Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Sep 1;213(3):751–758. doi: 10.1042/bj2130751

The promotion of collagen polymerization by lanthanide and calcium ions.

C H Evans, B J Drouven
PMCID: PMC1152192  PMID: 6615457

Abstract

Ca2+ (1-5 mM) and lanthanide (20-250 microM) ions enhance the rate of polymerization of purified calf skin collagen (1.5 mg/ml) at pH 7.0 in the presence of 30mM-Tris/HCl and 0.2 M-NaCl. Both the nucleation phase and the growth phase of polymerization are accelerated. The activation energy of the growth phase, 239.3 +/- 24.3 kJ/mol (57.2 +/- 5.8 kcal/mol), is decreased to 145.6 +/- 9.6 kJ/mol (34.8 +/- 2.3 kcal/mol) by 5 mM-Ca2+ and to 75.3 +/- 4.6 kJ/mol (18.0 +/- 1.1 kcal/mol) by 25 microM-Sm3+. In contrast, the activation energy of the nucleation phase, 191.6 +/- 23.4 kJ/mol (45.8 +/- 5.6 kcal/mol), is only slightly decreased by Ca2+ or Sm3+. Collagen fibrils formed in the presence of Sm3+ are thinner than control fibrils, and more thermoresistant.

Full text

PDF
757

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam M., Bartl P., Deyl Z., Rosmus J. Reaction of gold with collagen in vivo. Experientia. 1964 Apr 15;20(4):203–204. doi: 10.1007/BF02135400. [DOI] [PubMed] [Google Scholar]
  2. Comper W. D., Veis A. Characterization of nuclei in in vitro collagen fibril formation. Biopolymers. 1977 Oct;16(10):2133–2142. doi: 10.1002/bip.1977.360161005. [DOI] [PubMed] [Google Scholar]
  3. Comper W. D., Veis A. The mechanism of nucleation for in vitro collagen fibril formation. Biopolymers. 1977 Oct;16(10):2113–2131. doi: 10.1002/bip.1977.360161004. [DOI] [PubMed] [Google Scholar]
  4. Cooper A. Thermodynamic studies of the assembly in vitro of native collagen fibrils. Biochem J. 1970 Jul;118(3):355–365. doi: 10.1042/bj1180355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Darnall D. W., Birnbaum E. R. Lanthanide ions activate alpha-amylase. Biochemistry. 1973 Aug 28;12(18):3489–3491. doi: 10.1021/bi00742a021. [DOI] [PubMed] [Google Scholar]
  6. Evans C. H., Mears D. C. Binding of the bone-seeking agent 99mTc-1-hydroxyethylidene-1,1-diphosphonic acid to cartilage and collagen in vitro and its stimulation by Er3+ and low pH. Calcif Tissue Int. 1980;32(2):91–94. doi: 10.1007/BF02408527. [DOI] [PubMed] [Google Scholar]
  7. Evans C. H., Tew W. P. Isolation of biological materials by use of erbium (III)--induced magnetic susceptibilities. Science. 1981 Aug 7;213(4508):653–654. doi: 10.1126/science.7256262. [DOI] [PubMed] [Google Scholar]
  8. Silver F. H., Trelstad R. L. Linear aggregation and the turbidimetric lag phase: type I collagen fibrillogenesis in vitro. J Theor Biol. 1979 Dec 7;81(3):515–526. doi: 10.1016/0022-5193(79)90049-3. [DOI] [PubMed] [Google Scholar]
  9. Steven F. S. The effect of chelating agents on collagen interfibrillar matrix interactions in connective tissue. Biochim Biophys Acta. 1967 Aug 15;140(3):522–528. doi: 10.1016/0005-2795(67)90526-0. [DOI] [PubMed] [Google Scholar]
  10. Takata M., Pickard W. F., Lettvin J. Y., Moore J. W. Ionic conductance changes in lobster axon membrane when lanthanum is substituted for calcium. J Gen Physiol. 1966 Nov;50(2):461–471. doi: 10.1085/jgp.50.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tew W. P. Use of the coulombic interactions of the lanthanide series to identify two classes of Ca2+ binding sites in mitochondria. Biochem Biophys Res Commun. 1977 Sep 23;78(2):624–630. doi: 10.1016/0006-291x(77)90225-x. [DOI] [PubMed] [Google Scholar]
  12. VONHIPPEL P. H., WONG K. Y. THE COLLAGEN GELATIN PHASE TRANSITION. I. FURTHER STUDIES OF THE EFFECTS OF SOLVENT ENVIRONMENT AND POLYPEPTIDE CHAIN COMPOSITION. Biochemistry. 1963 Nov-Dec;2:1387–1398. doi: 10.1021/bi00906a035. [DOI] [PubMed] [Google Scholar]
  13. WOOD G. C., KEECH M. K. The formation of fibrils from collagen solutions. 1. The effect of experimental conditions: kinetic and electron-microscope studies. Biochem J. 1960 Jun;75:588–598. doi: 10.1042/bj0750588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WOOD G. C. The formation of fibrils from collagen solutions. 2. A mechanism of collagen-fibril formation. Biochem J. 1960 Jun;75:598–605. doi: 10.1042/bj0750598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WOOD G. C. The heterogeneity of collagen solutions and its effect on fibril formation. Biochem J. 1962 Aug;84:429–435. doi: 10.1042/bj0840429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weinstock A., King P. C., Wuthier R. E. The ion-binding characteristics of reconstituted collagen. Biochem J. 1967 Mar;102(3):983–988. doi: 10.1042/bj1020983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Williams B. R., Gelman R. A., Poppke D. C., Piez K. A. Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. J Biol Chem. 1978 Sep 25;253(18):6578–6585. [PubMed] [Google Scholar]
  18. Williams R. J. Irish area section guest lecture. Biochem Soc Trans. 1979 Jun;7(3):481–509. doi: 10.1042/bst0070481. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES