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Abstract

Purpose of Review: When competing events occur, there are two main options for handling 

them analytically that invoke different assumptions: 1) censor person-time after a competing event 

(which is akin to assuming they could be prevented) to calculate a conditional risk; or 2) do not 

censor them (allow them to occur) to calculate an unconditional risk. The choice of estimand 

has implications when weighing the relative frequency of a beneficial outcome and an adverse 

outcome in a risk-benefit analysis.

Recent findings: We review the assumptions and interpretations underlying the two main 

approaches to analyzing competing risks. Using a popular metric in risk-benefit analyses, the 

Benefit-Risk Ratio, and a toy dataset, we demonstrated that conclusions about whether a treatment 

was more beneficial or more harmful can depend on whether one uses conditional or unconditional 

risks.

Summary: We argue that unconditional risks are more relevant to decision-making about 

exposures with competing outcomes than conditional risks.

Analytic options when there are competing events

A competing event is an event that precludes the event of interest from occurring. When 

competing events occur in a time-to-event (i.e. survival analysis) setting, there are two 

main options for handling them analytically: 1) censor person-time after a competing event 

(which is akin to assuming they could be prevented); or 2) do not censor person-time after 

a competing event. In a closed cohort, one could estimate risk of the event of interest 

with option 2 by dividing the number of people who experience the event of interest by 

the number at risk at the start of follow-up; people who experience a competing event are 

included in the denominator of the estimator. In contrast, with option 1, person-time after a 

competing event is excluded from the denominator of the estimator.
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When participants with a competing event are censored, such as when data are analyzed 

with a Cox proportional hazards model, the corresponding risk curves (often calculated 

as the complement of a Kaplan-Meier survival curve) are sometimes called conditional 

risk functions or cause-specific risk functions (we will use the term “conditional risk” 

throughout)(1,2). They are “conditional” because they are the risk curves that condition on 
removal of the competing events through some hypothetical intervention that does not alter 
the hazard of the event of interest. The conditional risk corresponds to the proportion of 

people who would have had the event of interest in a closed population/closed cohort if we 
had prevented all competing risks from occurring. Young et al. call contrasts of conditional 

risks “controlled direct effects,” in that they are the effect of the exposure that we would see 

if we set the value of the mediator (here, the competing event) to zero (i.e., if we prevented 

the competing event from occurring)(3). The hazards modeled in the Cox model are the 

instantaneous rate of the event of interest among people who have survived from both the 

event of interest and the competing event. These are often referred to as “cause-specific 

hazards” and the hazard ratio (HR) a “cause-specific HR.”

The other option for handling competing events is to estimate unconditional risks (often 

referred to as cumulative incidence functions or subdistribution risks; we will use the 

term “unconditional risk” throughout)(4, pp.69–70). The unconditional risk corresponds 

to the proportion of people who experience the event of interest in a closed population/

closed cohort. If there are competing events, the sum of the unconditional risks for each 

event type will equal the risk of the composite event (experiencing either the primary 

or competing event). The Aalen-Johansen estimator is commonly used to estimate the 

unconditional risks(5–7). The conditional risk will always be greater than the unconditional 

risk in the presence of competing events because, when people who have a competing 

event are censored, the Kaplan-Meier estimator imputes for them an event time for the 

event of interest(8). Young et al. refer to contrasts of unconditional risks as “total effects,” 

in that they incorporate the direct effect of exposure on the outcome of interest and the 

indirect effect of exposure that goes through the competing event(3). The Fine and Gray 

subdistribution PH model produces subdistribution hazard ratios that correspond to inference 

from the unconditional risk functions(9). The two analytic choices laid out here, as well as 

terms commonly used for each risk function, are outlined in Table 1.

Interpreting estimands when there are competing events

There is a common perception, perpetuated by several seminal papers on analyzing data 

in the presence of competing events, that cause-specific HRs and conditional risks are 

somehow more inherently etiologic than subdistribution HRs and unconditional risks (10–

12), whereas the primary utility of the unconditional risks is for planning or resource 

allocation(10–12). For example, Lau et al. say the “[cause-specific HR] may be better suited 

for studying etiology of diseases, whereas the [subdistribution HR] has use in predicting 

an individual’s risk or allocating resources(12, p.245).” Andersen et al. say “cause-specific 

hazards may be more relevant when the disease aetiology is of interest, since [they quantify] 

the event rate among the ones at risk of developing the event of interest. [Unconditional 

risks] are easier to interpret and are more relevant for the purpose of prediction(10, p.869).” 

