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Background: Aberrant fatty acid metabolism (FAM) plays a critical role in the

tumorigenesis of human malignancies. However, studies on its impact in lung

adenocarcinoma (LUAD) are limited.

Methods: We developed a prognostic signature comprising 10 FAM-related

genes (GPR115, SOAT2, CDH17, MOGAT2, COL11A1, TCN1, LGR5, SLC34A2,

RHOV, and DKK1) using data from LUAD patients in The Cancer Genome Atlas

(TCGA). This signature was validated using six independent LUAD datasets from

the Gene Expression Omnibus (GEO). Patients were classified into high- and low-

risk groups, and overall survival (OS) was compared by Kaplan-Meier analysis. The

signature’s independence as a prognostic indicator was assessed after adjusting

for clinicopathological features. Receiver operating characteristic (ROC) analysis

validated the signature. Tumor immune microenvironment (TIME) was analyzed

using ESTIMATE and multiple deconvolution algorithms. Functional assays,

including CCK8, cell cycle, apoptosis, transwell, and wound healing assays,

were performed on MOGAT2-silenced H1299 cells using CRISPR/

Cas9 technology.

Results: Low-risk group patients exhibited decreased OS. The signature was an

independent prognostic indicator and demonstrated strong risk-stratification

utility for disease relapse/progression. ROC analysis confirmed the signature’s

validity across validation sets. TIME analysis revealed higher infiltration of CD8+ T

cells, natural killers, and B cells, and lower tumor purity, stemness index, and

tumor mutation burden (TMB) in low-risk patients. These patients also showed

elevated T cell receptor richness and diversity, along with reduced immune cell

senescence. High-risk patients exhibited enrichment in pathways related to

resistance to immune checkpoint blockades, such as DNA repair, hypoxia,

epithelial-mesenchymal transition, and the G2M checkpoint. LUAD patients
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receiving anti-PD-1 treatment had lower risk scores among responders

compared to non-responders. MOGAT2 was expressed at higher levels in low-

risk LUAD patients. Functional assays revealed that MOGAT2 knockdown in

H1299 cells promoted proliferation and migration, induced G2 cell cycle arrest,

and decreased apoptosis.

Conclusions: This FAM-related gene signature provides a valuable tool for

prognostic stratification and monitoring of TIME and immunotherapy

responses in LUAD. MOGAT2 is identified as a potential anti-tumor regulator,

offering new insights into its role in LUAD pathogenesis.
KEYWORDS

lung adenocarcinoma, fatty acid metabolism, prognosis, immune microenvironment,
immunotherapy, MOGAT2
1 Introduction

Lung cancer including non-small cell lung cancer (NSCLC) and

small cell lung cancer (SCLC), ranks as the leading cause of cancer-

associated deaths worldwide. Lung adenocarcinoma (LUAD) is the

most prevalent histological subtype, accounting for 50% - 70% of all

NSCLC cases (1). Remarkable advancement in prevention and

therapeutics has been made, while most patients are diagnosed at

advanced stages, leading to lower 5-year overall survival. Many

endeavors have been taken to develop novel therapies including

molecular targeted therapy, immunotherapy, and combination

therapy apart from surgery, radio/chemotherapy, and chemotherapy

for NSCLC patients (2, 3). Immune checkpoint inhibitors targeting

PD-1/PD-L1, and CTLA-4 have made remarkable forward in various

human malignancies, while most patients are reported to obtain a

short-term complete or partial remission following treatment, the

majority of patients eventually raised drug resistance and succumb to

tumor recurrence (4, 5). Increasing evidence witnessed that the

heterogeneity of tumor microenvironment (TME) among patients,

especially the variations in the infiltration of immune cells in the niche,

and the interactions of tumor and host are the main determinants of

responsiveness to treatment (6, 7). Emerging signatures have been

proposed to predict the responsiveness to immunotherapy (8, 9), such

as tumor mutation burden (TMB) (10, 11) and immune checkpoint
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molecule expression (12–14), while these tools are insufficient to

characterize the landscape of the TME heterogeneity. This posed an

unmet need to identify additional reliable biomarkers for predicting

therapeutic efficacy.

Lipid metabolism abnormality is a hallmark in diverse cancers,

and perturbed metabolism enabled cancer cells to acquire a rapid

proliferative rate by over-activating endogenous lipid synthesis or

increasing the uptake of exogenous lipids or lipoproteins (15–17).

Cellular fatty acids (FAs) are involved in many biological processes

including being incorporated into membrane structure, energy

storage, signaling macromolecules, and oxidized into carbon

dioxide for energy production. Tremendous evidence showed that

FAs metabolic reprogramming in cancer has an integral role in

tumorigenesis including lung cancer (18). Aberrantly activated

enzymes involved in the metabolism of FAs such as ATP citrate

lyase (ACLY), fatty acid synthase (FASN), and acetyl-CoA

carboxylase (ACC) in normal cells accelerated cancerous

transformation in lung cancer (18). Endogenous FAs metabolisms

were found to be reversely correlated with EGFR expression (19)

and promoted epithelial-mesenchymal-transition (EMT) regulation

(20), which contributes to the invasive and metastatic capacity of

lung cancer cells. Multiple molecules mediate the activity of FAs

metabolism such as sterol regulatory element binding proteins

(SREBPs) and FASN. High FASN expression was closely

associated with decreased survival and increased cell proliferation

and invasion in lung cancer (21). Inhibition of the availability and

metabolism of FAs represented a promising therapeutic strategy by

blocking FAs synthesis, increasing oxidative degradation, and

limiting FAs release from storage (22). However, the regulatory

mechanism of the FA metabolism process in LUAD has not been

well interrogated. Therefore, it will provide new perspectives in

understanding tumor heterogeneity and novel targets for patients

with LUAD by analyzing fatty acid metabolism genes (FAMGs).

This study elucidated the prognostic utility of FAMGs in

LUAD. A robust risk-stratification signature based on FAMGs
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was established in the TCGA cohort and predictive power was

validated in six independent LUAD datasets. Signature-related

features including tumor immune microenvironment (TIME)

landscape, differentially expressed pathways, and immunotherapy

predictive potential were delineated. We first found that low

MOGAT2, the signature gene, promotes LUAD cells proliferation

and migratory capability by CRISPR/Cas9 technology and in vitro

functional assays. The study may shed insight into developing

FAMGs-related targeted therapy in the treatment of LUAD by

identification of risk signature.
2 Materials and methods

2.1 Lung adenocarcinoma datasets
collection and pre-processing

The processed RNA-seq gene expression profile (FPKM

normalized) of 535 lung adenocarcinoma (LUAD) and 59 normal

samples were downloaded from the UCSC Xena database (https://

xenabrowser.net/datapages) for identifying survival-related FAMGs

and constructing prognostic signatures. Six independent LUAD

microarrays with available clinical features including GSE30219

(n=85), GSE31210 (n=226), GSE50081 (n=127), GSE68465

(n=442), GSE72094 (n=398), and GSE11969 (n=90), were also

obtained from GEO database for external validation. These

publicly available datasets had ethical approval in their original

studies. The details for these datasets were listed in Supplementary

Table S1.
2.2 Construction and validation of FAMGs-
associated prognostic signature

The FAMGs were retrieved from the MSigDB database. To

investigate the prognostic roles of these FAMGs, OS-related

FAMGs were identified using univariate Cox regression analysis.

GO terms enrichment analysis including biological process (BP),

molecular function (MF), and cellular components (CC) of these

OS-related FAMGs were conducted using clusterProfiler package

(23). The KEGG pathways were interrogated as well.

The OS-related FAMGs were utilized to develop a prognostic

signature through multivariate Cox stepwise regression analysis.

The optimal number of features for the signature was determined

using both stepwise selection and the Akaike Information Criterion

(AIC) (24), resulting in a formulation that included the minimum

number of OS-related FAMGs along with their corresponding

coefficients. FAscore for individual patient was calculated using

the signature, and patients were then categorized into low- and

high-risk groups based on the median risk score. Overall survival

(OS) differences between these groups were assessed using the log-

rank test and visualized with Kaplan-Meier curves.

A subset analysis was performed to evaluate the predictive

utility of the signature across various clinical features such as age,

gender, and tumor stage.
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To validate the prognostic capability of the signature, it was

applied to six independent LUAD datasets: GSE30219 (n=85),

GSE31210 (n=226), GSE50081 (n=127), GSE68465 (n=442),

GSE72094 (n=398), and GSE11969 (n=90), all of which included

overall survival data.

The signature predictive capacity was assessed by the receiver

operating characteristic (ROC) curve for training and validation

datasets using the survivalROC package.
2.3 Predictive utility of signature for
patients’ relapse

To further assess the potential of signature in predicting patient’

relapse or disease progression, the available information on disease-

free survival (DFS) or first progression (FP) was collected from

TCGA (n=858), GSE30219 (n=85), GSE31210 (n=226), and

GSE50081 (n=124). Patients were divided into low- and high-risk

groups according to the median risk score. The survival of patients

in high- and low-risk groups was compared using the log-rank test.
2.4 Tumor immune
microenvironment analysis

To characterize the signature associated TIME, the immune and

stromal cell infiltration was assessed using the ESTIMATE

algorithm by “estimate” package. Then, the proportions of

immune cell infiltration in high- and low-risk groups were

dissected using multiple cell deconvolution algorithms including

CIBERSORT (25), xCell (26), TMIER (27), and EPIC (28). In

addition, the expression levels of stimulatory, inhibitory

checkpoint molecules, and immune senescence markers were also

compared in patients within high- and low-risk groups.
2.5 Immunotherapy prediction

To predict the responsiveness to immune checkpoint blockade,

we analyzed PD-1/PD-L1 mRNA and protein expression, Tumor

mutation burden (TMB) mutant-allele tumor heterogeneity

(MTH), and TCR repertoire. Gene mutation profiles of LUAD

patients were downloaded from the TCGA database and TMB was

calculated using “maftools” package (29). TMB was calculated as

the number of somatic indels and base substitutions per million

bases in the coding region of the detected genome (30). The richness

and Shannon diversity indexes, which were retrieved from the Pan-

Cancer Atlas study (31), were used to characterize the diversity of

the TCR repertoire. The richness measures the number of unique

TCRs in the sample, while the Shannon diversity index reflects the

relative abundance of the different TCRs.

The Immunophenoscore (IPS) (32) quantifies tumor

immunogenicity on a 0-10 scale, derived from a weighted average Z

score based on key factors like MHC molecules, immunomodulators,

and immune cell expression. A higher IPS suggests improved prognosis

and response to immunotherapy. To forecast responsiveness to ICIs
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therapy, IPS data from LUAD patients treated with anti-PD-1/anti-

CTLA-4 was retrieved from TCIA. IPS levels were then compared

between High and Low immunity subtypes. We applied the signature

to NSCLC patients receiving anti-PD-1 therapy (GSE126044)

including 5 responders and 11 non-responders. The patient’s risk

score was calculated and compared between responders and non-

responders using the Wilcox test with p<0.05 as statistically significant.
2.6 Differential expression and gene set
enrichment analysis

The differentially expressed genes with |Log FC| > 1 and false

discovery rate (FDR) < 0.05 were identified between high- and low-

risk groups by edgeR package (33). GSEA was conducted to identify

the differentially expressed pathways between low- and high-risk

patients using all the genes ranked by fold change. Hallmark and

KEGG pathway gene sets were used as an enriched portal from

MSigDB database (34). The adjusted p-value of less than 0.05 was

considered statistically significant.
2.7 Cell culture and reagents

NCI-H1299 cells were cultured in DMEM medium

supplemented with 10% fetal bovine serum, and 1% penicillin,

at 37°C in a humidified atmosphere containing 5% CO2. The

human NSCLC cell line NCI-H1299 was obtained from FuHeng

Biology in China, RPMI-1640 medium was obtained from

Servicebio (Cat: G4535, China), Fetal bovine serum was

obtained from ZhengTuo Biology(Cat: 11011-8611, China),

Polyethylene glycol 400(PEG400) was obtained from Solarbio

(Cat: P8530, China), Dimethyl sulfoxide(DMSO) was obtained

from Solarbio (Cat: D8370, China)penicillin was obtained from

HaiChuang (Cat: P1400, China), Matrigel was purchased from BD

(Cat: 354234, USA).
2.8 CRISPR/Cas9-based knockout of
MOGAT2 in NCI-H1299 cells.

To create the MOGAT2-sliencing NCI-1299 cell line, CRISPR-

Cas9/gRNA ribonucleoprotein complex (CRISPR-RNP) from

ELEM Biotech was employed for electroporation using the Neon

NxT Electroporation System (Thermo Fisher). Electroporation

settings included a pulse voltage of 1300, pulse width of 10 ms,

and pulse number of 3 at a cell density of 5x10^6 cells/ml. sgRNA

sequence used for MOGAT2 was GCUGGUCAAGACU

GCUGAGC CGACUGCCAGGACUCCAUGG, which targets

exon 3 of human MOGAT2 gene with the specific cleavage site

from location 75727451 to 75727494. The efficiency of knockout

was confirmed through both DNA-sequencing, western blot, and

RT-qPCR assays.
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2.9 RT-qPCR

To confirm MOGAT2 knockout, total mRNA was extracted

using Trizol reagent from both MOGAT2 control and KD NCI-

1299 cells. Reverse transcription was performed following the

protocol of the HiScript II Q RT SuperMix Kit (Vazyme, Cat:

R223-01), and RT-qPCR was conducted using the Taq Pro

Universal SYBR qPCR Master Mix kit (Vazyme, Cat: Q712-02).

The primer sequences used were: MOGAT2 forward primer: 5’-

CGGTTCTGCAGGTGTTCTTT-3’, MOGAT2 reverse primer: 5’-

GGAATCCTGGGTCCGTTCA-3’, GAPDH forward primer: 5’-

CCAGACAGCACTGTGTTGGCATA-3’, GAPDH reverse primer:

5’-AAAATGCAGCTTCCACCACC-3’. MOGAT2 expression was

quantified by 2–DDCt method.

In addition, to calculate FOXM1 and MYC, which are tightly

correlated with cell cycle and proliferation (35, 36), expression in

MOGAT2 scramble and knockdown NCI-1299 cells, RT-qPCR was

used as described above. The primers of FOXM1 and MYC were

used as previously described (37, 38).
2.10 Western blot assay

To further assess deletion efficiency, NCI-1299 MOGAT2

knockdown and control cells were collected, lysed on liquid ice

for 30 minutes, and the supernatant removed by centrifugation.

Protein samples were prepared by BCA protein quantification then

transferred to polyvinylidene fluoride (PVDF, Cat: IPVH00010,

Millipore) membrane by SDS-POLYacrylamide gel electrophoresis

(PAGE). After sealing by 5% BSA, primary antibodies against

MOGAT2 (1:1000; Cat: 19514-1-AP or ab228950; ProteinTech or

ab228950) and GAPDH (1:1000; cat: ab128915; Abcam) were added

overnight at 4C, and corresponding peroxidase-labeled secondary

antibodies (1:200; Goat anti-Rabbit IgG (H+L), Cat: G1213,

Servicebio; 1:200, Goat anti-mouse IgG, Cat: G1214, Servicebio)

was added. The marker ladder was used to indicate the target

molecular weight. The levels of MOGAT2 protein were evaluated

using chemiluminescence detection system (EMD Millipore,

Billerica, USA) according to the Electrochemical luminescence

(ECL) color development kit.
2.11 Cell counting kit-8 assay

NCI-1299-MAGAT2 CRIPSand WT control cells were seeded at

5 × 10^3 cells/well in 100 mL medium in 96-well microplates (NEST,

Nest Biotech, catalog: 703001). Cell viability was assessed using Cell

Counting Kit-8 (CCK8, Biosharp, Anhui, China, catalog: BS350B)

following manufacturer’s instructions. 10 mL of CCK-8 reagent was

added per well and incubated for 2 hours. Absorbance was measured

at 450 nm using a microplate reader (Bio-Rad, Hercules, CA, USA),

with wells lacking cells as blanks. Experiments were conducted in

triplicate, and cell proliferation was determined by absorbance.
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2.12 Cell apoptosis assay

MOGAT2 WT and knockdown NCI-1299 cells (5 × 10^5 per

well) were seeded in 6-well plates for 24 hours following cell

attachment. Subsequently, the cells were dissociated using

pancreatin and rinsed with 1xPBS. Annexin V-FITC/PI apoptosis

kit (Cat#: C1062M, Beyotime Biotechnology, China) was employed

for apoptosis detection following manufacturer’s instructions.

Finally, flow cytometry analysis (FongCyte, Challenbio, China)

was conducted to assess apoptosis distribution.
2.13 Cell cycle assay

MOGAT2 WT and knockdown NCI-1299 cells in logarithmic

growth phase were seeded at 5 × 10^5 cells/mL into 6-well plates.

After 48 hours, cells were collected and washed twice with 1xPBS.

Cell cycle detection kit was used (Cat: C1052, Beyotime

Biotechnology, China). Briefly, cells were then digested with

trypsin to ensure complete digestion, neutralized, and centrifuged

at 300g for 5 minutes. The cell pellet was washed twice with pre-cold

PBS. Cells were resuspended and fixed using 70% ethanol for

fixation. After overnight incubation at 4°C, cells were centrifuged,

washed once with 1xPBS, and treated with RNaseA at 37°C for 30

minutes. Finally, propidium iodide (PI) was added for 30 minutes at

room temperature or 4°C in the dark for staining.
2.14 Transwell migration assay

Matrigel (1:8 dilution, Cat: 356234, Corning) was applied to

Transwell inserts (Cat: TCS003024, Haote Biotech, China) and

incubated at 37°C for 30 minutes to form a gel. Before use, the

basement membrane was hydrated. MOGAT2WT and knockdown

NCI-1299 cells, starved in serum-free medium for 12-24 hours,

were prepared at 5 × 10^5 cells/mL and added (100 ml) to Transwell
chambers with 600 ml of complete medium in the lower chamber.

After 48 hours, the upper chamber liquid was aspirated, and the

chamber was fixed in paraformaldehyde (Cat:1950136, PiNuoFei

Biotech, China) for 30 minutes, then stained with crystal violet (Cat:

BL802A, Biosharp, China) for 20 minutes. After rinsing with PBS,

the membrane was air-dried, mounted, and photographed at 100x,

200x, and 400x magnification (Nikon Eclipse E100) for

cell counting.
2.15 Wound healing assay

MOGAT2 WT and knockdown NCI-1299 cells at logarithmic

growth stage were seeded in 6-well plates at a density of 5 × 10^5

cells per well, with three wells per group. Once cells reached

confluence, a 200 mL pipette tip was used to create a vertical

scratch to avoid plate tilting. Suspended cells were then removed

with 1xPBS, and plates were incubated at 37°C with 5% CO2.

