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Abstract
Automated segmentation tools often encounter accuracy and adaptability issues when applied to images of different pathol-
ogy. The purpose of this study is to explore the feasibility of building a workflow to efficiently route images to specifically 
trained segmentation models. By implementing a deep learning classifier to automatically classify the images and route them 
to appropriate segmentation models, we hope that our workflow can segment the images with different pathology accurately. 
The data we used in this study are 350 CT images from patients affected by polycystic liver disease and 350 CT images from 
patients presenting with liver metastases from colorectal cancer. All images had the liver manually segmented by trained 
imaging analysts. Our proposed adaptive segmentation workflow achieved a statistically significant improvement for the 
task of total liver segmentation compared to the generic single-segmentation model (non-parametric Wilcoxon signed rank 
test, n = 100, p-value << 0.001). This approach is applicable in a wide range of scenarios and should prove useful in clinical 
implementations of segmentation pipelines.
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Introduction

Segmenting organs and structures affected by pathologies 
is a complex and challenging task. The diverse shapes, 
sizes, and structures of organs and lesions introduce unique 
effects on radiologic appearance, which in turn affects the 
performance of segmentation models. While a trained model 
may demonstrate high accuracy in segmenting a specific 
anatomical region with a particular pathology, it often fails 
to produce satisfactory results when confronted with new 
underlying pathologies that differ from what the model was 
trained on. This issue necessitates the development of robust 
and adaptable segmentation approaches.

Researchers have explored strategies to address the 
segmentation of various pathologies. One approach is to 
improve the generic segmentation models [1–3], which aim 

to capture common features of organ structures or regions 
of interest across various pathologies. However, they often 
struggle to account for the distinct characteristics and varia-
tions exhibited by different pathologies, leading to subopti-
mal segmentation outcomes. Another avenue of exploration 
is the multi-task learning [4, 5], which involves training a 
model conducting segmentation and classification in a 
model simultaneously. This approach aims to enhance seg-
mentation performance by leveraging shared knowledge 
and representations among different pathologies. However, 
multi-task learning can also be challenging, as manually 
adjusted multi-task weight is often imprecise, and the imbal-
ance issue of samples is difficult to address in the model.

In this study, we tackle the segmentation task of various 
pathology images in a two-step process. Initially, images 
are classified into distinct pathologies. Subsequently, images 
from each corresponding pathology category are segmented 
using a tailored segmentation model. These sequential 
steps constitute the innovative segmentation pipeline where 
images are automatically routed to the appropriate single-
pathology-specific model for segmentation. In real-life 
clinical workflow, especially when a large number of cases 
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are not available for various pathologies, this step-by-step 
approach can provide a practical and reliable solution. The 
data we used for this study are the polycystic liver disease 
(PLD) and liver metastases from colorectal cancer (MCC). 
PLD is a hereditary disorder characterized by the develop-
ment of multiple fluid-filled cysts in the liver [6–9]. Colo-
rectal cancer originates in the colon or rectum, with the liver 
being a common site for metastatic colorectal cancer (MCC) 
[10, 11]. Both PLD and MCC are medical conditions that 
can profoundly impact liver shape and function, leading 
to increased morbidity and mortality rates. Our pipeline is 
expected to achieve higher accuracies in the PLD and MCC 
liver segmentation. A generic segmentation model to seg-
ment both PLD and MCC pathologies simultaneously is also 
trained for the comparison with the pipeline.

Materials and Methods

Data

In our study, we constructed two datasets. A dataset com-
prised 350 CT scans of patients with PLD and another 
comprising 350 CT scans of patients with liver metastases 
from colorectal cancer (MCC). Each dataset was divided 
into 300 cases for training and validation, while 50 cases 
were reserved for testing. These 50 cases were a common 
set between the classification and segmentation steps. All 
images utilized in this study had corresponding liver seg-
mentation generated by image analysts as the ground truth 
(Table 1).