Finally, Koller et al. say “we believe that etiology/efficacy hypotheses in the presence of 
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competing risks are most naturally formulated in terms of cause-specific hazards. This 

allows for a ‘direct’ formulation of the effect of exposure on the instantaneous forces that 

drive the patients remaining at risk at each time point t, that is, those without any prior 

event(11, p.1092).”

The difference between “etiology” and causation (clearly assumed in these publications) 

and the definition of an “etiologic effect” are not provided by any of the authors making 

these assertions. Furthermore, these assertions are not rationalized, other than to point out 

that, 1) in the absence of any differences in the cause-specific hazards of the outcome of 

interest associated with some exposure, we might see differences in the unconditional risks 

that result from shifts in the number of people who remain at risk to develop the event of 

interest (if the exposure causes or prevents the competing event); and 2) the cause-specific 

hazards represent forces acting on people still at risk whereas the subdistribution hazard 

includes people in the denominator who are no longer at risk (i.e., those who already had a 

competing event). The second argument seems to be that, because the cause-specific hazards 

measure the development of disease (or the event of interest) only among people still at 

risk to experience disease, they must quantify the entire etiologic process, ignoring the fact 

that part of the etiologic effect might be in shaping who remains at risk(3,13). However, 

one can simulate data in which some individual characteristic (e.g., frailty) is associated 

with the cause-specific hazard of the event of interest and the competing event, while 

exposure only alters the cause-specific hazard of one event, but if the exposure interacts 

with the characteristic (e.g., frailty), the exposure will end up being associated with a 

non-null cause-specific HR for the other event. Thus, even simulating data where there is 

no “etiologic” effect of exposure on some outcome cannot guarantee that the cause-specific 

HR will reflect the “etiologic” effect. Beyond the choice of how to handle competing events, 

there are cogent arguments that HRs – cause-specific or subdistribution – do not have a 

causal interpretation(3,13,14) because the denominator of the hazards changes over time and 

hazards are therefore subject to selection bias. However, as regards Koller et al.’s statements 

about cause-specific hazards providing a “‘direct’ formulation of the effect of exposure on 

the [outcome]”(11), we suggest reading Young et al.(3) for a clear definition of the causal 

effect estimated by a contrast of conditional risks as the (controlled) direct effect of exposure 

on the event of interest not mediated by the competing event. This interpretation is only 

valid under certain untestable and often unmet assumptions. In contrast to assertions by 

previous scholars that unconditional risks do not have a causal interpretation(10–12), Young 

et al. clarify that contrasts of unconditional risks can equal the total effect of exposure on the 

event of interest, again under certain assumptions.

While our focus has been on the causal interpretation of contrasts of risks or hazards 

calculated under different assumptions, all the cautions about the assumptions required 

to interpret conditional risks or rates apply to descriptive estimands as well(15). If one 

is interested in describing the incidence of some event as it occurs in the real world, it 

is usually antithetical to that goal to report the conditional risk without specifying the 

real-world intervention that would completely and instantaneously prevent all the competing 

events from occurring(15–17). For example, the oft-cited 1-in-8 (12.6%) lifetime risk of 

developing breast cancer is a conditional risk(18). The lifetime risk of developing breast 

cancer that does not assume other causes of death could be prevented (the unconditional 
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risk) is only 8.4%(19). While it is a type III error to interpret parameter estimates from a 

descriptive query as causal effects,(20) we might be interested in contrasts of risks or rates 

to quantify a disparity. In that case, inappropriate adjustment (e.g., for competing risks) 

would lead us to inaccurate conclusions about the magnitude of the disparity(21). There 

may be some scenarios in which estimating a conditional risk is warranted – for example, 

estimating the risk of spontaneous abortion while censoring induced abortions that are not 

undertaken for an indication that would have led to a spontaneous abortion. For a more 

complete discussion of analytic choices for descriptive estimands when there are competing 

events see (15,22).