Microscopic images were captured at 0, 24 and 48 hours and

analyzed by Image J, and the experiment was replicated three
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times. Cell migration rate was calculated using the formula:

Migration Rate (%) = (Width of scratch at 0 hours - Width of

scratch after incubation)/Width of scratch at 0 hours) × 100%. The

unit of measurement is micrometers (mm).
3 Results

3.1 Identification of overall survival-
related FAMGs

To investigate the biological process of the FAMGs, functional

enrichment analysis showed that these FAMGs were enriched in the

cellular response to stimulus and metabolic-related biological

processes such as steroid metabolism, bile acid, and epoxygenase

P450 pathway (Supplementary Figure S1A). KEGG analysis

confirmed that cytochrome P450 metabolism, Wnt, steroid,

Phenylalanine, and bile acid synthesis ranked as the top pathways

(Supplementary Figure S1B). Then, we explored the interplay of

these FAMGs through PPI network analysis, and two modules

(named CYP3A4, and KRT19) were identified by the number of

nodes (Supplementary Figure S1C). In module CY3A4, these

membrane-associated CYPs are the major enzymes involved in

drug metabolism. Genes in module KRT19 are the regulators in

Wnt signaling which control cell proliferation and growth. This

further promoted us to assess their clinical relevance in LUAD. A

total of 22 FAMGs were found to be correlated with patients’

outcomes by univariate Cox regression analysis in the TCGA LUAD

dataset (Figure 1A). Among these OS-related FAMGs, decreased

survival was observed in patients with high expression of 11 OS-

related FAMGs such as TCN1, RHOV, DKK1, and GPR115, while

elevated expression of the remaining FAMGs was considered as

protective factors.
3.2 Construction and validation of the
prognostic signature based on FAMGs

The 22 FAMGs with prognostic significance were delivered for

further analysis. Stepwise multivariate Cox proportional hazard

regression analysis was employed to determine the minimum set

of features that generated the most powerful prediction for patients’

prognoses. This identified 10 genes of significance (GPR115,

SOAT2, CDH17, MOGAT2, COL11A1, TCN1, LGR5, SLC34A2,

RHOV, and DKK1) which comprise the optimal prognostic

signature (Figure 1B). The formulation was listed as follows:

FAScore = [Expression level of GPR115 *(-0.0573)] +

[Expression level of SOAT2*(-0.0987)] + [Expression level of

CDH17 *(0.0608)] + [Expression level of MOGAT2 *(-0.1079)] +

[Expression level of SLC34A2 *(-0.0651)] + [Expression level of

COL11A1 *(0.0522)] + [Expression level of TCN1 *(0.0502)] +

[Expression level of LGR5*(-0.0663)] + [Expression level of RHOV *

(0.0917)] + [Expression level of DKK1 *(0.0771)]

The FAScore for an individual patient was calculated, and

patients were divided into low- and high-risk groups using median

FAScore as the cutoff value. We generated a Kaplan-Meier curve and
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decreased survival was observed in patients within the high-risk

group as compared to those patients in the low-risk group

(Figure 1C, p=1.19e-11). The number of deaths was increasing

along with elevated FAScore (Figures 1D, E). We noted that six

model genes (GPR115, CDH17, MOGAT2, COL11A1, TCN1, and

RHOV) were significantly up-regulated in LUAD patients as

compared to adjacent normal tissues (Supplementary Figure S1D),

while two genes (SLC34A2 and LGR5) were markedly down-

regulated in patients (Supplementary Figure S1D). Additionally, six

model genes were up-regulated in high-risk patients (Supplementary

Figure S1E), while the expression of the remaining four genes

(SLC34A2, LGR5, MOGAT2, and SOAT2) was observed to be

increased in low-risk patients (Supplementary Figure S1E). The

area under curve (AUC) values of the ROC curve for 1-, 3-, and 5-

year were 0.80, 067, and 0.67 (Figure 1F), indicating that the

prognostic signature has a robust capacity for monitoring prognosis.

Clinicopathological features such as clinical stages and age were

correlated with disease progression and patient’s prognosis. To

further test its predictive independence, univariate Cox regression

analysis was performed in the TCGA LUAD dataset, and we found

that FAScore, involved lymph nodes, tumor size, and clinical stages

correlated with decreased survival, while patients receiving

treatment have favorable survival (Figure 2A). Multivariate Cox

regression analysis showed that the prognostic signature could serve

as an independent predictor after adjusting for other clinical

parameters such as treatment (Figure 2B). Similar observations
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were found in the GSE68465 LUAD dataset (Figures 2C, D). In the

GSE72094 dataset, the FAScore could serve as an independent

indicator for OS prediction (Figures 2E, F). In addition, patients

with oncogenic driver mutations including EGFR and KRAS were

associated with clinical survival, which was consistent with

previous reports.
3.3 Validation of the prognostic signature
in independent datasets

To verify the reproducibility of the prognostic signature in

LUAD, we applied this signature formula in six independent

publicly available cohorts (GSE30219 (n=85), GSE31210 (n=226),

GSE50081 (n=127), GSE68465 (n=442), GSE72094 (n=398), and

GSE11969 (n=90)) totaling 1,368 LUAD patients to assess the

predictive capability of the proposed signature for patients’

prognosis. Patients were also stratified into low- and high-risk

groups, and we found that patients in the low-risk group in these

six cohorts have prolonged OS than those in the high-risk group

(Figures 3A–F). The predictive performance of the signature in each

validation set was also calculated and showed that the AUCs of 1-,

3-, and 5-year all exceeded 0.6. Specifically, the AUC of 1-year in the

GSE31210 validation set was 0.91 (Figure 3B). These data convinced

that the signature has robust risk stratification in the microarray-

based platform for LUAD patients (Figure 3A–F).
FIGURE 1

Construction of fatty acid metabolism associated prognostic signature. (A) Forest plot showing the overall survival-related fatty acid metabolism
genes in LUAD. (B) The signature formula. (C) The Kaplan-Meier curve shows the survival difference of low- and high-risk patients. (D) Distribution of
risk scores among LUAD patients. (E) The number of deaths varies with increasing risk scores. (F) 1-, 3-, and 5-year of AUCs value of the signature.
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3.4 Differentially expressed and functional
enrichment analysis

The differentially expressed genes (DEGs) were identified

using the edgeR package. To look at the pathways involved in

the difference of the malignant characteristics between low-

and high-risk groups, Gene Set Enrichment Analysis (GSEA)

was performed in Hallmark and KEGG pathway gene sets.

Epithelial-mesenchymal-transition (EMT), DNA repair, oxidative

phosphorylation, G2M checkpoint, and hypoxia were found to be

enriched in high-risk patients (Supplementary Figures S2A–D,

Supplementary Table S2), suggesting dysregulated metabolism

and cell cycle, and the malignant transition was active in patients

within the high-risk group. These pathways were also observed in

the KEGG gene set enrichment analysis (Supplementary Figures
Frontiers in Immunology 07
S2E–H). Increasing reports indicated that these pathways were

correlated with resistance to ICB therapy (39).
3.5 Predictive potential of the signature for
patients’ relapse

Relapse has been one of the main challenges for patients

receiving various types of treatment such as chemotherapy or

radiotherapy. We used four LUAD data sets (TCGA, GSE30219,

GSE31210, and GSE50081) with available clinical information on

patients’ relapse or progression to investigate the predictive

potential of the signature. We found that patients in the low-risk

group have significantly favorable progression-free survival as

compared to those patients in the high-risk group (Figure 4A). A
FIGURE 2

Univariate and multivariate Cox regression analyses of the signature by incorporating clinical features. (A) Univariate Cox regression analysis of the
signature in the TCGA LUAD cohort. (B) Multivariate Cox regression analysis of the signature in the TCGA LUAD cohort. (C) Univariate Cox regression
analysis of the signature in the GSE68465 set. (D) Multivariate Cox regression analysis of the signature in the GSE68465. (E) Univariate Cox
regression analysis of the signature in the GSE72094 set. (F) Multivariate Cox regression analysis of the signature in the GSE72094 set.
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similar result was also observed in the GSE30219 set (Figure 4B). As

for disease relapse, patients with low FAScores in the GSE31210 set

showed better survival (Figure 4C), suggesting the signature may be

an indicator for monitoring patients’ relapse or disease progression,

which was verified in an independent LUAD set (GSE50081) as

well (Figure 4D).
3.6 Tumor immune
microenvironment analysis

Recognition of the dual role of TIME in anti-tumor immunity has

led to remarkable leaps forward in tumor immunotherapy) (40). To

delineate the TIME landscape in both risk groups, each patient was

scored based on profiling of 29 immune signatures using single
Frontiers in Immunology 08
sample gene set enrichment analysis (ssGSEA) and found that

patients in the low-risk group showed enhanced immune activities

(Figure 5A). Further ESTIMATE analysis showing higher immune

scores and ESTIMATE scores, and decreased tumor purity

(Figures 5B–D) in patients within the low-risk group in contrast to

the high-risk group demonstrated the notion (Figures 5B, C). Next,

we interrogated the infiltrated immune cell subsets by multiple

deconvolution algorithms. CIBERSORT analysis showed that CD8+

T cells and B cells increased in patients in the low-risk group, whereas

activated CD4+ T cells, neutrophils, and mast cells were elevated

(Figure 5E), which was confirmed by TIMER (Figure 5F) and EPIC

(Figure 5G) infiltration analysis. In addition, xCell deconvolution also

convinced that CD8+ and CD8+ central memory T cells, and

microenvironment scores were higher than those of patients in the

high-risk group (Figure 5H). Several co-stimulatory molecules were
FIGURE 3

Signature validation in six independent LUAD cohorts. (A) GSE30219. (B) GSE31210. (C) GSE50081. (D) GSE68465. (E) GSE72094. (F) GSE11969.
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up-regulated in low-risk patients such as CD27/28, and ICOS

(Figure 5I), while the co-inhibitory molecules were shown

differential expressed in both groups, CD47, IDO2, CTLA4, and

PD-1, were increased expression in low-risk patients, but PD-1/L1

and B7-H3 were decreased (Figure 5J), indicating that patients in

low-risk groups might benefit from the immunotherapy targeting

PD-1/CTLA4. We noted that IL2, CD160, and KLAG1, the positive

regulators of immune cell proliferation and activation expressed

highly in patients in the low-risk group, and H2AX, a key immune

cell senescence marker, expressed higher in high-risk patients, this

might be a sign of immune cell exhaustion in this group (Figure 5K).
3.7 The signature correlates with anti-
tumor immunity and therapy response

Given the difference of elevated tumor-infiltrating lymphocytes

(TILs) (Figures 5E–H, 6A) such as cytotoxic T cells and NK cells in

high- and low-risk groups and their critical roles in predicting the

efficacy and treatment response. We investigated the association

between the signature and widely used immunotherapy markers

PD-L1 expression (Figure 5J) and tumor mutation burden (TMB)

in the LUAD cohort. FAScore was positively correlated with the

TMB of patients (Figure 6J). Accounting reports have revealed that

the repertoire of T cell receptors (TCR), which recognize antigens

presented by the major histocompatibility complexes (MHC), could

serve as a predictive indicator of responsiveness to immunotherapy
Frontiers in Immunology 09
(41, 42). We conducted the repertoire analysis of TCR and found

that patients in the low-risk group exhibited higher TCR richness

and diversity (Figure 6B). B cell receptor richness in low-risk

patients was also increased (Figure 6C), while the BCR diversity

was comparable (Figure 6D).

IFN-g is a pleiotropic cytokine with antitumor or pro-

tumorigenic roles (43), and TGF-b is an important cancer-

promoting cytokine that contributes to the suppression of anti-

tumor immunity (44). We subsequently scored the IFN‐g and TGF-
b responses and found that both cytokine responses were enhanced

in high-risk patients (Figures 6E, F). The proliferation index was

accordingly markedly higher in patients with high-risk scores

(Figure 6G). In addition, we found that FAScore was significantly

correlated with TMB (Figure 6H). A lower aneuploidy score has

been observed in patients with complete or partial responses to

immune checkpoint blockade (45), and the same decreased trend

was found in low-risk patients as compared to those in high-risk

patients (Figure 6I). Mutant-allele tumor heterogeneity (MATH), a

hallmark of cancer that is a promising biomarker for clinical

outcomes and patients’ response to therapy (46), was decreased in

low-risk patients in contrast to those high-risk patients (Figure 6J).

Furthermore, the number of cancer stem cells (CSCs) was estimated

using an mRNA expression-based stemness index and found that

CSCs was decreased in low-risk patients (Figure 6K).

Assessment of responsiveness to therapy including

immunotherapy is a critical challenge before treatment. These

identified features supported that the signature implies predicting
FIGURE 4

The predictive capacity of the signature for relapse or disease progression. (A) Kaplan-Meier curve of patients’ relapse risk in low- and high-risk
groups in TCGA LUAD cohort. (B) Kaplan-Meier curve of patients’ relapse risk in low- and high-risk groups in GSE30219 set. (C) Kaplan-Meier curve
of patients’ relapse risk in low- and high-risk groups in GSE31210 set. (D) Kaplan-Meier curve of patients’ relapse risk in low- and high-risk groups in
GSE50081 set.
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responsiveness to therapies. We found that patients with

progressive disease have higher FAScores than those patients

with responders after receiving chemo/radiotherapy in the

TCGA dataset (Figure 6L). IPS analysis indicated that low-risk

patients might benefit from the anti-PD-1/CTLA-4-based
Frontiers in Immunology 10
immunotherapies (Figure 6M). Next, to verify the hypothesis,

we applied the signature to the dataset from patients receiving

anti-PD-1 treatment and found that responders have significantly

lower risk scores as compared to patients in the high-risk

group (Figure 6N).
FIGURE 5

Tumor immune microenvironment landscape analysis. (A) single sample gene set enrichment analysis of 29 immune signatures in low- and high-risk
patients. (B, C) Immune scores and ESTIMATEscores in low- and high-risk patients analyzed by ESTIMATE algorithm. (D) The tumor purity in low-
and high-risk patients. (E) Infiltrated CD8+ T cells, B cells, activated CD4+ T cells, neutrophils, and activated mast cells in low- and high-risk patients
analyzed by CIBERSORT. (G) Infiltrated CD8+ T cells and B cells in low- and high-risk patients analyzed by EPIC (H) Infiltrated CD8+/central memory
CD8+ T cells, NK cells, B cells, and microenvironment scores in low- and high-risk patients analyzed by xCell. (I, J) Co-stimulatory and co-inhibitory
receptor molecule expression in low- and high-risk patients. (K) The markers of cellular senescence expression in low- and high-risk patients.
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3.8 MOGAT2 deficiency promotes
proliferation of LUAD cells

The roles of several signature genes, including GPR115 (47),

TCN1 (48), COL11A1 (49), RHOV (50), DKK1 (51), SLC34A2

(52), LGR5 (53), SOAT2 (54), and CDH17 (55), in the

tumorigenesis of NSCLC have been well established, with some

emerging as potential therapeutic targets. However, the role of

MOGAT2 in NSCLC progression remains unexplored, prompting

our investigation. We found that MOGAT2 expression was higher

in low-risk patients as compared to that in the high-risk patients

(Supplementary Figure S1E). We hypothesized that silencing

MOGAT2 would enhance NSCLC growth, considering its

association with improved survival when expressed at high levels.
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Using CRISPR/Cas9 technology, we deleted MOGAT2 in

H1299 cells and confirmed its deficiency through Western blot,

DNA sequencing, and RT-qPCR (Figure 7A; Supplementary

Figures S3A, B, S4A). MOGAT2 expression was significantly

knocked down (KD). We observed that the levels of the three

different isoforms were reduced to varying degrees, which was

confirmed by repeating the Western blot analysis with a different

anti-MOGAT2 antibody in CRISPR/Cas9 edited H1299 cells

(Supplementary Figure S4B). Further investigation into how this

sgRNA affects these isoforms will be needed in future studies. The

proliferative ability of these cells was assessed using the CCK8 assay,

which revealed a significant increase in cell number following

MOGAT2 (Figure 7B). Cell cycle analysis further indicated that

MOGAT2 KD promoted G2 phase arrest rather than G1 and S
FIGURE 6

Association of the signature with anti-tumor immunity and immunotherapy. (A) Lymphocyte infiltration signature score in low- and high-risk
patients. (B) T cell receptor richness and diversity in low- and high-risk patients. (C, D) B cell receptor richness and diversity in low- and high-risk
patients. (E) IFN-gamma and TGF-b response scores in low- and high-risk patients. (G) Proliferation index in low- and high-risk patients.
(H) Correlation of tumor mutation burden with risk scores. (I, J) Aneuploidy score and mutant-allele tumor heterogeneity in low- and high-risk
patients. (K) Stemness index in high- and low-risk patients. (L) risk score distribution in responders and progressive disease. (M) IPS score in low- and
high-risk patients. (N) Risk scores non-responders and responders in patients receiving anti-PD-1 treatment.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1456719
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fu et al. 10.3389/fimmu.2024.1456719
stages (Figure 7C). Correlation analysis of MOGAT2 expression

with the cell proliferation markers FOXM1 and MYC, using the

TCGA dataset, indicated a negative correlation between MOGAT2

and both FOXM1 and MYC expression (Supplementary Figure

S5A). Moreover, in MOGAT2-KD H1299 cells, the expression

levels of FOXM1 and MYC were increased compared to control

H1299 cells using RT-qPCR (Supplementary Figure S5B). This

finding is consistent with previous research, which reported that

MOGAT2 deficiency promotes colorectal carcinoma growth by

activating the NF-kB pathway (56). Additionally, MOGAT2

deficiency resulted in a reduction in cell apoptosis compared to

the control group (Figure 7D). These findings suggest that high

MOGAT2 may play a role in inhibiting LUAD proliferation.
3.9 MOGAT2 inhibits migratory capabilities
of LUAD cells

To determine the effect of MOGAT2 on the migratory

capabilities of LUAD cells, transwell migration and wound

healing assays were conducted. Transwell migration assays

demonstrated a significant increase in the migration of H1299

cells with MOGAT2 knockdown compared to the control group

(Figure 8A). Similarly, wound healing assays showed that the

migration rate of H1299 cells with MOGAT2 KD was higher than

that of the control group (Figure 8B). These data suggest that

MOGAT2 KD promotes the migration of H1299 cells.
3.10 Potential impact of MOGAT2 in the
tumor microenvironment

To explore the potential impact of MOGAT2 in the tumor

microenvironment, we conducted a Spearman correlation analysis,

revealing a positive correlation between MOGAT2 expression and

both the immune score and the overall TME score (Supplementary

Figure S6A). This finding suggests that MOGAT2 may be involved

in the immune response.

Next, we used CIBERSORT and TIMER to analyze the fractions

of infiltrating immune cell subsets, followed by a correlation

analysis between MOGAT2 expression and these subsets. We

observed a positive correlation between MOGAT2 expression and

the presence of B cells, CD4+ T cells, myeloid dendritic cells, and

neutrophils (Supplementary Figures S6B, C). These results suggest

that MOGAT2 may play a significant role in shaping the TME

during disease progression. However, further validation using in

vivo mouse models is necessary to confirm these findings.
4 Discussion

Lung adenocarcinoma is one of the most frequent histological

subtypes of NSCLC. Great advancements in high-throughput

genomics studies have been made in recent years which accelerate

the understanding of tumor heterogeneity (57). Although patients

with LUAD benefited from the emerging treatments including
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molecular targeted therapy, anti-PD-1/CTLA4 immunotherapy,

and chimeric antigen receptor (CAR) T cell therapy, the

remission duration is limited. Increasing evidence indicated that

the tumor microenvironment context matters in anti-cancer

immunity, while few biomarkers that predict immune therapy

responses and prognoses could delineate the TME in LUAD.

Dysregulated fatty acid metabolism in cancer can serve as the

essential accomplice in cancer progression and metastasis by

reprogramming the TME (58). Fatty acid (FA) de novo synthesis

is abnormally activated in cancer cells to meet the energy demands

of rapid proliferation (59). In addition to FA de novo synthesis, the

aberrant activation of FA desaturation and prolongation are

common features of cancer. As a metabolic enzyme regulating

FAs. Stearoyl-CoA desaturase (SCD) converts FA into MUFA,

converts FAs into monounsaturated FAs (MUFA), enhancing

lipid utilization in tumors and regulating the SFA/MUFA ratio in

the TME (60). SCD1 inhibitors boost CD8+ T cell production and

inhibit colon and non-small cell lung cancer growth, working

synergistically with anti-PD-1 antibodies (61). Fatty acid

desaturase (FADS) enzymes convert FAs into polyunsaturated

FAs (PUFA). Increased FADS2 expression is linked to

hepatocellular carcinoma (HCC) and non-small cell lung cancer.

Inhibiting FADS2 and SCD suppresses tumor growth (62). Thus,

targeting fatty acid metabolism has become a promising therapeutic

strategy in fighting cancer (63), whereas the roles of fatty acid

metabolism-associated genes in LUAD have not been fully

investigated. In this study, we systematically explored the

associations between the gene expressions of FAMGs and clinical

outcomes in LUAD patients. We identified a robust FAMGs-related

risk signature that is tightly correlated with the OS and DFS of

patients. This signature was validated in six publicly independent

available LUAD cohorts. The utility of the signature was further

confirmed as an independent indicator for patients’ prognosis by

adjusting for clinical features. The relevant mechanisms of the

signature in predicting tumor microenvironment landscape, anti-

immunity regarding antigen-specific tumor killing, and

responsiveness to immunotherapy were also analyzed.

Additionally, the role of signature gene MOGAT2 in LUAD was

firstly investigated by experimental assays and indicated that it

inhibits LUAD growth. Therefore, the proposed signature may shed

light on monitoring outcomes and understanding personal

immunotherapy for patients with LUAD.

The biological role and therapeutic potential of fatty acid

metabolism have attracted interest in cancer, and rare

comprehensive evaluations of their clinical relevance in LUAD

were reported. We found that they have diverse effects on

prognosis by Kaplan-Memier curve analysis, indicating that

differential expression of these FAMGs has implications for cancer

progression. Overexpression of Type XI collagen (COL11A1)

promoted cell proliferation, migration, and drug resistance in

NSCLC or recurrent NSCLC by in vitro and in vivo functional

assays (49, 64). Patients with high COL11A1 correlated with

decreased survival was consistent with the notion that it is a

prognostic biomarker for various cancers including NSCLC (65).

Similar functions were observed for IGF2BP1 (66), FAM83B (67),

GPR115 (47), TCN1 (48), and PRAME (68) in NSCLC. It might be a
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novel druggable target for COL11A1-high cancers. RHOV has been

identified as one of the most up-regulated Rho GTPase members in

lung adenocarcinoma and was associated with unfavorable survival

by bulk and single RNA sequencing (69). RHOV silencing inhibited

proliferation and migration, as well as improved the sensitivity of

EGFR-TKI and increased cancer cell apoptosis in gefitinib-resistant

PC9 cells (50). In addition, high Dickkopf-1 (DKK1), an inhibitor of

the Wnt/b-catenin signaling pathway, in NSCLC was linked with the

proliferative and invasive capacity, and it could be a potential

therapeutic target (51). CDH17 was considered as a tissue-specific

diagnostic marker for adenocarcinomas (55). Thus, further

investigation of these tumors promoting FAMGs in mediating

metabolism in the TME might represent promising therapeutics for

patients with LUAD. This prompted us to systematically profile these

genes in LUAD by mathematical modeling, which has been widely

employed to monitor outcomes or predict treatment response in

recent years. Many tools have been in the preclinical phase or

approved by FDA after multi-centers sets validation (70), such as
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Guardant360® CDx, a qualitative next-generation sequencing-based

diagnostic device that uses targeted high throughput hybridization-

based capture technology for detecting mutations of 55 genes to

identify non-small cell lung cancer patients who may benefit from

treatment with the targeted therapies (71). This study confirmed that

FAMGs are important predictors of survival among LUAD patients.

We constructed a robust signature with great prognostic value for OS

prediction utilizing TCGA RNA-sequencing data as the training set.

The reliability of the signature was then verified via multiple diverse

microarray platforms, suggesting that it has powerful risk

discrimination in pooled populations and strong translational

potential. The signature still showed superior prognostic utility

when integrated clinical characteristics such as tumor stage, grade,

and oncogenic drivers’mutations. Its predictive performance was also

confirmed by ROC curve analysis exhibiting moderate to high

AUC values.

Secreted FAs accumulation in TME promoted the infiltrated

immune cell function and phenotype. Abnormal fatty acid
FIGURE 7

The effect of MOGAT2 on the proliferation of H1299 cells. (A) Western blot verify MOGAT2 knockdown in CRISPR/Cas9 edited MOGAT2 knockdown
and control H1299 cells. (B) The cell proliferation of NCI-1299 MOGAT2 knockdown and H1299 control cells using CCK8 assay. (C) Cell cycle
analysis of NCI-1299 MOGAT2 knockdown and H1299 control cells. (D) Cell apoptosis of NCI-1299 MOGAT2 knockdown and H1299 control cells.
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metabolism including fatty acid oxidation and lipid synthesis would

nourish cancer cell survival, increase resistance to chemotherapeutic/

radiation treatments, and weaken cellular stresses (18, 72). Tumor

immune microenvironment (TIME) analysis indicated elevated

immune scores in low-risk patients. Further immune cell subset

deconvolution by different algorithms confirmed that higher

infiltrated total T cells, central memory CD8+/CD8+ T cells, B cells,

and NK cells in low-risk patients in opposite to that of high-risk

patients. These tumor-infiltrating lymphocytes (TILs) are the main

killers in anti-tumor immunity. Amounting reports noted that these

TILs usually are less located in tumor sites and growing exhaustion (73,

74). Many co-stimulatory and inhibitory molecules were found

increased expression in low-risk patients, as well as T cell activation

markers such as KLRG1, which might imply a hyporesponsive state of

T cells in tumor-killing activities that decrease tumor burden to

improve survival. In addition, patients with risk scores may benefit

from immune checkpoint blockade (ICB). Meanwhile, markers of T

cell senescence including CD57 and H2AX were increased in high-risk

patients, indicating dysfunctional protective immunity (75). Low
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precursor frequency and T cell receptor (TCR) affinity have been

demonstrated in the most tumor-specific T cells, and antigen

presentation was also impaired in TME, which result in weak

priming and boosting of T cells (76). TCR, a unique molecule on the

T cell surface, can recognize antigens presented by MHC, and it has

been considered as a potent indicator to predict immunotherapy

response (77, 78). The effectiveness of ICB therapy was tightly

correlated with the abundance and functionality of infiltrated T cells

in the tumoral niche. The richness and diversity of TCR repertoire were

assessed and we found that low-risk patients showed higher TCR

richness and diversity, which indicated enhanced T cell functionality in

recognizing antigens and killing tumor cells. Additionally, biomarkers

of ICB response PD-L1 were increased in high-risk patients, while low-

risk patients harbored significantly lower TMB, suggesting decreased

immunogenicity in low-risk tumors. IPS analysis confirmed that low-

risk patients might be sensitive to ICB. Therefore, we validated the

predictive value of the signature using an NSLCLC cohort that received

anti-PD-1 treatment and found that responders have lower risk scores

in contrast to those of non-responders. This might explain why the
FIGURE 8

The effect of MOGAT2 on the migratory capability of H1299 cells. (A) Migratory capability of NCI-1299 MOGAT2 knockdown and H1299 control cells
tested using transwell assay. (B) Migration rate of NCI-1299 MOGAT2 knockdown and H1299 control cells tested using Wound healing assay.
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functionality of TILs is more important than immunogenicity. Overall,

low-risk patients were prone to benefit from ICB. Further validation in

more cohorts will convince the signature is a reliable marker for

immunotherapy response.

To seek differentially expressed pathways that are related to

malignant traits and immunotherapy, GSEA was conducted using

the Hallmark and KEGG pathway gene sets. We noted that EMT,

unfolded protein response, TNFa-signaling via NF-kB, DNA repair,

oxidative phosphorylation, glycolysis, G2M checkpoint, and

hypoxia were significantly enriched in high-risk patients, which

were also validated in KEGG pathways analysis. These pathways

have been associated with responsiveness or resistance to ICB

therapy (39, 79, 80), suggesting the relevance of the signature to

the biology of tumor progression and immunotherapy.

The role of the signature gene MOGAT2 in the tumorigenesis of

NSCLC remains unclear, in contrast to other well-studied genes.

The Acyl-CoA: monoacylglycerolacyltransferase (MGAT) family

has three members (MOGAT1, -2, and -3) that catalyze the first

step in TAG production, conversion of monoacylglycerol (MAG) to

diacylglycerol (DAG). High triacylglycerol (TAG) levels correlate

with metabolic syndrome severity (81). MOGAT enzymes convert

monoacylglycerol (MAG) to diacylglycerol (DAG), which is then

converted to TAG by DGAT. MOGAT2 inhibition shows

therapeutic benefits in mice (81), improving energy expenditure

and restoring normal fat absorption. This might suggest that

MOGAT2 deficiency could increase energy to promote lung

cancer growth, while this need to be further investigated.

Using CRISPR/Cas9 technology, we deleted MOGAT2 in

H1299 cells and observed that its significant deficiency increased

the proliferative potential and migratory capability of these LUAD

cells, as demonstrated by CCK8 and transwell assays. Cell cycle

analysis indicated that MOGAT2 knockdown promoted G2 phase

arrest, aligning with the enrichment of the G2M checkpoint

pathway in high-risk patients according to GSEA analysis. Some

studies offer valuable insights. For instance, previous research has

shown that MOGAT2 deficiency enhances colorectal carcinoma

growth by activating the NF-kB pathway. NF-kB is known to play a

crucial role in cell proliferation and apoptosis and is a therapeutic

target in lung cancer (82). Additionally, NF-kB negatively regulates

GADD45, a checkpoint protein that controls the G2/M phase

transition of the cell cycle (83). Therefore, exploring the effect of

MOGAT2 deficiency on GADD45 expression could be a promising

approach. This study is the first to suggest that low MOGAT2

expression may promote LUAD growth (56). Furthermore, we

found that MOGAT2 expression positively correlates with

immune and TME scores, as well as with B cells, CD4+ T cells,

myeloid dendritic cells, and neutrophils, suggesting its significant

role in the TME. Further in vivo and in vitro validation of these

findings are warranted.

