/SIB, Central Asian/Siberian; EAS, East Asian; EUR,
European; SAS, South Asian; TMB, tumor mutational burden; MSI, microsatellite instability.

were not assigned to patients as there were no appropriate
racial or ethnic categories reported for these populations. The
remaining 13 patients (2.6%) had unknown or missing SIRE data
but were still included in ancestry inference as an example of how
GIA can resolve missing SIRE data. Additionally, three patients
had sequencing performed twice on the same tumor specimen
(technical replicates), and six patients had sequencing performed

on two different tumor specimens from two different tissues
(biological replicates), which allowed us to assess the stability of
GIA calls across sequencing runs on the same or different tumor
specimens taken from different tissue locations. All calculations,
analyses, and plotting for the technical validation of the GIA
workflow were performed in R v 4.2.2 (https://www.r-project.
org/).

https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
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Several checks were performed independently of patients’ SIRE
to ensure the robustness of GIA calls. Differences in the number of
aligned reads between called GIA groups were assessed using the
Wilcoxon rank-sum test (via the ‘wilcox.test‘ function in R) on log-
transformed sequence read counts to ensure that GIA calls were
not biased by the total number of sequence reads of a sample.
The top two genetic PCs of patients were projected onto reference
sample PCs to ensure that GIA calls of patients aligned with the
reference group to which they were most genetically akin. To have
one data point per reference sample for PC 1 and 2, the median
was used as PCA was performed independently for each patient,
resulting in many measures of PC 1 and 2 for each reference
sample. Lastly, admixture fractions and their distributions within
each GIA group were plotted to determine if called GIA groups had
higher fractions of the appropriate populations.

GIA calls were compared to the SIRE of each patient to assess
overall concordance (proportion of patients with matching GIA
and SIRE) and classification performance metrics (sensitivity/re-
call, specificity, balanced accuracy, precision, F1-score). Patients
with inferred ancestries without SIRE information were counted
in the calculations as “misclassified” to assess the extent to which
GIA deviates from SIRE due to the added resolution of appropriate
ancestral populations that do not have a matching racial or
ethnic category reported. Concordances between GIA calls and
SIRE were also assessed for significant differences across patient
tumor types, tissue characteristics (primary versus metastatic
sites, number of neoplastic cells per specimen slide, tumor speci-
men cellularity), and genomic characteristics (TMB low/high, MSI
status, presence or absence of copy number alterations or gene
fusions/rearrangements) using Fisher’s exact test to ensure that
these factors do not introduce any biases.

Classification performance metrics were calculated via the
‘confusionMatrix‘ function in the caret R package v 6.0.94 [47],
specifying the mode to be “prec recall.” Plotting of technical
validation results was performed using ggplot2 v 3.4.0 (https://
ggplot2.tidyverse.org/) and various packages to extend ggplot2
functionality (ggpubr v 0.5.0, ggalluvial v 0.12.5). For any statistical
analyses, uncorrected P-values <.05 were considered statistically
significant. All reported P-values were two-sided.

Results and discussion
Technical validation results of the genetically
inferred ancestry workflow
Validation cohort characteristics
The validation cohort used for assessing the performance of
the GIA workflow consisted of patient tumor samples from
a spectrum of races and ethnicities, ages, cancer types, and
genomic biomarker characteristics (Table 2). Most patients self-
identified as White (74.7%) followed by Black or African American
(16.7%), American Indian or Alaska Native (4.1%), Hispanic
or Latino (3.9%), and Asian (0.6%). While “Asian” does not
typically distinguish between East and South Asian individuals
[48], patients who self-reported Asian race also included their
ethnicities, so we could subclassify these patients as Asian—
Indian (0.4%) or Asian—Vietnamese (0.2%). Of note, while
there were 20 patients with American Indian or Alaska Native
for their race, 52 patients self-identifying as White (14.1% of
White patients) reported their ethnicity as “Native American”
(Supplementary Table 2A). White (without Hispanic or Latino
ethnicity), Black or African American, and American Indian
or Alaska Native patients were given a reference population
label of EUR, AFR, and CAS/SIB, respectively. Hispanic or Latino