Herein, we discuss the implications of the choice of estimand (conditional risks or 

unconditional risks) when weighing risks and benefits in pharmacoepidemiologic research.

Risk-benefit analyses

Risk-benefit analyses are fundamentally questions about weighing the probability of 

experiencing a beneficial outcome (e.g., cancer remission, survival from cardiovascular 

disease death) against the probability of experiencing a harmful outcome (e.g., 

gastrointestinal distress, kidney damage, or death) arising from some clinical treatment. 

Harmful outcomes (colloquially, “risks”) exist along a spectrum from self-limiting adverse 

events (such as nausea upon administration) that should be monitored or managed while a 

patient remains on the treatment under consideration, to serious adverse events (including 

death) that preclude treatment continuation.

When interventions – in this example, drugs – affect multiple outcomes, all outcomes should 

be considered when evaluating the causal effects of the interventions(23,24). Serious adverse 

events that preclude patients from experiencing the beneficial effects of a drug should be 

considered competing events for the beneficial outcome of interest. However, even the 

“mildest” adverse events might alter the hazard of the beneficial outcome of interest – 

e.g., if patients treated with immune checkpoint inhibitors experience an immune-related 

adverse event that is a marker that the drugs are working (albeit non-specifically)(25). 

Some adverse events that do not completely preclude the beneficial outcome of interest are 

so unpleasant that patients may implicitly (and epidemiologists could explicitly) discount 

additional survival time conferred by the drug in the presence of these adverse events. 

Indeed, a Benefit-Less-Risk analysis explicitly calculates the net benefit associated with a 

drug as the probability of a beneficial outcome (the event of interest) minus the probability 

of an adverse outcome (the competing event), where the probability of the adverse outcome 

is weighted by a measure of its “seriousness”. The worst adverse event receives a weight of 

1, equal to the weight implicitly given to the beneficial outcome, while a less serious adverse 

event receives a weight <1, and an adverse event without any safety concerns might receive a 

weight of 0 – that is, the decision about whether or not to take a drug would only depend on 

the probability of receiving a benefit(26,27).

Similarly, beneficial outcomes may or may not be competing events for adverse outcomes. 

For example, achieving cancer remission might mean that a cancer therapy can be 

discontinued and people would no longer be at risk of, and thus would be precluded 
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from, experiencing toxicity from ongoing therapy (i.e., remission is a competing event 

for toxicity). In contrast, people with HIV who achieve viral suppression on antiretroviral 

therapy do not discontinue their antiretroviral medications and thus viral suppression is not a 

competing event for adverse events.

When harmful outcomes (adverse events) preclude the occurrence of the beneficial outcome, 

and vice versa, we should account for both outcomes as competing events. Similar principles 

apply if the beneficial and harmful outcomes constitute semi-competing events (i.e., one 

event is a competing event for the other but not vice versa) as in the HIV treatment example 

above(28,29). We illustrate the potential impact of competing events by focusing on one 

risk-benefit metric, the Benefit-Risk Ratio.

The Benefit-Risk Ratio can be calculated as the Number Needed to Harm (NNH) divided 

by the Number Needed to Treat (NNT), where NNH is the inverse of the risk difference 

(RD) for the effect of the drug on the adverse event, and NNT is the inverse of the RD 

for the effect of the drug on the beneficial outcome. A Benefit-Risk Ratio >1 implies 

the treatment does more good than harm, whereas a Benefit-Risk Ratio <1 implies the 

treatment does more harm than good(27). In general, it is not specified whether the “risks” 

used in these calculations should be conditional or unconditional risks, but the default is 

typically conditional risks(27). However, when the beneficial and harmful outcomes are 

competing events for one another, and the incidence of the competing event is non-trivial, 

the conditional risk function will overstate the benefit of a drug because it imputes beneficial 

events for people who are censored with the competing event(8,30). It will also overstate 

the risks of the drug because it imputes adverse events for people who are censored due to 

having the outcome of interest. The differences between the unconditional and conditional 

risks will only perfectly balance each other out in the rarest of circumstances. Thus, using 

conditional risk functions might lead to inappropriate conclusions about the risk-benefit 

balance.