The PLD dataset includes patients with a mean age of 
57 years (range, 24 to 87), with males comprising 55% and 
females comprising 45% of the cohort. Regarding racial distri-
bution, 93% of the patients identify as White, while the remain-
ing patients belong to other races. The scanning manufacturers 

used in the dataset are as follows: 77% of the scans were con-
ducted using Siemens scanners (Munich, Germany), 17% were 
performed using GE scanners (Boston, USA), and 6% were 
conducted using Toshiba scanners (Tokyo, Japan). In terms 
of scan parameters, 53% of the scans have a slice thickness of 
5 mm, 27% have a slice thickness of 2.5 mm, and 13% have a 
slice thickness of 3 mm. The mean pixel size for the dataset is 
0.76 mm (standard deviation, 0.0818).

The MCC cohort consists of patients with a mean age 
of 67 years (range, 26 to 93), with males comprising 57% 
and females comprising 43%. Ninety-seven percent of the 
patients identify as White. Regarding the scanning equip-
ment used, 91% of the CT scans in this dataset were acquired 
using Siemens CT scanners, while the remaining scans were 
conducted using GE equipment. This information highlights 
the dominant presence of Siemens scanners in the dataset. 
Analyzing the scan parameters, it was observed that 50% of 
the scans have a slice thickness of 5 mm, indicating the level 
of detail captured in the images. Additionally, 46% of the 
scans have a slice thickness of 3 mm. These values provide 
insights into the variation in slice thickness within the data-
set. The mean pixel size for the MCC dataset is recorded as 
0.78 mm (standard deviation, 0.0813).

Methods

Figure 1a illustrates the overarching structure of our experi-
mental design. Initially, we employ a deep neural network 
classifier as the initial stage of our approach. Its purpose is 
to classify patient CT scans into either the PLD or MCC 
class. The output of this classifier plays a crucial role in 
determining the subsequent segmentation model to be 
employed. To be more precise, for each pathology under 
consideration (PLD or MCC), we have constructed a model 
utilizing the U-Net architecture [12].

Table 1   Summary of the 
polycystic liver disease (PLD) 
and metastases from colorectal 
cancer (MCC) data used for 
training, validation, and testing

Polycystic liver disease Metastases from 
colorectal cancer

Number of CT scans 350 350
Male-to-female ratio 1.22 1.33
Age, mean (min/max) 57 (24:87) 67 (26:93)
Race 93% White

7% Other
97% White
3% Other

Manufacturer model 77% Siemens
17% GE
6% Toshiba

91% Siemens
9% GE

Slice thickness 53% 5 mm
13% 3 mm
27% 2.5 mm
7% other

50% 5 mm
46% 3 mm
3% other

Pixel size, mean(std. deviation) 0.76 mm (0.0818) 0.78 mm (0.0813)



2188	 Journal of Imaging Informatics in Medicine (2024) 37:2186–2194

The workflow shown in Fig. 1b outlines the process of the 
application of a generic segmentation model that has been 
trained on both PLD and MCC data.

Classification

For the classification part of our system, the following 
models were investigated: ResNet [13], DenseNet [14], and 
EfficientNet [15]. Three hundred PLD scans and 300 MCC 
scans were used to create the training set. Four hundred fifty 
scans were randomly selected for the training and 150 scans 
for the validation. Fifty scans reserved from each of the PLD 
and MCC cohorts were used to create the test set.

The CT images were preprocessed before being used to 
train the classification models, as illustrated in Fig. 2. First, a 
CT window level of 180 HU (Hounsfield Unit) with a width 
of 440 HU was applied to enhance the soft tissue contrast. 
Next, the orientation of the CT images was standardized 
by rotating to orientation LPS (stands for “left, posterior, 
and superior”) for consistency. Then, images were resized 
to a uniform size of 128 × 128 × 128 pixels to reduce GPU 
memory usage and computational complexity. The resiz-
ing was performed using box interpolation to preserve the 
overall structure and texture of the image while reducing 
its size. Finally, data augmentation techniques including 
random rotation and flipping were applied to improve the 
model’s generalization performance and reduce the risk of 
overfitting the training data.