The robustness of the signature showed robust performance in

multiple cohorts and could be an independent predictor for LUAD,

while several limitations should be taken into consideration when

interpreting the signature. The retrospective nature of the signature

requires multi-centered large cohorts’ validation. Using CRISPR/

Cas9 technology, we knocked down MOGAT2 in lung cancer cells.
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We observed that all isoforms of MOGAT2 were affected to varying

degrees. This suggests that the sgRNA may influence protein

stability, potentially through mechanisms such as reduced

translation, increased degradation, or others. Further experiments

are essential to elucidate these effects. We observed that low

MOGAT2 levels correlated with adverse clinical outcomes and

enhanced cell proliferation and migratory capabilities. Further

investigation into its molecular mechanisms in LUAD

progression is essential, including studying the effects of

MOGAT2 overexpression on cell proliferation and MOGAT2

deficiency on modulating the tumor microenvironment in both in

vitro and in vivo models. The signature revealed the different TIME

phenotypes of LUAD and predicted immunotherapy effectiveness,

the correlations of these genes in mediating tumor niche that was

related to therapeutics need investigation.
5 Conclusions

In summary, we presented a FAMG-based prognostic risk-

stratification for reflecting TIME and stratifying the benefits of

immunotherapy. In addition, low MOGAT2 correlated with worse

outcomes and promote cell proliferation, and migratory potential.

Further verification in clinical settings is underway by collaborating

with hospitals and explorations in vivomay shed light on the role of

FAMGs in LUAD and enable personalized immunotherapy.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author/s.
Author contributions

DF: Writing – review & editing, Writing – original draft,

Visualization, Validation, Methodology, Formal analysis, Data

curation, Conceptualization. BZ: Writing – review & editing,

Writing – original draft, Resources, Methodology, Formal

analysis. WF: Writing – review & editing, Writing – original

draft, Resources, Data curation. FZ: Writing – review & editing,

Writing – original draft, Software, Resources, Data curation. JF:

Writing – review & editing, Writing – original draft, Resources,

Methodology. XW: Writing – review & editing, Writing – original

draft, Supervision, Project administration, Funding acquisition.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by the Natural Science Foundation of Jiangxi

Province (20224ACB206038).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1456719
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fu et al. 10.3389/fimmu.2024.1456719
Acknowledgments

We are grateful to the contributors of data to public databases

used in this study.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI Statement

The author(s) declare that no Gen AI was used in the creation of

this manuscript.
Frontiers in Immunology 16
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.

1456719/full#supplementary-material
References
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J
Clin. (2022) 72:7–33. doi: 10.3322/caac.21708

2. Rodak O, Peris-Diaz MD, Olbromski M, Podhorska-Okolow M, Dziegiel P.
Current landscape of non-small cell lung cancer: epidemiology, histological
classification, targeted therapies, and immunotherapy. Cancers (Basel). (2021) 13.
doi: 10.3390/cancers13184705

3. Economopoulou P, Mountzios G. The emerging treatment landscape of advanced
non-small cell lung cancer. Ann Transl Med. (2018) 6:138. doi: 10.21037/
atm.2017.11.07

4. Frisone D, Friedlaender A, Addeo A, Tsantoulis P. The landscape of
immunotherapy resistance in NSCLC. Front Oncol. (2022) 12:817548. doi: 10.3389/
fonc.2022.817548

5. Horvath L, Thienpont B, Zhao L, Wolf D, Pircher A. Overcoming
immunotherapy resistance in non-small cell lung cancer (NSCLC) - novel
approaches and future outlook. Mol Cancer. (2020) 19:141. doi: 10.1186/s12943-020-
01260-z

6. Cao B, Liu M, Wang L, Zhu K, Cai M, Chen X, et al. Remodelling of tumour
microenvironment by microwave ablation potentiates immunotherapy of AXL-specific
CAR T cells against non-small cell lung cancer. Nat Commun. (2022) 13:6203.
doi: 10.1038/s41467-022-33968-5

7. Chen H, Zhang T, Zhang Y, Wu H, Fang Z, Liu Y, et al. Deciphering the tumor
microenvironment cell-infiltrating landscape reveals microenvironment subtypes and
therapeutic potentials for nonsquamous NSCLC. JCI Insight. (2022) 7. doi: 10.1172/
jci.insight.152815

8. Fu D, Zhang B, Zhang Y, Feng J, Jiang H. Immunogenomic classification of lung
squamous cell carcinoma characterizes tumor immune microenvironment and predicts
cancer therapy. Genes Dis. (2023) 10:2274–7. doi: 10.1016/j.gendis.2023.01.022

9. Jing L, Du Y, Fu D. Characterization of tumor immune microenvironment and
cancer therapy for head and neck squamous cell carcinoma through identification of a
genomic instability-related lncRNA prognostic signature. Front Genet. (2022)
13:979575. doi: 10.3389/fgene.2022.979575

10. Ricciuti B, Wang X, Alessi JV, Rizvi H, Mahadevan NR, Li YY, et al. Association
of high tumor mutation burden in non-small cell lung cancers with increased immune
infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1
expression levels. JAMA Oncol. (2022) 8:1160–8. doi: 10.1001/jamaoncol.2022.1981

11. Chen L, Chen T, Zhang Y, Lin H, Wang R, Wang Y, et al. TIRSF: a web server for
screening gene signatures to predict Tumor immunotherapy response. Nucleic Acids
Res. (2022) 50:W761–7. doi: 10.1093/nar/gkac374

12. Sun N, Luo Y, Zheng B, Zhang Z, Zhang C, Zhang Z, et al. A novel immune
checkpoints-based signature to predict prognosis and response to immunotherapy in
lung adenocarcinoma. J Transl Med. (2022) 20:332. doi: 10.1186/s12967-022-03520-6

13. Fu D, Zhang B, Yang L, Huang S, Xin W. Development of an immune-related
risk signature for predicting prognosis in lung squamous cell carcinoma. Front Genet.
(2020) 11:978. doi: 10.3389/fgene.2020.00978

14. Zhang B, Yang L, Wang X, Fu D. Identification of a survival-related signature for
sarcoma patients through integrated transcriptomic and proteomic profiling analyses.
Gene. (2021) 764:145105. doi: 10.1016/j.gene.2020.145105
15. Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming
in cancer cells. Oncogenesis. (2016) 5:e189. doi: 10.1038/oncsis.2015.49

16. Ford JH. Saturated fatty acid metabolism is key link between cell division, cancer,
and senescence in cellular and whole organism aging. Age (Dordr). (2010) 32:231–7.
doi: 10.1007/s11357-009-9128-x

17. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid
metabolism and cancer. Cell Metab. (2013) 18:153–61. doi: 10.1016/j.cmet.2013.05.017

18. Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in
cancer. Br J Cancer. (2020) 122:4–22. doi: 10.1038/s41416-019-0650-z

19. Yano K. Lipid metabolic pathways as lung cancer therapeutic targets: a
computational study. Int J Mol Med. (2012) 29:519–29. doi: 10.3892/ijmm.2011.876

20. Hua W, Kostidis S, Mayboroda O, Giera M, Hornsveld M, Ten Dijke P.
Metabolic reprogramming of mammary epithelial cells during TGF-beta-induced
epithelial-to-mesenchymal transition. Metabolites. (2021) 11:626. doi: 10.3390/
metabo11090626

21. Orita H, Coulter J, Lemmon C, Tully E, Vadlamudi A, Medghalchi SM, et al.
Selective inhibition of fatty acid synthase for lung cancer treatment. Clin Cancer Res.
(2007) 13:7139–45. doi: 10.1158/1078-0432.CCR-07-1186

22. Liu Q, Luo Q, Halim A, Song G. Targeting lipid metabolism of cancer cells: A
promising therapeutic strategy for cancer. Cancer Lett. (2017) 401:39–45. doi: 10.1016/
j.canlet.2017.05.002

23. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation (Camb). (2021) 2:100141.
doi: 10.1016/j.xinn.2021.100141

24. Vrieze SI. Model selection and psychological theory: a discussion of the
differences between the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC). Psychol Methods. (2012) 17:228–43. doi: 10.1037/
a0027127

25. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F,
et al. Determining cell type abundance and expression from bulk tissues with
digital cytometry. Nat Biotechnol. (2019) 37:773–82. doi: 10.1038/s41587-019-
0114-2

26. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. (2017) 18:220. doi: 10.1186/s13059-017-1349-1

27. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-
infiltrating immune cells. Nucleic Acids Res. (2020) 48:W509–W14. doi: 10.1093/nar/
gkaa407

28. Racle J, Gfeller D. EPIC: A tool to estimate the proportions of different cell types
from bulk gene expression data. Methods Mol Biol. (2020) 2120:233–48. doi: 10.1007/
978-1-0716-0327-7_17

29. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28:1747–56.
doi: 10.1101/gr.239244.118

30. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of
100,000 human cancer genomes reveals the landscape of tumor mutational burden.
Genome Med. (2017) 9:34. doi: 10.1186/s13073-017-0424-2
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1456719/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1456719/full#supplementary-material
https://doi.org/10.3322/caac.21708
https://doi.org/10.3390/cancers13184705
https://doi.org/10.21037/atm.2017.11.07
https://doi.org/10.21037/atm.2017.11.07
https://doi.org/10.3389/fonc.2022.817548
https://doi.org/10.3389/fonc.2022.817548
https://doi.org/10.1186/s12943-020-01260-z
https://doi.org/10.1186/s12943-020-01260-z
https://doi.org/10.1038/s41467-022-33968-5
https://doi.org/10.1172/jci.insight.152815
https://doi.org/10.1172/jci.insight.152815
https://doi.org/10.1016/j.gendis.2023.01.022
https://doi.org/10.3389/fgene.2022.979575
https://doi.org/10.1001/jamaoncol.2022.1981
https://doi.org/10.1093/nar/gkac374
https://doi.org/10.1186/s12967-022-03520-6
https://doi.org/10.3389/fgene.2020.00978
https://doi.org/10.1016/j.gene.2020.145105
https://doi.org/10.1038/oncsis.2015.49
https://doi.org/10.1007/s11357-009-9128-x
https://doi.org/10.1016/j.cmet.2013.05.017
https://doi.org/10.1038/s41416-019-0650-z
https://doi.org/10.3892/ijmm.2011.876
https://doi.org/10.3390/metabo11090626
https://doi.org/10.3390/metabo11090626
https://doi.org/10.1158/1078-0432.CCR-07-1186
https://doi.org/10.1016/j.canlet.2017.05.002
https://doi.org/10.1016/j.canlet.2017.05.002
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1037/a0027127
https://doi.org/10.1037/a0027127
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1007/978-1-0716-0327-7_17
https://doi.org/10.1007/978-1-0716-0327-7_17
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1186/s13073-017-0424-2
https://doi.org/10.3389/fimmu.2024.1456719
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fu et al. 10.3389/fimmu.2024.1456719
31. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The
immune landscape of cancer. Immunity. (2018) 48:812–30 e14. doi: 10.1016/
j.immuni.2018.03.023

32. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al.
Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep. (2017)
18:248–62. doi: 10.1016/j.celrep.2016.12.019

33. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics. (2010)
26:139–40. doi: 10.1093/bioinformatics/btp616

34. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The
Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. (2015)
1:417–25. doi: 10.1016/j.cels.2015.12.004

35. Melnik S, Werth N, Boeuf S, Hahn EM, Gotterbarm T, Anton M, et al. Impact of
c-MYC expression on proliferation, differentiation, and risk of neoplastic
transformation of human mesenchymal stromal cells. Stem Cell Res Ther. (2019)
10:73. doi: 10.1186/s13287-019-1187-z

36. Zheng Q, Luo Z, Xu M, Ye S, Lei Y, Xi Y. HMGA1 and FOXM1 cooperate to
promote G2/M cell cycle progression in cancer cells. Life (Basel). (2023) 13(5):1225.
doi: 10.3390/life13051225

37. Huang C, Xie D, Cui J, Li Q, Gao Y, Xie K. FOXM1c promotes pancreatic cancer
epithelial-to-mesenchymal transition and metastasis via upregulation of expression of
the urokinase plasminogen activator system. Clin Cancer Res. (2014) 20:1477–88.
doi: 10.1158/1078-0432.CCR-13-2311

38. Che D, Wang M, Sun J, Li B, Xu T, Lu Y, et al. KRT6A promotes lung cancer cell
growth and invasion through MYC-regulated pentose phosphate pathway. Front Cell
Dev Biol. (2021) 9:694071. doi: 10.3389/fcell.2021.694071

39. Wang B, Zhao Q, Zhang Y, Liu Z, Zheng Z, Liu S, et al. Targeting hypoxia in the
tumor microenvironment: a potential strategy to improve cancer immunotherapy. J
Exp Clin Cancer Res. (2021) 40:24. doi: 10.1186/s13046-020-01820-7

40. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al.
Understanding the tumor immune microenvironment (TIME) for effective therapy.
Nat Med. (2018) 24:541–50. doi: 10.1038/s41591-018-0014-x

41. He J, Xiong X, Yang H, Li D, Liu X, Li S, et al. Defined tumor antigen-specific T
cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy
response. Cell Res. (2022) 32:530–42. doi: 10.1038/s41422-022-00627-9

42. Page DB, Yuan J, Redmond D, Wen YH, Durack JC, Emerson R, et al. Deep
sequencing of T-cell receptor DNA as a biomarker of clonally expanded TILs in breast
cancer after immunotherapy. Cancer Immunol Res. (2016) 4:835–44. doi: 10.1158/
2326-6066.CIR-16-0013

43. Castro F, Cardoso AP, Goncalves RM, Serre K, Oliveira MJ. Interferon-gamma
at the crossroads of tumor immune surveillance or evasion. Front Immunol. (2018)
9:847. doi: 10.3389/fimmu.2018.00847

44. MaruYama T, Chen W, Shibata H. TGF-beta and cancer immunotherapy. Biol
Pharm Bull. (2022) 45:155–61. doi: 10.1248/bpb.b21-00966

45. Wei B, Zhao C, Yang K, Yan C, Chang Y, Gao H, et al. Comprehensive analysis
of aneuploidy status and its effect on the efficacy of EGFR-TKIs in lung cancer. J Thorac
Dis. (2022) 14:625–34. doi: 10.21037/jtd-22-73

46. Wu X, Song P, Guo L, Ying J, Li W. Mutant-allele tumor heterogeneity, a
favorable biomarker to assess intra-tumor heterogeneity, in advanced lung
adenocarcinoma. Front Oncol. (2022) 12:888951. doi: 10.3389/fonc.2022.888951

47. Wang Y, Shi M, Yang N, Zhou X, Xu L. GPR115 contributes to lung
adenocarcinoma metastasis associated with LAMC2 and predicts a poor prognosis.
Front Oncol. (2020) 10:577530. doi: 10.3389/fonc.2020.577530

48. Li H, Guo L, Cai Z. TCN1 is a potential prognostic biomarker and correlates with
immune infiltrates in lung adenocarcinoma. World J Surg Oncol. (2022) 20:83.
doi: 10.1186/s12957-022-02556-8

49. Shen L, Yang M, Lin Q, Zhang Z, Zhu B, Miao C. COL11A1 is overexpressed in
recurrent non-small cell lung cancer and promotes cell proliferation, migration,
invasion and drug resistance. Oncol Rep. (2016) 36:877–85. doi: 10.3892/or.2016.4869

50. Chen H, Xia R, Jiang L, Zhou Y, Xu H, Peng W, et al. Overexpression of RhoV
promotes the progression and EGFR-TKI resistance of lung adenocarcinoma. Front
Oncol. (2021) 11:619013. doi: 10.3389/fonc.2021.619013

51. Li S, Qin X, Guo X, Cui A, He Y, Wei S, et al. Dickkopf-1 is oncogenic and
involved in invasive growth in non small cell lung cancer. PloS One. (2013) 8:e84944.
doi: 10.1371/journal.pone.0084944

52. Wang Y, Yang W, Pu Q, Yang Y, Ye S, Ma Q, et al. The effects and mechanisms
of SLC34A2 in tumorigenesis and progression of human non-small cell lung cancer. J
BioMed Sci. (2015) 22:52. doi: 10.1186/s12929-015-0158-7

53. Gao F, Xu JC, You XR, Gao X, Wei JL, Li SX, et al. The biological functions of
LGR5 in promoting non-small cell lung cancer progression. Transl Cancer Res. (2019)
8:203–11. doi: 10.21037/tcr.2019.01.24

54. Huang J, Wang L, Jiang M, Chen Q, Jiang Z, Feng H. AGR2-mediated lung
adenocarcinoma metastasis novel mechanism network through repression with
interferon coupling cytoskeleton to steroid metabolism-dependent humoral immune
response. Cell Immunol. (2014) 290:102–6. doi: 10.1016/j.cellimm.2014.05.008
Frontiers in Immunology 17
55. Panarelli NC, Yantiss RK, Yeh MM, Liu Y, Chen YT. Tissue-specific cadherin
CDH17 is a useful marker of gastrointestinal adenocarcinomas with higher sensitivity
than CDX2. Am J Clin Pathol. (2012) 138:211–22. doi: 10.1309/AJCPKSHXI3XEHW1J

56. Lang Y, Zhong C, Guo L, Liu Z, Zuo D, Chen X, et al. Monoacylglycerol
acyltransferase-2 inhibits colorectal carcinogenesis in APC(min+/-) mice. iScience.
(2024) 27:110205. doi: 10.1016/j.isci.2024.110205

57. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer
therapies. Nat Rev Clin Oncol. (2018) 15:81–94. doi: 10.1038/nrclinonc.2017.166

58. Luo X, Cheng C, Tan Z, Li N, Tang M, Yang L, et al. Emerging roles of lipid
metabolism in cancer metastasis. Mol Cancer. (2017) 16:76. doi: 10.1186/s12943-017-
0646-3

59. Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, et al. Lipids and
cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv
Drug Delivery Rev. (2020) 159:245–93. doi: 10.1016/j.addr.2020.07.013

60. Xu H, Chen Y, Gu M, Liu C, Chen Q, Zhan M, et al. Fatty acid metabolism
reprogramming in advanced prostate cancer. Metabolites. (2021) 11:765. doi: 10.3390/
metabo11110765

61. Katoh Y, Yaguchi T, Kubo A, Iwata T, Morii K, Kato D, et al. Inhibition of
stearoyl-CoA desaturase 1 (SCD1) enhances the antitumor T cell response through
regulating beta-catenin signaling in cancer cells and ER stress in T cells and synergizes
with anti-PD-1 antibody. J Immunother Cancer. (2022) 10:e004616. doi: 10.1136/jitc-
2022-004616

62. Vriens K, Christen S, Parik S, Broekaert D, Yoshinaga K, Talebi A, et al. Evidence
for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature.
(2019) 566:403–6. doi: 10.1038/s41586-019-0904-1

63. Cao Y. Adipocyte and lipid metabolism in cancer drug resistance. J Clin Invest.
(2019) 129:3006–17. doi: 10.1172/JCI127201