patients were given a reference population label of AMR. Typically,
American Indian or Alaska Native–identifying individuals would
be labeled as AMR along with Hispanic or Latino; however, the
addition of the CAS/SIB reference group in our workflow allows
us to distinguish between North and Central/South American–
based Native American ancestry [49, 50]. Asian patients reporting
an ethnicity of Indian or Vietnamese were given a reference
population label of SAS or EAS, respectively. The validation patient
cohort was relatively balanced for males and females. Most
patients were older than 60 years with a mean age of 68.5 ± 12.
Patients with nonsmall lung cancer accounted for almost one-
third of the dataset (27.4%), followed by colorectal (15.7%), breast
(11.3%), pancreatic (6.5%), head and neck (4.8%), and 15 other
cancer types comprising <5% of the cohort each. Most patient
tumor tissue samples were collected from primary sites (66.5%),
had low TMB (<10 mutations/Mb, 71.5%), and were microsatellite
stable (97.3%).

Genetically inferred ancestry workflow results for the
validation cohort
The GIA workflow was used to successfully obtain a consensus
GIA for 501 patient samples (99.4%) from the validation cohort,
while three patient samples were inconclusive for their consen-
sus GIA (Fig. 3A, Supplementary Table 2A). All three technical
replicates and six biological replicates had 100% concordance in
GIA calls with only slight fluctuations in their ancestral fractions
estimated via ADMIXTURE (Supplementary Table 2B). Tissue loca-
tions from which biological replicates were taken ranged from
different areas of the same organ site (e.g. varying regions of the
lung) to separate areas of the body (e.g. breast and small intestine)
(Supplementary Table 2B), suggesting that reproducibility of GIA
calls was not influenced by differences in tumor specimen tissue
location.

Overall, the average number of aligned sequence reads per
patient BAM file was 117 million, and no outlying GIA groups were
observed in the number of aligned reads (Supplementary Fig. 3)
showing that GIA calls overall were not biased by the total number
of sequence reads of a sample. Failure to call a consensus GIA
for three patient samples resulted from isolated instances of poor
sequencing output, and therefore poor SNP calling, as sequence
alignment files for patients with inconclusive GIA calls contained
<12 000 sequences (8578 to 11 779 sequences) while the next-
highest number of sequences was 11 million. Interestingly, all
patient samples that resulted in an inconclusive consensus GIA
had the same profiles among the three classification methods
regardless of their SIRE: AMR for correlation-based classification,
SAS for k-NN classification, and 100% CAS/SIB for admixture
analysis (Supplementary Table 2A), which suggests that inconclu-
sive results, at least those derived from low sequencing and SNP
output, can be consistently caught.

When projected onto reference sample genetic PCs (Fig. 3A),
patient data points overlapped with reference samples from
their inferred ancestral population, which suggests that GIA calls
overall were made successfully with no “off-target” inferences.
Patients’ consensus GIA calls aligned as expected with their SIRE
and expanded upon SIRE by (i) differentiating between those of
European and Middle Eastern ancestry who reported as “White”
and (ii) detecting the presence of mixed ancestry (Fig. 3B). GIA
calls were also able to resolve heterogeneous racial categories
with high ancestral admixture (e.g. American Indian or Alaska
Native and Hispanic or Latino categories) (Fig. 3B). Ancestral
fractions calculated via ADMIXTURE mirrored the consensus GIA
calls (Fig. 3C) with the highest ancestral fractions within each