The classification models of ResNet, DenseNet, and Effi-
cientNet families were trained using the same pre-processed 
dataset and identical settings to ensure a fair comparison 
and selection. A total of 300 epochs was used in all the 
model training. A batch size of 8 was used for each epoch. 
The cross-entropy loss and Adam optimizer [16] were con-
figured for all the classification training models. In addi-
tion, a learning rate finder, which gradually increased the 
learning rate in a pre-training run to determine an optimal 
learning rate, was also implemented for all the model train-
ing. The performance of these models was compared on 
the validation set using key metric AUC (area under ROC 
curve). The DenseNet-121 model, which had the highest 
AUC, was selected as the best-performing classification 
model (Table 2). The confusion matrix for each model was 

analyzed to identify the strengths and weaknesses of each 
model in correctly classifying different categories. Metrics 
of accuracy, F1 score, precision, and sensitivity were used 
for sanity check and were included in Table 1 in the supple-
ment material.

Furthermore, the selected DenseNet-121 classification 
model, with an optimal learning rate 1e−5 determined by 
the learning rate finder, was tuned based on the validation 
set to adapt to the PLD and MCC liver segmentation task. 
The tuning had two key elements. First, dropout was added 
to prevent the model from overfitting. A search based on the 
validation set was conducted and a dropout rate of 0.2 was 
found to provide the best classification results while keep-
ing the model from overfitting. Second, class weighting was 
applied to the DenseNet-121 model. A weighting factor of 
4 was assigned to the PLD class after conducting a search 
using the validation set. This enabled the DenseNet-121 

Fig. 1   a The workflow of the 
adaptive segmentation pipeline 
and b the workflow of the 
generic segmentation model on 
the PLD and MCC CT scans. 
(PLD polycystic liver disease, 
MCC metastases from colorec-
tal cancer, DL deep learning)

Fig. 2   Preprocessing steps of the PLD and MCC CT images for the 
classification model training. Random rotations are available in 90, 
180, and 270°
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model to enhance its learning of PLD cases, resulting in 
improved accuracy during classification, as observed 
through the analysis. The benefits of class weighting are 
elaborated in the discussion section.

Segmentation

The 3D nnU-Net model [17] was used for this study. The 
nnU-Net Python package version 1.7.0 was utilized to train 
the model. The preprocessing of the images and masks was 
automatically handled by the Python package (including 
resampling, intensity normalization, augmentation). Three 
hundred PLD scans and 300 MCC scans were used to train 
the PLD and MCC segmentation models, respectively. 
Additionally, a combination of both 300 PLD scans and 
300 MCC scans was used to train the generic segmentation 
model. A test set consisting of 50 PLD and 50 MCC scans 
was used to evaluate the performance of both segmentation 
approaches. The segmentation test set was the same as that 
used for classification.

The training process involved fivefold cross-validation 
for all the segmentation models, with each fold trained for 
1000 epochs. The final model was an ensemble of five mod-
els obtained from the fivefold training process. The train-
ing procedure was executed on Nvidia A100 GPUs with 
80 GB of memory, utilizing a high-performance computing 
environment. The entire training process was completed in 
approximately 1 day.

Metrics

Multiple metrics were calculated to evaluate the per-
formance of the classification model and the segmenta-
tion model, with a primary emphasis on two metrics. To 
evaluate the classifier’s performance in classifying PLD 
and MCC pathology, area under ROC curve (AUC​) was 
used as the key metric in selecting the best classifica-
tion model in this study due to its ability to tell how well 
the model can separate the two classes. To evaluate the 
segmentation results, Dice similarity coefficient (Dice) 
was used as the main measurement metric. More metrics 
to evaluate the segmentation results and the definition of 
classification and segmentation metrics are included in 
the supplement material.