A toy example

Imagine an oversimplified example where we randomize 200 people with Stage IIB non 

small-cell lung cancer, pre-existing autoimmune disease, and COPD to adjuvant immune 

checkpoint inhibitor (ICI) therapy (i.e., subsequent to surgery/radiation) or to placebo on top 

of standard platinum doublet chemotherapy. We simulated data such that the drug shortens 

the time to both cancer remission and severe (i.e., dose limiting) or fatal drug toxicity. ICI 

therapy can confer tumor shrinkage and remission, and potentially dose-limiting or fatal 

autoimmune toxicity (particularly in this subgroup of patients with pre-existing autoimmune 

disease and COPD)(31,32), through the same underlying mechanism of action(25). We 

simulated times for each event type, took the minimum of the simulated times and the end 

of administrative follow-up, and assigned an event type indicator equal to the event that 

occurred first. The simulated data and code to analyze it are included in the Appendix and 

results are summarized in Table 2. (We ignore random error in our toy example.)

At the end of one year of follow-up, in the placebo arm, 13 people experienced complete 

cancer remission and 1 had to stop treatment due to severe or fatal toxicity. In the ICI 
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arm, 54 people experienced complete cancer remission, but 39 people died or had to stop 

treatment due to severe toxicity. Thus, out of 100 people, this drug benefits 41 more people 

than the standard of care alone, but 38 more people experience severe or fatal drug toxicity. 

Do the benefits of this drug outweigh the harms?

Our conclusions about benefits and harms depend on the causal estimands used to 

summarize the drug’s effects. Using the conditional risks, we would report that the 

drug increased the probability of cancer remission by 0.62(Figure 1A) and increased the 

probability of fatal drug toxicity by 0.71(Figure 1C). The Benefit-Risk Ratio using the 

conditional risks is therefore 0.88, which implies the drug does more harm than good.

In contrast, if we use the unconditional risks to calculate the Benefit-Risk Ratio, we would 

estimate the RD for cancer remission to be 0.41 (Figure 1B) and the RD for fatal drug 

toxicity to be 0.38 (Figure 1D). Then the Benefit-Risk Ratio using the unconditional risks is 

1.08, which implies the drug does more good than harm.

So we did our analysis two different ways and came up with conflicting answers. Which is 

correct? They are both correct under different assumptions. The estimand we prefer should 

depend on some sort of utility function for the beneficial and the harmful outcome(33,34) 

(in our example let us imagine the utility functions are approximately equal) and on the 

assumptions we are willing to accept as plausible.

If we assume that the adverse events could be managed and their incidence reduced or 

eliminated through some actual intervention, the conditional risk would reflect the true 

benefit of the drug (absent any additional benefits or harms induced by the intervention 

to prevent the competing event). But the conditional risk typically reflects a hypothetical 

scenario rather than the reality that patients are facing. Therefore, in most cases, inference 

based on unconditional risks is most relevant for patients. Unconditional risks do not 

require imagining a hypothetical intervention that does not exist, or attributing an untested 

assumption (no effect on the cause-specific hazards of the event of interest) to an actual 

intervention that does exist. When an actual intervention to prevent competing events does 

exist, we could directly model the joint effect of the drug and the intervention.

Cause-specific hazard ratios or conditional risks censor person-time after a competing event 

and censoring is assumed to be independent of the risk of the outcome (perhaps conditional 

on some variables including exposure). The cause-specific hazards of beneficial and harmful 

events may be independent of one another. For example, methadone can prevent opioid 

overdoses but typically, Opioid Treatment Programs require people come daily to the center 

to get their methadone. People might be precluded from experiencing the beneficial effects 

of methadone if they are at higher risk of dying in a traffic accident. In this case, conditional 

risks might be of interest because one could imagine an intervention on the competing 

event that is independent of the estimated effects of the treatment on the event of interest 