https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae557#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae557#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae557#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae557#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae557#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae557#supplementary-data
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Figure 3. Results from performing GIA workflow for 504 patients whose tumors were tested via CGP as part of their standard care. (A) Projection of
patient data points who had noninconclusive consensus GIA (N = 501) onto reference samples (N = 3592) within a combined patient PCA plot. Each point
represents a unique reference sample (circles) or patient (diamonds). Points are colored by reference sample ancestral populations or if patients were
determined to be of mixed ancestry (dark diamond points). Distances between points represent how similar genetic PCs were between a reference
sample or patient compared to others in the plot. A full breakdown of GIA calls for patients including inconclusive patients is provided as a table within
the PCA plot. (B) Relationship between patients’ SIRE and their consensus GIA call shown via Sankey chart (N = 491 patients with SIRE data). The size
of nodes on each side of the chart and links in the middle represent the number of patients belonging to a group (nodes) or the number of patients
of a certain race or ethnicity being classified into an ancestral group (links). For plot clarity, patient numbers were log-transformed before plotting.
(C) Ancestral fractions for patients with noninconclusive consensus GIA, calculated via ADMIXTURE. Each bar represents what fraction of ancestry is
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consensus GIA group corresponding to the inferred ancestral
population (Fig. 3D). It was interesting to note that while the
highest median ancestral fraction of the AMR GIA group was AMR
ancestry, this group also had high fractions of CAS/SIB ancestry
(Fig. 3D), which may reflect expected Central Asian/Siberian
ancestry in Central/South American–based Native American
populations [49, 50]. All patients who self-identified as White and
reported Native American as their ethnicity resulted in consensus
GIA calls of EUR and had overall lower ancestry fractions from
the AMR (0.4% ± 1.3%) and CAS/SIB (2.9% ± 14.1%) populations
compared to patients identifying as American Indian or Alaska
Native (AMR = 9.1% ± 15.8%, CAS/SIB = 75.9% ± 30.9%) or His-
panic or Latino (AMR = 37.9% ± 27.6%, CAS/SIB = 10.2% ± 17.8%)
(Supplementary Table 2A). However, compared to White patients
with no reported ethnicity, these patients had slightly, but signif-
icantly, higher AMR ancestry fractions (0.4% versus 0.3%, P = .01;
Supplementary Fig. 4), suggesting that these patients potentially
have Native American ancestry with higher proportions of
European admixture.

Genetically inferred ancestry call performance
GIA calls showed high concordance with SIRE (93%–95% for indi-
vidual methods and 95% for consensus GIA calls; Fig. 4A) and
resulted in a high classification performance when using SIRE
as the ground truth (Fig. 4B). Classification metrics across all
reference populations ranged from 0.8 to 1 depending on the
classification method, with consensus GIA calls ranging from 0.87
(sensitivity/recall) to 0.99 (specificity). The classification perfor-
mance of consensus GIA was equivalent to, or better than, the
independent methods in the study, with the largest improvement
seen for the F1 score (≤0.86 for independent methods versus
0.9 for consensus). The lowest concordance between consensus
GIA calls and SIRE was seen for patients reporting as Hispanic
or Latino (63%) and American Indian or Alaska Native (65%). A
large portion of these patients (20.5%) resulted in GIA calls of EUR,
which is an anticipated outcome due to the admixture of Native
American and European populations [51]. However, consensus
GIA calls had high specificity for these groups (0.99–1) and high
precision for the CAS/SIB group, showing that the workflow errs
on the side of less “false-positive” AMR and CAS/SIB ancestry calls.
Precision was reduced for the AMR group (0.71) due to some Amer-
ican Indian or Alaska Native patients resulting in GIA calls of AMR,
another expected outcome due to inherent relatedness between
North and Central/South American–based Native Americans [52].
This also provides an example of how GIA is potentially capturing
biological ancestry (i.e. Hispanic or Latino patients with Native
American versus European lineages) compared to SIRE, which
captures social and cultural constructs (i.e. labeled Hispanic or
Latino regardless of lineage but based on where they currently
reside, where they or their family immigrated from, etc.).

Concordance between consensus GIA calls and SIRE varied by
tumor type, with the lowest concordances seen among melanoma
(81%), sarcomas (86%), stomach cancer (88%), and bladder cancer
(88%) (Fig. 5A). Other tumor types ranged from 91% to 100%
concordance between GIA calls and SIRE with an average concor-
dance of 94.7% (Fig. 5A). Lower concordances for melanoma and

bladder tumor types were mostly driven by higher proportions of
GIA groups not covered by SIRE (i.e. MEA and Mixed Ancestry;
Fig. 5B). After removing GIA groups not covered by SIRE, concor-
dances for melanoma and bladder groups increased to 93% and
100%, respectively, and the overall average increased to 97.1%
(Fig. 5C).