Statistical analysis

Nonparametric Wilcoxon signed-rank tests were used across 
all the statistical analyses in the results. Ninety five percent 
confidence interval (CI) based on statistically significant 
evidence at � = 0.05 was established for all the statisti-
cal analyses. All statistical analyses were performed with 
Python (version 3.8.13) and the Python SciPy library (ver-
sion 1.8.1). In overview, the following statistical analyses 
were performed to investigate and compare the results 
(Table 2 in the supplement material).

Firstly, a non-parametric Wilcoxon signed-rank test was 
conducted to compare the segmentation output of the pipeline 
with that of the single generic model on the 100 test scans. The 
null hypothesis assumed that the two Dice distributions were 
the same, while the alternative hypothesis considered them to 
be different. Similarly, another test was conducted to compare 
the pipeline segmentation output with the optimal output.

Additionally, for a more detailed comparison between the 
pipeline segmentation output and the single model output, 
non-parametric Wilcoxon signed-rank tests were performed 
on the test scans within each classification category, namely, 
“PLD  -> PLD,” “PLD  -> MCC,” “MCC  -> MCC,” and 
“MCC -> PLD.”1

Furthermore, to investigate whether correct classification 
leads to improvement in the adaptive segmentation pipeline, 
a non-parametric Wilcoxon signed-rank test was executed 
by comparing 50 PLD test scans segmented with the correct 
model against those segmented with the incorrect model. 
The same test was conducted for the 50 MCC test scans.

Results

Classification Results

One hundred test scans were used to evaluate the performance 
of the tuned DenseNet-121 model. For the 50 scans of PLD, 

Table 2   Performance of various classification models evaluated on the PLD and MCC validation set (150 scans were used for the validation out 
of 600 training scans) using area under ROC curve (AUC)

Model DenseNet (DN) EfficientNet (EN) ResNet (RN)

DN-121 DN-169 DN-201 DN-264 EN-b0 EN-b1 EN-b2 EN-b3 RN-10 RN-18 RN-34

AUC​ 0.970 0.969 0.964 0.966 0.925 0.929 0.968 0.962 0.936 0.936 0.961

1  “PLD -> PLD” represented the PLD scans classified as PLD class 
and segmented with the PLD-trained U-Net model; “PLD -> MCC” 
represented the PLD scans classified as MCC class and segmented 
with the MCC-trained U-Net model; same for “MCC -> MCC” and 
“MCC -> PLD”.
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43 were correctly classified as containing PLD pathology, and 
seven were misclassified as MCC. For the 50 scans of MCC, 46 
were correctly classified as containing MCC pathology, and four 
were misclassified as PLD pathology. The tuned DenseNet-121 
model achieved an AUC of 0.956, an accuracy of 89.0%, and 
an F1 score of 89.0% on the test set. It reached a precision of 
91.5% and sensitivity of 86.0% for the classification of the PLD 
class and a precision of 86.8% and sensitivity of 92.0% for the  
MCC class.

Interpretability of the classification model

To interpret the output of the tuned DenseNet-121 model, 
occlusion sensitivity maps were used. Figure 3 illustrates 
an example from a PLD patient scan and an example from 
a MCC patient scan. Regions where the model’s prediction 
was most sensitive to the changes or occlusions in the image 
were displayed in red. For all the correctly predicted PLD 
and MCC scans, their occlusion sensitivity maps displayed a 
high sensitivity on the normal-appearing liver parenchyma. 
This suggested that the classification model depended on the 
normal-appearing liver parenchyma in the images to make 
decisions about whether it was a PLD scan or an MCC scan.