(“what would be the effect of methadone on opioid overdoses if we could eliminate traffic-

related deaths through multi-dose dispensing?”) However, even if the biological pathways by 

which a treatment influences the harmful and beneficial outcomes are somehow completely 

orthogonal to one another, if there are any underlying patient factors (e.g., frailty) that were 
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related to both the treatment effect on one outcome and the hazard of the other outcome, 

the cause-specific hazards will not be disentangleable and the assumptions underlying the 

conditional risks will be untenable. For example, in our example of ICIs, patients who 

are susceptible to the beneficial effects of the drug (whose immune system is effectively 

up-regulated by the ICIs) are the same people who are at higher risk of an immune-related 

adverse event (because their immune system was too up-regulated). There is no meaningful 

interpretation (given the current state of the science) of the direct effect of ICIs on cancer 

remission not through these adverse, competing events.

Some thoughts on semi-competing events

When the harmful outcome does not preclude the beneficial outcome from occurring, one 

might estimate the risk of the beneficial outcome without censoring person-time after a 

harmful outcome and use that in a risk-benefit ratio combined with the unconditional risk of 

the harmful outcome (appropriately treating the beneficial outcome as a competing event).

Using the same toy example data from above, we assume that the harmful outcome is 

not death but perhaps a temporary or medically manageable side effect of the drug. We 

calculated time to remission (without censoring person-time after an adverse event) using 

the complement of the Kaplan-Meier estimator and we calculated the unconditional risk of 

the side effect (where cancer remission is a competing event for experiencing a side effect). 

Then the Benefit-Risk Ratio was 1.64, demonstrating that the benefits outweigh the harms 

more definitively than when the adverse event was a competing risk for the benefit (when it 

precluded remission from occurring, resulting in fewer people able to experience remission). 

Briefly, if we assumed the harmful outcome was a competing risk for the beneficial outcome 

(e.g., severe or fatal toxicity) but the beneficial outcome did not preclude a harmful outcome 

(e.g., if people with cancer remission needed to continue the drug and could go on to die 

of drug toxicity), the Benefit-Risk Ratio was 0.58, indicating that harms outweighed the 

benefits (Table 2). The simulated data and code to analyze it are included in the Appendix 

and results are summarized in Table 2.

In this example, we used standard Benefit-Risk Ratios that discretize time and summarize 

the total number of events at one year of follow-up. Standard Benefit-Risk Ratios ignore the 

timing of the events and weight events with a utility of 0 or 1. A more nuanced treatment of 

risks and benefits of a treatment might incorporate metrics such as restricted mean survival 

time (35–37) or utility functions that weigh “how bad” the adverse event is against “how 

good” the beneficial outcomes is(33,34).

A few real-world complications

In our first toy example, for simplicity, we imagined both a harmful outcome (severe or fatal 

drug toxicity) and a beneficial outcome (cancer remission). In practice, the benefit might be 

the postponement of an outcome (e.g., delaying death due to cancer). Table 3 shows another 

toy example in which the drug delays death due to cancer but increases the risk of severe 

or fatal toxicity. The simulation code is in the Appendix. In this toy example, we again 

see that using conditional risks results in a Benefit-Risk Ratio of 0.88 (the harms appear to 
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outweigh the benefits) but using unconditional risks results in a Benefit-Risk Ratio of 1.56 

(the benefits appear to outweigh the harms).

Extending the example of ICI therapy for treating cancer, national vital statistics have 

shown 5-year survival for Stage II non small-cell lung cancer to be around 57%(38)while 

ICI therapy could increase 5-year survival to 76%(39). Fatal toxicity associated with ICI 

occurs in about 1% of people who are treated(40) and dose-limiting toxicity occurs in 

about 5–7% of people(41–43), although both of these proportions vary across subgroups. In 

people with pre-existing autoimmune disease and COPD, 15–20% might experience fatal or 

dose-limiting toxicity(31,32). People with pre-existing autoimmune disease and COPD who 

are treated with ICIs would be expected to have fewer cancer deaths than people treated 

with chemotherapy alone but also more deaths and study washout due to intolerable or fatal 

toxicity; in this subgroup the proportion experiencing a benefit is similar to the proportion 

experiencing harm. Our toy example has tried to simulate a similar scenario in which a 

treatment truly has big benefits and big risks. In most examples and in other subpopulations, 

the balance of risks to benefits are likely to be more clearly in one direction or the other (i.e., 

Benefit-Risk Ratios based on conditional risks and unconditional risks will both be on the 

same side of 1), but the magnitude of the Benefit-Risk Ratio may be misleading if it is based 

on an improper choice of risk estimand(44). A proper analysis of the risks and benefits of a 

treatment will depend on whether each outcome precludes the other from occurring and the 

frequency of the two events.

The Benefit-Risk Ratio answers a question about a contrast of contrasts: a treatment has 

a benefit (in the form of a RD) and a harm (also in the form of a RD) and the Benefit-

Risk Ratio contrasts those two RDs. In our toy example (Table 2), whether we used the 

conditional or unconditional risk, the drug increased the risk of benefit and the risk of harm 

– the Benefit-Risk Ratio only changed directions based on the relative magnitude of the 

two RDs. However, there are also scenarios in which the analytic choice for handling the 

competing risks can actually change the direction of the RD and the qualitative conclusions 

about the effects of the exposure(45). In the toy data in Table 4, a drug speeds up time to 

cancer remission substantially, and only minimally changes time to development of severe or 

fatal toxicity. The conditional risk difference for severe or fatal toxicity is 0.003 – effectively 

showing no effect of the drug on the harmful outcome. However, the unconditional risk 

difference for severe or fatal toxicity is −0.25, reflecting the true reduction in severe or 

fatal toxicity experienced by the treated individuals who are removed from being at risk for 

severe or fatal toxicity because they are quicker to experience cancer remission.

Conclusion

Ultimately, we cannot state whether conditional risks are more or less “causal” than 

unconditional risks, or by extension, whether cause-specific HRs are more or less “causal” 

than subdistribution HRs without clear consensus on what is meant by “causal”. There 

are causal interpretations of both unconditional and conditional risks(3). However, the 

conditional risks (and cause-specific HRs) rely on often-untenable assumptions about 

hypothetical interventions on the competing events that do not reflect the real-world 

outcomes experienced by patients. Using a risk-benefit lens, we have demonstrated that 
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unconditional risks are more relevant to decision-making about interventions or treatments 

and should be used more often in epidemiologic research.
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Table 1.

Summary of terminology and approaches

Approach Censor person-time after a competing event Do not censor person-time after a competing event

Terms for risk Conditional risk
Cause-specific risk
Pure risk

Unconditional risk
Subdistribution risk 
Cumulative incidence function
Absolute risk

Estimators for risk Complement of the Kaplan-Meier or the Nelson-Aalen 
estimator of survival

Aalen-Johansen estimator

Interpretation Risk that would be observed if competing events could 
be prevented without altering the cause-specific hazard 
of the event of interest; controlled direct effects (where 
value of the mediator – the competing event – is set to 
zero)

Proportion of the cohort who would experience the event 
of interest in a closed cohort where competing events 
were allowed to occur; total effects (including any effects 
on risk of the event of interest that go through the 
competing event)

Proportional 
hazards/model

Cox proportional hazards model; cause-specific hazards Fine & Gray subdistribution hazards model; 
subdistribution hazards
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Table 2.