Concordance between consensus GIA calls and SIRE was not
significantly influenced by whether a patient’s tumor was derived
from a primary or metastatic site (P = .22), the number of neo-
plastic cells in the tumor specimen (P ≥ .1), tumor cellularity
(P = .48), or genomic characteristics of the tumor including MSI
status (P = 1), or presence or absence of copy number alterations
(P = .29) or gene fusions/rearrangements (P = .08) (Fig. 5D). Cases
that had low TMB (<10 mutations/Mb) had a slightly, but sig-
nificantly, higher concordance between GIA calls and SIRE when
compared to high TMB cases (96% versus 91%) (Fig. 5D). This
suggests concordances are not biased by where a tumor specimen
is derived from, if a tumor exhibits mismatch repair deficiency,
or contains larger structural alterations or gene rearrangements;
however, the number of somatic mutations in the tumor DNA may
slightly influence concordances with SIRE.

Comparison with previously published
genetically inferred ancestry workflows
Here, we provide a brief review of previously published GIA work-
flows and compare their features to our GIA workflow. This not
only helps to put characteristics of our workflow in the context of
previously published workflows but also provides a resource for
others, as a survey of published GIA workflows for CGP of tumor
DNA is currently unavailable. Characteristics of our workflow and
previously published workflows can be found in Table 3.

Study and workflow identification
Studies that utilized GIA workflows for CGP of tumor DNA
were found using a PubMed search on 17 November 2023 with
the following search criteria: (“cancer” AND “genetic ancestry”
AND “sequencing”) OR (“genomic profiling” AND “ancestry”) OR
(“sequencing panel” AND “ancestry”) OR (“sequencing assay” AND
“ancestry”) and restricted to publications within the past 3 years
(2020 to current). The PubMed search returned 66 abstracts, which
were manually inspected to ensure that (i) the study utilized
a validated, sequencing-based, targeted CGP assay to profile
patient tumor DNA and (ii) performed a workflow for inferring
genetic ancestry from the resulting CGP sequencing results. It
was important to differentiate between those that designed a
workflow using targeted CGP on tumor DNA and those that did
not (e.g. use of normal patient DNA and/or whole-genome or -
exome sequencing or genotyping) as the former would be more
directly comparable to the currently described workflow and
more applicable to real-world clinical testing. After excluding
publications that did not meet these criteria, 20 remained.

Three GIA workflows were frequently used in studies from the
same organizations with limited differences in workflow execu-
tion (study names with superscripts A, B, or C in Table 3). Orga-
nizations included Foundation Medicine Inc (Boston, MA, USA)
[12–16, 19, 21, 22, 26, 27, 29, 30], Memorial Sloan Kettering (MSK)