Segmentation results

The results of the adaptive segmentation pipeline were 
evaluated after the training of the DenseNet-121 model and  
U-Net segmentation models. Figure 4 illustrates examples 
of the adaptive segmentation pipeline output on the PLD 
and MCC patient scans. In Fig. 5, the Dice comparison 
between the pipeline segmentation output, the optimal seg-
mentation output, and the generic single U-Net segmenta-
tion output is provided. The optimal segmentation output 
refers to the segmentation results where all 100 PLD and 
MCC test scans were directed to the correct segmentation 
models using ground truth labels (equivalent to a 100% cor-
rect classifier in the pipeline). No statistically significant 
difference was found using the Wilcoxon signed-rank test 
between the pipeline segmentation output (average Dice 
of 0.971) and the optimal output (average Dice of 0.971) 
(n = 100, p-value = 0.131). However, a statistically signifi-
cant difference was found using the Wilcoxon signed-rank 
test between the pipeline segmentation output (average Dice 
of 0.971) and the single segmentation model output (average 
Dice of 0.964) (n = 100, p-value << 0.001), suggesting the 
pipeline segmentation output performs better overall than 

Fig. 3   Illustration of occlusion sensitivity maps for the correctly clas-
sified PLD (top row) and MCC (bottom row) scans in the test set. The 
first column displays the original image; the second column displays 

the occlusion sensitivity map; and the third column displays the blend 
of the image and the occlusion sensitivity map
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the generic single-model segmentation output despite the 
occasional pathology classification errors (Table 3).

Figure 6 depicts the boxplot of the adaptive segmenta-
tion pipeline output on the test set, grouped by the real label 
of the scan and the segmentation model used. They are the 
same four categories presented in the classification results. 
A comparison of the Dice output between the segmentation 
pipeline and single segmentation model in each situation is 
presented in Table 3:

For the PLD test scans that were correctly classified and 
segmented, a statistically significant difference was found 
using the Wilcoxon signed-rank test between the pipeline 
segmentation output (average Dice of 0.962) and the single 
segmentation model output (average Dice of 0.956) (n = 43, 
p-value << 0.001), with observed average Dice coefficient 
suggesting the pipeline segmentation output performs better 
than the generic single-model segmentation output; for the 
incorrectly classified and segmented PLD test cases, a statis-
tically significant difference was found using the Wilcoxon 

Fig. 4   Illustration of the pipeline segmentation results for a PLD 
patient (top row) and an MCC patient (bottom row). The first column 
displays the original image; the second column showcases the pipe-
line’s segmentation outcome; and the third column presents manual 

liver segmentations by analysts. Both the PLD and MCC image were 
correctly classified and segmented using the pathology-specific seg-
mentation model. The blue arrows point to areas where the pipeline 
segmentation results are different from the ground truth

Fig. 5   Boxplot comparing Dice similarity coefficient (Dice) of the 
adaptive segmentation pipeline output, optimal segmentation output, 
and single nnU-Net segmentation output. The optimal segmentation 
output refers to the segmentation results where all PLD and MCC test 
scans were directed to the correct segmentation models using ground 
truth labels
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signed-rank test between the pipeline segmentation output 
(average Dice of 0.964) and the single segmentation model 
output (average Dice of 0.967) (n = 7, p-value = 0.0156), 
with observed average Dice coefficient suggesting the pipe-
line segmentation output performs slightly worse than the 
generic single-model segmentation output; for the MCC 
test scans that were correctly classified and segmented, 
a statistically significant difference was found using the 
Wilcoxon signed-rank test between the pipeline segmen-
tation output (average Dice of 0.980) and the single-seg-
mentation model output (average Dice of 0.970) (n = 46, 
p-value << 0.001), with observed average Dice coefficient 

suggesting the pipeline segmentation output performs better 
than the generic single-model segmentation output; for the 
MCC test scans that were incorrectly classified and seg-
mented, no statistically significant difference was found 
using the Wilcoxon signed-rank test between the pipeline 
segmentation output (average Dice of 0.974) and the single-
segmentation model output (average Dice of 0.984) (n = 4, 
p-value = 0.125).