Toy data demonstrating two alternate calculations of the Benefit-Risk Ratio

Data Standard of Care Drug

Number at start of follow-up 100 100

Remission (Benefit) 13 54

Severe or fatal toxicity (Harm) 1 39

Censored 86 7

Conditional Risk

Cause-specific HR, Remission (Benefit) 10.61

Cause-specific HR, Severe/fatal toxicity (Harm) 112.47

Risk Remission (Benefit) 0.13 0.75

Risk Severe or fatal toxicity (Harm) 0.01 0.72

RD Remission (Benefit) → NNT 0. 0.75–0.13 = 0.62 → 1.61

RD Severe or fatal toxicity (Harm) → NNH 0. 0.72–0.01 = 0.71 → 1.41

Benefit-Risk Ratio (NNH/NNT) 1.41/1.61 = 0.87

Unconditional Risk

Subdistribution HR, Remission (Benefit) 5.87

Subdistribution HR, Severe/fatal toxicity (Harm) 49.07

Risk Remission (Benefit) 0.13 0.54

Risk Severe or fatal toxicity (Harm) 0.01 0.39

RD Remission (Benefit) → NNT 0. 0.54–0.13 = 0.41 → 2.45

RD Severe or fatal toxicity (Harm) → NNH 0. 0.39–0.01 = 0.38 → 2.64

Benefit-Risk Ratio (NNH/NNT) 2.64/2.45 = 1.08

Semi-competing Risk: Benefit precludes harm, harm does NOT preclude benefit

Remission (Benefit) 15 85

Side-effect (Harm) 1 39

Risk Remission (Benefit; no competing risks) 0.13 0.75

Unconditional Risk Side-effect (Harm) 0.01 0.39

RD Remission (Benefit) → NNT 0. 0.75–0.13 = 0.62 → 1.61

RD Side-effect (Harm) → NNH 0. 0.39–0.01 = 0.38 → 2.64

Benefit-Risk Ratio (NNH/NNT) 2.64/1.61 = 1.64

Semi-competing Risk: Harm precludes benefit, benefit does NOT preclude harm

Remission (Benefit) 13 54

Side-effect (Harm) 2 75

Unconditional Risk Remission (Benefit) 0.13 0.54

Risk Death/Toxicity (Harm; no competing risks) 0.01 0.72

RD Remission (Benefit) → NNT 0. 0.54–0.13 = 0.41 → 2.45

RD Death/Toxicity (Harm) → NNH 0. 0.72–0.01 = 0.71 → 1.41

Benefit-Risk Ratio (NNH/NNT) 1.41/2.45 = 0.58
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Table 3.

Toy data demonstrating two alternate calculations of the Benefit-Risk Ratio – drug delays death due to cancer 

but increases risk of severe or fatal toxicity

Data Standard of Care Drug

Number at start of follow-up 100 100

Death due to cancer (“Inverse Benefit”) 81 53

Severe or fatal toxicity (Harm) 12 30

Censored 7 17

Conditional Risk

Cause-specific HR, Remission (Benefit) 0.44

Cause-specific HR, Death (Harm) 1.83

Risk Remission (Benefit) 0.91 0.68

Risk Death (Harm) 0.20 0.46

RD Remission (Benefit) → NNT 0. 0.68–0.91 = −0.23 → 4.36

RD Death (Harm) → NNH 0. 0.46–0.20 = 0.26 → 3.85

Benefit-Risk Ratio (NNH/NNT) 3.85/4.36 = 0.88

Unconditional Risk

Subdistribution HR, Remission (Benefit) 0.44

Subdistribution HR, Death (Harm) 2.69

Risk Remission (Benefit) 0.81 0.53

Risk Death (Harm) 0.12 0.30

RD Remission (Benefit) → NNT 0. 0.53–0.81 = −0.28 → 3.59

RD Death (Harm) → NNH 0. 0.30–0.12 = 0.18 → 5.58

Benefit-Risk Ratio (NNH/NNT) 5.58/3.59 = 1.56
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Table 4.

Toy data demonstrating two alternate calculations of risk with different qualitative conclusions

Data Standard of Care Drug

Number at start of follow-up 1000 1000

Remission (Benefit) 84 604

Severe or fatal toxicity (Harm) 580 332

Conditional Risk

Cause-specific HR, Remission (Benefit) 13.35

Cause-specific HR, Severe/fatal toxicity (Harm) 1.07

Risk Remission (Benefit) 0.13 0.83

Risk Severe or fatal toxicity (Harm) 0.62 0.62

RD Remission (Benefit) 0. 0.83–0.13 = 0.71

RD Severe or fatal toxicity (Harm) 0. 0.62–0.62 = 0.003

Unconditional Risk

Subdistribution HR, Remission (Benefit) 10.71

Subdistribution HR, Severe/fatal toxicity (Harm) 0.52

Risk Remission (Benefit) 0.08 0.60

Risk Severe or fatal toxicity (Harm) 0.58 0.33

RD Remission (Benefit) 0. 0.60–0.08 = 0.52

RD Severe or fatal toxicity (Harm) 0. 0.33–0.58 = −0.25
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