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Abstract
Radiomics features have been widely used as novel biomarkers in the diagnosis of various diseases, but whether radiomics features 
derived from hematoxylin and eosin (H&E) images can evaluate muscle atrophy has not been studied. Therefore, this study aims to 
establish a new biomarker based on H&E images using radiomics methods to quantitatively analyze H&E images, which is crucial for 
improving the accuracy of muscle atrophy assessment. Firstly, a weightless muscle atrophy model was established by laying macaques 
in bed, and H&E images of the shank muscle fibers of the control and bed rest (BR) macaques were collected. Muscle fibers were 
accurately segmented by designing a semi-supervised segmentation framework based on contrastive learning. Then, 77 radiomics 
features were extracted from the segmented muscle fibers, and a stable subset of features was selected through the LASSO method. 
Finally, the correlation between radiomics features and muscle atrophy was analyzed using a support vector machine (SVM) classi-
fier. The semi-supervised segmentation results show that the proposed method had an average Spearman’s and intra-class correlation 
coefficient (ICC) of 88% and 86% compared to manually extracted features, respectively. Radiomics analysis showed that the AUC 
of the muscle atrophy evaluation model based on H&E images was 96.87%. For individual features, GLSZM_SZE outperformed 
other features in terms of AUC (91.5%) and ACC (84.4%). In summary, the feature extraction based on the semi-supervised seg-
mentation method is feasible and reliable for subsequent radiomics research. Texture features have greater advantages in evaluating 
muscle atrophy compared to other features. This study provides important biomarkers for accurate diagnosis of muscle atrophy.
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Introduction

Long term in orbit flight can easily lead to the occur-
rence of weightless muscle atrophy, which greatly hinders 
the development of the aerospace industry. According to 

previous research reports, during space flights, the volume 
of the gastrocnemius and quadriceps muscles decreased by 
6.3% and 6.0%, respectively, and this reduction in muscle 
volume was caused by an imbalance in protein metabo-
lism in muscle tissue [1–3]. Therefore, accurate diagnosis 

 *	 Xiaoping Chen 
	 xpchen2009@163.com

 *	 Jimin Liang 
	 jiminliang@gmail.com

 *	 Yonghua Zhan 
	 yhzhan@xidian.edu.cn

1	 School of Life Science and Technology, & Engineering 
Research Center of Molecular and Neuro Imaging, Ministry 
of Education, Xidian University, Xi’an, Shaanxi 710126, 
China

2	 National Key Laboratory of Human Factors Engineering, 
China Astronaut Research and Training Center, 
Beijing 100094, People’s Republic of China

3	 School of Electronic Engineering, Xidian University, 
Xi’an, Shaanxi 710071, China

4	 National Key Laboratory of Space Medicine, China 
Astronaut Research and Training Center, Beijing 100094, 
People’s Republic of China

5	 Institute of Applied Acoustics, School of Physics 
and Information Technology, Shaanxi Normal University, 
Xi’an 710062, China

http://orcid.org/0000-0002-3883-3441
http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-024-01122-w&domain=pdf


2325Journal of Imaging Informatics in Medicine (2024) 37:2324–2341	

of weightless muscle atrophy and studying its biological 
mechanisms are important guarantees for successfully 
completing space missions. At present, muscle imaging 
and muscle biopsy are the two most important diagnostic 
methods in clinical research, but muscle imaging cannot 
directly reflect the biological mechanisms and determining 
factors of muscle atrophy, making it difficult to serve as 
a diagnostic standard for muscle atrophy [4]. On the con-
trary, muscle biopsy can understand the essence of muscle 
atrophy from the level of protein and muscle fiber struc-
ture and can directly and truly reflect the exact mechanism 
of muscle atrophy, thus becoming the recognized gold 
standard for the diagnosis of muscle atrophy at present [5, 
6]. In previous studies, clinicians often focused more on 
the relationship between morphometric parameters such 
as cross-sectional area (CSA), perimeter, and diameter of 
muscle fibers in H&E images and muscle atrophy when 
evaluating muscle atrophy. For example, with regard to the 
addressing muscle atrophy caused by Duchenne muscular 
dystrophy (DMD), Lau et al. evaluated muscle atrophy by 
measuring the CSA, diameter, and central nucleated fib-
ers (CNF) of muscle fibers [7]. Emily et al. investigated 
the effects of 14 days of bed rest (BR) on the content of 
skeletal muscle satellite cells and fiber type atrophy in 
middle-aged individuals by measuring the CSA of vari-
ous muscle fiber types [8]. However, the changes in these 
parameters may not be unique to muscle atrophy and may 
be influenced by the patient’s physical activity, dietary 
intake, and specific muscles, which make it difficult to 
accurately evaluate muscle atrophy [9]. Therefore, it is 
urgent to explore a new biomarker based on H&E images 
to improve the accuracy of muscle atrophy diagnosis.