In summary, although performance was worse when the 
classifier result was incorrect and the wrong pathology-spe-
cific model was used, the number of classifier errors was 
low enough that the pipeline model overall performed better 
on the entire set of test cases.

Discussion

Our adaptive segmentation pipeline showed improved 
results in the accuracy and consistency of liver segmen-
tation in PLD and MCC CT scans, compared to generic 
models trained on a mixture of the two pathologies. We 
hope that it provides a more effective and adaptable 
approach to provide a comprehensive and reliable solu-
tion for segmenting organs affected by diverse patholo-
gies. Improvements in the reliability and generalizability 
of automated segmentation algorithms can reduce the time 
and resources required for manual classification and seg-
mentation. This pipeline approach could be a valuable tool 
for research and clinical practice.

While building the adaptive segmentation pipeline, 
there were several considerations. The first was to have 
an accurate classification model. Figure 7 shows the box-
plot of the Dice of 50 PLD test scans and 50 MCC test 
scans segmented with the correct or incorrect models. A 

Table 3   Nonparametric Wilcoxon signed-rank test results on the Dice output of pipeline vs optimal, pipeline vs single model, and different cat-
egories of pipeline vs. single model

Samples Number of scans Pipeline
Dice avg.

Optimal
Dice avg.

p value

All 100 test scans 100 0.971 0.971 0.131
Samples Number of scans Pipeline

Dice avg.
Single model
Dice avg.

p value

All 100 test scans 100 0.971 0.964 1.57 × 10
−5

Samples (real label -> segmentation 
model)

Number of scans Pipeline
Dice avg.

Single model
Dice avg.

p value

PLD -> PLD 43 0.962 0.956 4.84 × 10
−4

PLD -> MCC 7 0.964 0.967 0.0156
MCC -> PLD 4 0.974 0.984 0.125
MCC -> MCC 46 0.980 0.970 2.15 × 10

−8

Fig. 6   Boxplot of Dice similarity coefficient (Dice) of the adaptive 
segmentation pipeline output grouped by the real label of the scan 
and the segmentation model used for that scan. For the 50 PLD and 
50 MCC scans, 43 PLD scans were classified as PLD, 7 PLD scans 
were classified as MCC, 4 MCC scans were classified as PLD, and 46 
MCC scans were classified as MCC. These scans categorized here are 
the same as the ones presented in the classification results
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nonparametric Wilcoxon signed-ranks test on the Dice 
of “PLD -> PLD” (average 0.963) and “PLD -> MCC”  
(average 0.775) suggested a difference in the segmentation 
accuracy (n = 50, p-value << 0.001), with observed Dice 
coefficients indicating the PLD -> PLD resulted in higher 
accuracy (Table 4). Similarly, the nonparametric Wilcoxon  
signed-ranks test on the Dice of “MCC -> MCC” (aver-
age 0.980) and “MCC  -> PLD” (average 0.937) sug-
gested a difference in the segmentation accuracy (n = 50, 
p-value << 0.001), with observed Dice coefficients indi-
cating the MCC  -> MCC resulted in higher accuracy 
(Table 4). Thus, it is important to have an accurate clas-
sifier in the adaptive pipeline so that the CT scans can be 
segmented with the “correct” model.

The second consideration was to find the optimal balance 
between the classification model complexity and generali-
zation performance. Increasing the complexity of the clas-
sification model such as using more layers often resulted in 

improved training performance but decreased generalization 
performance due to overfitting of the model. To overcome 
this, the dropout technique was used to prevent overfitting 
and improve generalization performance. Of note, the opti-
mal dropout rate can depend on the image size used, avail-
able GPU memory, and the particular segmentation task.