contributed by each ancestral population for a unique patient, adding up to 1 (100%). (D) Distributions of ancestral fractions from ADMIXTURE within
each GIA group. The bottom, middle, and top horizontal boundaries of each box in the box plots represent the first, second (median), and third quartiles
of the data for a particular GIA group. The lines extending from the two ends of each box represent 1.5× outside the interquartile range. Points beyond
the lines are considered outliers. AFR, African; AMR, Admixed American; CAS/SIB, Central Asian/Siberian; EAS, East Asian; EUR, European; MEA, Middle
Eastern; OCN, Oceania; SAS, South Asian.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae557#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae557#supplementary-data
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Figure 4. Classification performance of GIA workflow compared to patients’ SIRE. Classification performance for GIA classification methods was
measured to assess how well GIA calls recapitulated the SIRE of patients. (A) Confusion matrices showing the relationship between SIRE (observed)
and GIA (predicted) of each patient for k-NN (top row), PC correlation (second row), ADMIXTURE (third row), and consensus GIA (fourth row). Observed
columns correspond to given 1000G ancestry populations based on patients’ self-identified race. Predicted rows correspond to GIA calls derived from
the classification algorithms. Boxes in the diagonal of the confusion matrices indicate concordance between observed and predicted classifications
aligned. Concordance percentages were calculated by summing the values in diagonal boxes and dividing by the total number of patients with SIRE
data for each ancestry group and the total cohort (bold text). Mixed ancestry predictions did not apply to k-NN and PC correlation methods; therefore,
those rows do not have values. MEA and Mixed classifications were only available with GIA calls. (B) Classification performance metrics are calculated
from confusion matrices for individual classification methods and consensus GIA. Performance metrics were calculated for each ancestral population
independently and then averaged across populations to get overall performance metrics (column “mean ± SD”). For all metrics, the higher the value,
the better the method performed based on that metric. Performance metrics were not calculated for “Middle Eastern” or “Mixed Ancestry” groups as no
self-identified race corresponding to those groups was recorded for patients. AFR, African; AMR, Admixed American; CAS/SIB, Central Asian/Siberian;
EAS, East Asian; EUR, European; MEA, Middle Eastern; SAS, South Asian; SD, standard deviation.

Cancer Center (New York, NY, USA) [20, 24, 31, 32], and Dana–
Farber Cancer Institute/Harvard University (DFCI/HU) (Boston,
MA, USA) [18, 23, 25]; therefore, these workflows will be referred to
by their publishing institutions hereafter (Foundation, MSK, and
DFCI/HU workflows). An additional workflow had only one study
in the PubMed search results published jointly by the University
of Chicago and Tempus Inc (UC/Tempus) (Chicago, IL, USA) [28].

Characteristics of previously published genetically inferred
ancestry workflows
Previous published GIA workflows differed in terms of the CGP
assay used, number of genes included in the assay, variant caller
used, number of variants used to infer ancestry, whether genetic
PCs were used in the inferences, the ancestry populations that
were attempted to be inferred, and concordance of inferred ances-
try with SIRE. Similarities between workflows were noted for the
type of classification algorithms and reference data used to infer
ancestry. The CGP assays used in the workflows included the
FoundationOne® CDx (Foundation), Oncopanel (275, 300, 447 gene
versions; DFCI/HU), MSK-IMPACT® (341, 410, 468, 505, HEME gene
versions; MSK), the Tempus xT (UC/Tempus), and other custom
panels. The number of genes targeted by CGP assays ranged from

275 to 648. The Foundation workflow utilized an undisclosed
proprietary algorithm for calling SNPs from sequenced tumor
DNA, while DFCI/HU, MSK, and UC/Tempus workflows used open-
source software for calling SNPs, including a reference-free impu-
tation algorithm called STITCH [53] (DFCI/HU workflow) and the
widely used variant calling program GATK [39] (MSK workflow).
The UC/Tempus workflow did not use a variant calling program
but instead used the direct comparison of aligned tumor DNA
with paired normal tissue to detect variants [28]. The number
of nonimputed SNPs used for ancestry inference ranged from
654 (Tempus workflow) to ∼40 000 (Foundation workflow), while
studies using the DFCI/HU workflow reported upward of 1 mil-
lion SNPs being called with imputation. Whether or not genetic
PCs were used as input for ancestry inference was dependent
on the type of algorithm used for assessing the genetic ances-
try of patients. When workflows utilized classifier algorithms
for predicting discrete ancestry populations (i.e. random forest;
Foundation workflow), the top 5 or 10 genetic PCs were used
as input for training the model and predicting patient ancestry.
When workflows utilized machine learning algorithms for pre-
dicting ancestry fractions (i.e. ADMIXTURE or SNPWEIGHTS; MSK,
DFCI/HU, UC/Tempus workflows), genetic PCs were not used, and
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Figure 5. Concordance of consensus GIA classifications compared to a patient’s SIRE by tumor type and tumor characteristics. (A) Concordances of
consensus GIA compared to SIRE for each tumor type. For each tumor type, concordance percentages were calculated by summing the number of times
GIA matched with a patient’s SIRE and dividing by the total number of patients with SIRE data for each tumor type. (B) Proportion of GIA calls within
each tumor type. (C) Concordances of consensus GIA compared to SIRE for each tumor type after excluding ancestry groups that were not covered by
SIRE (MEA, Mixed Ancestry, Inconclusive). (D) Differences in GIA and SIRE concordance between different tumor tissue sites (primary versus metastatic
tissue sites), levels of TMB and MSI, and amounts of tumor neoplastic cells and cellularity. Differences were tested using Fisher exact tests, and the
values above bars represent the uncorrected P-values. AFR, African; AMR, Admixed American; CAS/SIB, Central Asian/Siberian; EAS, East Asian; EUR,
European; MEA, Middle Eastern; SAS, South Asia.