64. Tu H, Li J, Lin L, Wang L. COL11A1 was involved in cell proliferation, apoptosis
and migration in non-small cell lung cancer cells. J Invest Surg. (2021) 34:664–9.
doi: 10.1080/08941939.2019.1672839

65. Nallanthighal S, Heiserman JP, Cheon DJ. Collagen type XI alpha 1 (COL11A1):
A novel biomarker and a key player in cancer. Cancers (Basel). (2021) 13(5):935.
doi: 10.3390/cancers13050935

66. Zhang J, Luo W, Chi X, Zhang L, Ren Q, Wang H, et al. IGF2BP1 silencing
inhibits proliferation and induces apoptosis of high glucose-induced non-small cell
lung cancer cells by regulating Netrin-1. Arch Biochem Biophys. (2020) 693:108581.
doi: 10.1016/j.abb.2020.108581

67. Richtmann S, Wilkens D, Warth A, Lasitschka F, Winter H, Christopoulos P,
et al. FAM83A and FAM83B as prognostic biomarkers and potential new therapeutic
targets in NSCLC. Cancers (Basel). (2019) 11(5):652. doi: 10.3390/cancers11050652

68. Zhang W, Li L, Cai L, Liang Y, Xu J, Liu Y, et al. Tumor-associated antigen
Prame targets tumor suppressor p14/ARF for degradation as the receptor protein of
CRL2(Prame) complex. Cell Death Differ. (2021) 28:1926–40. doi: 10.1038/s41418-020-
00724-5

69. Xu Y, Wang Y, Liang L, Song N. Single-cell RNA sequencing analysis to explore
immune cell heterogeneity and novel biomarkers for the prognosis of lung
adenocarcinoma. Front Genet. (2022) 13:975542. doi: 10.3389/fgene.2022.975542

70. Dubsky P, Van’t Veer L, Gnant M, Rudas M, Bago-Horvath Z, Greil R, et al. A
clinical validation study of MammaPrint in hormone receptor-positive breast cancer
from the Austrian Breast and Colorectal Cancer Study Group 8 (ABCSG-8) biomarker
cohort. ESMO Open. (2021) 6:100006. doi: 10.1016/j.esmoop.2020.100006

71. Bauml JM, Li BT, Velcheti V, Govindan R, Curioni-Fontecedro A, Dooms C,
et al. Clinical validation of Guardant360 CDx as a blood-based companion diagnostic
for sotorasib. Lung Cancer. (2022) 166:270–8. doi: 10.1016/j.lungcan.2021.10.007

72. Corn KC, WindhamMA, Rafat M. Lipids in the tumor microenvironment: From
cancer progression to treatment. Prog Lipid Res. (2020) 80:101055. doi: 10.1016/
j.plipres.2020.101055

73. Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion,
senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. (2013)
25:214–21. doi: 10.1016/j.coi.2012.12.003

74. Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell
Death Dis. (2015) 6:e1792. doi: 10.1038/cddis.2015.162

75. Zhang J, He T, Xue L, Guo H. Senescent T cells: a potential biomarker and target
for cancer therapy. EBioMedicine. (2021) 68:103409. doi: 10.1016/j.ebiom.2021.103409

76. Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE. The three main
stumbling blocks for anticancer T cells. Trends Immunol. (2012) 33:364–72.
doi: 10.1016/j.it.2012.02.006

77. Han Y, Li H, Guan Y, Huang J. Immune repertoire: A potential biomarker and
therapeutic for hepatocellular carcinoma. Cancer Lett. (2016) 379:206–12. doi: 10.1016/
j.canlet.2015.06.022

78. Tsimberidou AM, Van Morris K, Vo HH, Eck S, Lin YF, Rivas JM, et al. T-cell
receptor-based therapy: an innovative therapeutic approach for solid tumors. J Hematol
Oncol. (2021) 14:102. doi: 10.1186/s13045-021-01115-0

79. Sun W, Zhang Q, Wang R, Li Y, Sun Y, Yang L. Targeting DNA damage repair
for immune checkpoint inhibition: mechanisms and potential clinical applications.
Front Oncol. (2021) 11:648687. doi: 10.3389/fonc.2021.648687
frontiersin.org

https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1186/s13287-019-1187-z
https://doi.org/10.3390/life13051225
https://doi.org/10.1158/1078-0432.CCR-13-2311
https://doi.org/10.3389/fcell.2021.694071
https://doi.org/10.1186/s13046-020-01820-7
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1038/s41422-022-00627-9
https://doi.org/10.1158/2326-6066.CIR-16-0013
https://doi.org/10.1158/2326-6066.CIR-16-0013
https://doi.org/10.3389/fimmu.2018.00847
https://doi.org/10.1248/bpb.b21-00966
https://doi.org/10.21037/jtd-22-73
https://doi.org/10.3389/fonc.2022.888951
https://doi.org/10.3389/fonc.2020.577530
https://doi.org/10.1186/s12957-022-02556-8
https://doi.org/10.3892/or.2016.4869
https://doi.org/10.3389/fonc.2021.619013
https://doi.org/10.1371/journal.pone.0084944
https://doi.org/10.1186/s12929-015-0158-7
https://doi.org/10.21037/tcr.2019.01.24
https://doi.org/10.1016/j.cellimm.2014.05.008
https://doi.org/10.1309/AJCPKSHXI3XEHW1J
https://doi.org/10.1016/j.isci.2024.110205
https://doi.org/10.1038/nrclinonc.2017.166
https://doi.org/10.1186/s12943-017-0646-3
https://doi.org/10.1186/s12943-017-0646-3
https://doi.org/10.1016/j.addr.2020.07.013
https://doi.org/10.3390/metabo11110765
https://doi.org/10.3390/metabo11110765
https://doi.org/10.1136/jitc-2022-004616
https://doi.org/10.1136/jitc-2022-004616
https://doi.org/10.1038/s41586-019-0904-1
https://doi.org/10.1172/JCI127201
https://doi.org/10.1080/08941939.2019.1672839
https://doi.org/10.3390/cancers13050935
https://doi.org/10.1016/j.abb.2020.108581
https://doi.org/10.3390/cancers11050652
https://doi.org/10.1038/s41418-020-00724-5
https://doi.org/10.1038/s41418-020-00724-5
https://doi.org/10.3389/fgene.2022.975542
https://doi.org/10.1016/j.esmoop.2020.100006
https://doi.org/10.1016/j.lungcan.2021.10.007
https://doi.org/10.1016/j.plipres.2020.101055
https://doi.org/10.1016/j.plipres.2020.101055
https://doi.org/10.1016/j.coi.2012.12.003
https://doi.org/10.1038/cddis.2015.162
https://doi.org/10.1016/j.ebiom.2021.103409
https://doi.org/10.1016/j.it.2012.02.006
https://doi.org/10.1016/j.canlet.2015.06.022
https://doi.org/10.1016/j.canlet.2015.06.022
https://doi.org/10.1186/s13045-021-01115-0
https://doi.org/10.3389/fonc.2021.648687
https://doi.org/10.3389/fimmu.2024.1456719
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fu et al. 10.3389/fimmu.2024.1456719
80. Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic
strategies of EMT in tumor progression and metastasis. J Hematol Oncol. (2022)
15:129. doi: 10.1186/s13045-022-01347-8

81. Yang M, Nickels JT. MOGAT2: A new therapeutic target for metabolic
syndrome. Diseases. (2015) 3:176–92. doi: 10.3390/diseases3030176
Frontiers in Immunology 18
82. Chen W, Li Z, Bai L, Lin Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a
prevention and therapy target. Front Biosci (Landmark Ed). (2011) 16:1172–85. doi: 10.2741/3782

83. Chen F, Zhang Z, Leonard SS, Shi X. Contrasting roles of NF-kappaB and JNK in
arsenite-induced p53-independent expression of GADD45alpha. Oncogene. (2001)
20:3585–9. doi: 10.1038/sj.onc.1204442
frontiersin.org

https://doi.org/10.1186/s13045-022-01347-8
https://doi.org/10.3390/diseases3030176
https://doi.org/10.2741/3782
https://doi.org/10.1038/sj.onc.1204442
https://doi.org/10.3389/fimmu.2024.1456719
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Fatty acid metabolism prognostic signature predicts tumor immune microenvironment and immunotherapy, and identifies tumorigenic role of MOGAT2 in lung adenocarcinoma
	1 Introduction
	2 Materials and methods
	2.1 Lung adenocarcinoma datasets collection and pre-processing
	2.2 Construction and validation of FAMGs-associated prognostic signature
	2.3 Predictive utility of signature for patients’ relapse
	2.4 Tumor immune microenvironment analysis
	2.5 Immunotherapy prediction
	2.6 Differential expression and gene set enrichment analysis
	2.7 Cell culture and reagents
	2.8 CRISPR/Cas9-based knockout of MOGAT2 in NCI-H1299 cells.
	2.9 RT-qPCR
	2.10 Western blot assay
	2.11 Cell counting kit-8 assay
	2.12 Cell apoptosis assay
	2.13 Cell cycle assay
	2.14 Transwell migration assay
	2.15 Wound healing assay

	3 Results
	3.1 Identification of overall survival-related FAMGs
	3.2 Construction and validation of the prognostic signature based on FAMGs
	3.3 Validation of the prognostic signature in independent datasets
	3.4 Differentially expressed and functional enrichment analysis
	3.5 Predictive potential of the signature for patients’ relapse
	3.6 Tumor immune microenvironment analysis
	3.7 The signature correlates with anti-tumor immunity and therapy response
	3.8 MOGAT2 deficiency promotes proliferation of LUAD cells
	3.9 MOGAT2 inhibits migratory capabilities of LUAD cells
	3.10 Potential impact of MOGAT2 in the tumor microenvironment

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI Statement
	Publisher’s note
	Supplementary material
	References