Third, the imbalance of classifying and segmenting PLD 
and MCC scans was considered. Although the number of CT 
scans for training is the same for each class, the classifica-
tion model has different levels of difficulty in classifying 
one pathology from the other. In this study, the classifica-
tion model tended to make more mistakes by classifying the 
PLD scans as MCC. Similarly, the segmentation model had 
different abilities for segmenting the PLD and MCC scans 
with the PLD scans being more challenging to segment, 
likely due to a more lobulated liver contour. For example, 
in Table 4, the “PLD -> PLD” category had a lower Dice 
average (0.963), than the MCC -> MCC category (0.980). 
The imbalancing nature of this task would lead to worse seg-
mentation results for misclassified PLD scans than for mis-
classified MCC scans, as shown in Fig. 7. Therefore, it was 
beneficial to apply class weighting to weight the PLD class 
more during classification so that fewer PLD scans were 
misclassified as MCC. Figure 6 demonstrates the improved 
segmentation performance of class weighting in the Dice 
score distribution.

Lastly, we analyzed the PLD and MCC scans with low 
Dice scores in the adaptive segmentation pipeline results 
(the ones outside the error bar in the pipeline output in 
Fig. 5). Although the livers had large degree of anatomic dis-
tortion, these scans were correctly classified by the adaptive 
segmentation pipeline (Table 5). Their segmentation results 
are better than the ones from the single segmentation model. 
No systematic reason of misclassification was identified.

Limitations

While our proposed adaptive segmentation pipeline has shown 
improved segmentation results, it also has limitations. Firstly, 
our proposed pipeline requires a classification step in its initial 

Fig. 7   Boxplot of Dice similarity coefficient (Dice) of the test scans 
(50 PLD and 50 MCC) segmented with the “correct” or “incorrect” 
U-Net model. For example, “PLD  -> PLD” represents the Dice dis-
tribution of 50 PLD scans all segmented with the PLD-trained U-Net 
model; “PLD  -> MCC” represents the Dice distribution of 50 PLD 
scans all segmented with the MCC-trained U-Net model

Table 4   Nonparametric Wilcoxon signed-rank tests on the 50 PLD test scans correctly segmented vs incorrectly segmented, and on the 50 MCC 
scans correctly segmented vs incorrectly segmented

Samples Number of scans PLD -> PLD
Dice avg.

PLD -> MCC
Dice avg.

p value

50 PLD test scans 50 0.963 0.775 1.13 × 10
−8

Samples Number of scans MCC -> MCC
Dice avg.

MCC -> PLD
Dice avg.

p value

50 MCC test scans 50 0.980 0.937 1.23 × 10
−9
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phase, which poses a challenge to the training of an accurate 
classifier. Secondly, our two-step process may demand more 
effort and computing resources compared to the generic 
approach. Thirdly, the intricate difficult cases rely on a further 
update of the segmentation model in the pipeline to improve 
the segmentation accuracy in those cases. Fourthly, due to lim-
ited data availability, only a limited number of PLD and MCC 
pathology CT scans (350 scans each) are used for this feasibil-
ity study, and a binary classifier is trained in this pipeline. To 
enable broader classification possibilities, a multi-class clas-
sifier is necessary for the first classification step.

Conclusion

In this research, we have introduced an adaptive liver seg-
mentation pipeline designed to effectively segment images of 
different pathologies. The pipeline leverages a deep learning 
classifier to categorize the images and then directs them to 
the appropriate models for segmentation. The results of our 
study show a significant statistical improvement in segmenta-
tion compared to using a generic single segmentation model 
trained on a pooled dataset of both pathologies. This approach 
could integrate specialized segmentation models into a unified 
workflow, facilitating the segmentation of diverse images and 
enabling a potential solution for clinical applications.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10278-​024-​01072-3.
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Table 5   Comparison of the difficult-to-segment PLD and MCC scans 
in the test set when segmented with the adaptive segmentation pipe-
line vs. the single-segmentation model

Patient scan Real label Predicted label Pipeline Dice Single 
model 
Dice

1 MCC MCC 0.807 0.649
2 MCC MCC 0.871 0.670
3 PLD PLD 0.905 0.824
4 PLD PLD 0.941 0.827
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