variant data were inputted directly to the algorithms. All work-
flows utilized the 1000G dataset as a reference, and all, except for
the DFCI/HU workflow, attempted to infer ancestry from the five
main 1000G populations (AFR, AMR, EAS, EUR, SAS) and, addition-
ally, mixed or other ancestry. The DFCI/HU workflow attempted
inference of ancestries from African, Asian (mainly East Asian),
and European populations only. Concordances between ancestry
inferences and SIRE were reported in at least one study for each
workflow and ranged from ∼52% to 98% depending on methodol-
ogy and the assessed ancestral population.

Comparison with previously published workflows
Our workflow (Table 3, top row) builds upon the previously pub-
lished classification algorithms and reference datasets used to

infer genetic ancestry. The CGP assay used in our workflow (TSO
500) targets a larger number of genes (523) than most CGP assays
used previously, with only Tempus xT having more, allowing
interrogation of more genomic regions. Our workflow not only
utilizes an industry standard, open-source variant caller, GATK,
as previously done by the MSK workflow, but also a state-of-the-
art algorithm within the program (DRAGEN [54]) to call SNPs. The
combination of using a broad CGP assay and robust variant calling
algorithm allows our workflow to detect many SNPs (17 643 ± 2.9)
within exonic regions of genes, resulting in one of the highest
SNP numbers among previously published, nonimputation-based
workflows (Foundation, MSK, UC/Tempus workflows).

Major differences and improvements between our workflow
and previous workflows arise during the ancestry inference steps,
from the generation of genetic PCs to the calling of the final
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ancestry population inference. One of the most obvious improve-
ments of our workflow over previous workflows is the addition
of more reference data, which increased the number of reference
samples in the main 1000G populations and extended the number
of populations available for ancestry inference (CAS/SIB, MEA,
OCN). Extending the available reference populations requires
additional resolution for inferring ancestry as more genetic
correlation will inevitably exist between populations; therefore,
our workflow doubled the number of genetic PCs used for
inferring discrete ancestry populations compared to previous
workflows (10 versus 20 PCs). The other major improvement upon
previous workflows is the use of multiple algorithms to derive a
consensus-based genetic ancestry inference. Until now, only one
or two algorithms were used for estimating discrete ancestry
populations (random forest) or ancestral fractions (ADMIXTURE,
SNPWEIGHTS). If two algorithms were used, it consisted of
one classification algorithm for estimating discrete ancestry
populations and one algorithm for estimating ancestral fractions,
and the results were analyzed separately (Foundation workflow).
Using different, but complementary, algorithms to arrive at a
consensus ancestry estimation helps to reduce method choice
bias in ancestry inferences and allows for “inconclusive” calls
when robust inferences cannot be made. Concordances between
ancestry inferences and SIRE using our workflow (95%) were
comparable to those previously reported by other workflows.

Of note, two previously published workflows reported higher
numbers of SNPs being utilized in their workflows despite lower
numbers of genes being included in the CGP assays: the Founda-
tion (∼40 000 SNPs) and DFCI/HU (1 million) workflows (Table 3,
column “N SNPs used”). Two main areas that a workflow might
deviate from ours to produce more SNPs include the algorithm
being used to detect SNPs and the quality control of SNP geno-
types. The Foundation workflow utilizes a proprietary variant
calling algorithm and did not report any SNP quality control steps;
therefore, we cannot comment on how this workflow deviates
from our workflow concerning these areas. The DFCI/HU work-
flow utilizes an imputation-based algorithm (STITCH) for produc-
ing SNP genotype calls. An imputation algorithm takes a limited
number of observed genotypes for SNPs detected via sequencing
or genotyping and attempts to impute missing genotypes for
detected and nondetected SNPs by comparing detected genotypes
for an individual with a larger reference dataset or other individ-
uals within the same dataset. This results in many more SNPs
being included in the final dataset but has the caveat that the
majority of SNPs will have imputed genotypes (i.e. an algorithmic
estimation of what SNP genotype an individual would have if it
were detected through sequencing or genotyping). This may pro-
duce artificially biased or incorrect downstream results depend-
ing on the type, size, and composition of the reference dataset
used and the performance of the imputation algorithm. Our
workflow consistently detected sufficient numbers of ancestry
informative SNPs without the use of imputation; therefore, while
our workflow utilized fewer SNPs than what is achieved through
imputation, it still produced accurate calls without the threat of
introducing artifacts that may arise from using imputed data.

Limitations and future directions
While our GIA workflow provides several improvements over
previously published workflows, certain limitations still exist in
the workflow and its validation that will be improved upon with
future work.

A consistent area of difficulty for ancestry estimation work-
flows is distinguishing individuals with Native American ancestry
(AMR and CAS/SIB ancestry groups) from those with European
ancestry (EUR ancestry group) as (i) a high degree of admixture
is usually present between these two populations [51] and (ii)
current publicly available reference datasets do not have ade-
quate representation of North American-based Native American
populations (Supplementary Table 1). Difficulty in resolving AMR
and CAS/SIB versus EUR ancestry was observed with our workflow
as well, with the AMR and CAS/SIB group having the lowest
concordance between GIA and SIRE due to a large portion of
Hispanic or Latino and American Indian or Alaska Native patients
being estimated to have majority EUR ancestry. We found that
our workflow errs on the side of fewer “false-positive” AMR and
CAS/SIB ancestry calls at the expense of potentially missing some
individuals with AMR and CAS/SIB ancestry, as specificity was
high for both groups and precision was high for the CAS/SIB
group with lower sensitivity/recall than other ancestry groups.
This outcome is desired over having high sensitivity/recall but
low specificity and precision as it will provide cleaner groups for
statistical analyses and more robust AMR and CAS/SIB associa-
tions. Lower precision was observed for the AMR group compared
to the CAS/SIB group as 20% of American Indian or Alaska Native
patients resulted in AMR GIA calls, which is expected due to the
close genetic relatedness of North and Central/South American–
based Native Americans [52] and the AMR reference group being
much larger than that of the CAS/SIB reference group (N = 423
versus 50, Table 1). Increasing the resolution for Native American
ancestries, especially North American-based Native American
ancestries, will require adding additional reference samples from
these populations, which is a planned future direction for this
workflow.

The validation dataset used to validate the workflow contains
a diverse representation of patients from different racial and
ethnic backgrounds but is not as large as some validation datasets
reportedly used with other workflows [55]. Unfortunately, the
size of the validation dataset is limited to the number currently
reported in this manuscript as patient data were derived from a
reference laboratory (OmniSeq/Labcorp) where extended patient
demographics, including SIRE, are not routinely collected. We
performed a literature search for published studies that included
both TSO 500 sequencing and SIRE data to find external, inde-
pendent datasets to include in the validation; however, no studies
were found using the search criteria (“TSO500” OR “TSO 500” OR
“TruSight Oncology”) AND “race” on PubMed or Google Scholar.
This reflects a large gap in the literature concerning the landscape
of TSO 500 testing of tumors from diverse populations, which our
workflow will hopefully help to alleviate in future clinical studies.

Benchmarking against existing methods is an important step
in introducing new methodologies or protocols. Unfortunately,
we were unable to perform benchmarking of our GIA workflow
against the previously published workflows summarized in the
present study (Table 3) as they have not been made publicly
available (Foundation, MSK, UC/Tempus workflows), use both
paired normal and tumor sequences (Tempus workflow), or do not
infer the full 1000G reference populations (DFCI/HU workflow).
Instead, we had to rely on reported performance assessments by
the groups authoring the GIA workflows. This reflects a deficiency
in open-source tools for assessing GIA from CGP sequencing
results, which we hope to absolve by making a docker image of
our workflow publicly available (see Data Availability).

Finally, the current manuscript was designed as an introduc-
tion to and technical validation of our GIA workflow and was

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae557#supplementary-data
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not powered for actual testing of associations between clinical
and tumor characteristics of patients and different ancestries. A
formal clinical study with a larger sample size is planned as a
future direction for this workflow as a “clinical validation” study.

Conclusion
Using genomic data from 4274 reference samples from eight
geographical populations and 491 tumor samples from patients
with SIRE data who underwent CGP testing, we developed and
validated a new workflow to obtain accurate GIA. Our workflow
improves upon previous workflows by expanding the pool of
available reference populations, allowing for more comprehensive
ancestry inferences, and utilizing consensus-based classification
to obtain an accurate and robust GIA call. Our GIA workflow
had high concordance with patients’ SIRE and could expand
on SIRE by (i) detecting the ancestry of patients that usually
lack appropriate racial categories, (ii) determining what patients
have mixed ancestry, and (iii) resolving ancestries of patients in
heterogeneous racial categories and who had missing SIRE. The
workflow was designed to run on sequencing results from the
TSO 500 CGP assay but can readily be extended to other CGP
assays, allowing accurate GIA calls to be made across different
tests from tumor DNA. Accurate GIA data provide needed infor-
mation to enable ancestry-aware biomarker research, which can
help mitigate cancer outcome disparities, ensure the inclusion of
underrepresented groups in clinical research, and help findings
be more representative of real-world patient populations with
disease enabling targeted therapies and clinical trials to benefit
all populations with disease.

Key Points

• Disparities in cancer diagnosis, treatment, and outcomes
based on self-identified race and ethnicity are well
documented, yet these variables have historically been
excluded from clinical research.

• Genetic ancestry of a patient can be used as a proxy
to self-identified race and ethnicity and can be inferred
using comprehensive genomic profiling results from a
patient’s tumor.

• We developed a workflow to accurately infer the genetic
ancestry of patients from targeted sequencing of their
tumor specimens.

• We improved upon previous workflows by increasing the
number of inferred reference populations and utilizing
consensus-based classification to obtain accurate and
robust ancestry inferences.

• Accurate ancestry inference provides needed informa-
tion to enable ancestry-aware biomarker research.
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Supplementary data are available at Briefings in Bioinformatics
online.
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Data availability
The workflow, reference data, and required programs needed
to perform the workflow have been incorporated into a docker
container image that can be accessed on Docker Hub at the
following repository: https://hub.docker.com/repository/docker/
zwallen/tso500gia/general. See the repository page for details
on how to run the workflow and required inputs. The 1000G,
HGDP, and SGDP alignment data were accessed from publicly
available FTP sites: ftp://ftp.sra.ebi.ac.uk/vol1/run/ (1000G)
and ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/
(HGDP and SGDP). The human genome GRCh38 build reference
FASTA used for aligning the 1000G, HGDP, and SGDP sequences
are publicly available: ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/technical/reference/GRCh38_reference_genome/GRCh38_
full_analysis_set_plus_decoy_hla.fa. The GRCh37 build of the
human genome reference used here is publicly available from
Illumina (https://ilmn-dragen-giab-samples.s3.amazonaws.com/
FASTA/GRCh37.fa). Individual-level population data for reference
samples are provided in Supplementary Table 1. Individual-level
race/ethnicity and GIA calls for the patient validation cohort
are provided in Supplementary Table 2. R code and R session
information for the calculations, analyses, and plotting used for
the technical validation of the workflow can be found in the
Supplement of the manuscript. Other data used in the validation
analyses can be provided to the corresponding author upon
reasonable request.
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