Previous studies have shown that H&E images contain 
rich fine structural information of cells and tissues, which 
helps to better understand the biological mechanisms of 
diseases [10]. Therefore, a significant amount of research 
is devoted to analyzing the relationship between the quan-
titative results of fine cellular structure and the biologi-
cal mechanism of disease. Researchers have found that 
texture features based on gray-level symbiosis extracted 
from multiple spatial scales are closely related to disease 
biology such as cervical cells, breast cancer, and osteo-
sarcoma [11–13]. Based on these premises in our previ-
ous research on muscle atrophy, we found that the loss of 
muscle-derived proteins and increased protein hydrolysis 
in muscle fibers can have a certain impact on the density 
of normal muscle tissue, and this impact may be reflected 
in changes in potential features of H&E images [14, 15]. 
Therefore, quantitative analysis of derived features from 
muscle fiber H&E images may provide a new method 
for accurately evaluating muscle atrophy. Based on this 
assumption, it is crucial to effectively and quickly obtain 
H&E image-derived features, and radiomics provides a 

highly feasible analysis tool for this purpose. Radiomics 
can extract a large number of quantitative features reflect-
ing morphological, intensity, and texture attributes from 
medical images through high-throughput calculations, 
exploring the relationship between medical images and 
potential visual features. Many studies have demonstrated 
the ability of radiomics features as new biomarkers for 
evaluating diseases [16, 17]. For example, Granata et al. 
demonstrated the effectiveness of radiomics features 
obtained from computed tomography (CT) as biomark-
ers in lung adenocarcinoma patients who benefited from 
immunotherapy in 2021 [18]. Guerrisi et al. explored a 
biomarker for survival prediction and response imaging 
in patients with metastatic melanoma treated with PD-1 
inhibitor nivolumab using CT texture features [19]. In 
addition, radiomics has recently gained extensive explora-
tion in analyzing the relationship between features derived 
from H&E images and the biological mechanisms of dis-
eases, indicating the ability of radiomics features as bio-
markers in evaluating disease pathology [20]. However, 
whether radiomics features derived from H&E images can 
reflect the state of muscle atrophy has not been studied 
yet. Therefore, based on this goal, exploring and establish-
ing the quantitative relationship between radiomics fea-
tures derived from H&E images and muscle atrophy will 
provide a new approach for accurately diagnosing patients’ 
muscle atrophy status.

However, there are some limitations to analyzing H&E 
images by radiomics, among them is ROI segmentation. 
At present, manual delineation of image ROI regions and 
their feature extraction still has certain potential value, espe-
cially for models that are easier to interpret and the ability 
to learn on finite datasets. However, this manual delineation 
method poses certain challenges in solving issues such as 
the large number of muscle fibers and low-contrast H&E 
images. Therefore, it is very useful to study a segmentation 
method that learns a large amount of unlabeled data given 
a small amount of labeled data. With the introduction of 
deep learning (DL), semi-supervised segmentation methods 
have emerged [21] and were successfully applied in nuclear 
segmentation of pathological images, demonstrating more 
replicable and effective radiomics features [22–24]. Based 
on the above analysis, we assume that the combination of 
semi-supervised segmentation and radiomics can extract 
more valuable information from H&E images, thereby bet-
ter evaluating and classifying the state of muscle fibers in 
muscle atrophy. To our knowledge, there are currently no 
complete reports on the combination of semi-supervised 
segmentation of muscle fibers based on H&E images and 
radiomics research.

The aim of this study is to develop a method to evaluate 
the relationship between the state of muscle fibers during 
muscle atrophy and radiomics features derived from H&E 
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images and to explore a potential biomarker that can evalu-
ate muscle atrophy. To address the time-consuming and 
labor-intensive issue of manually labeling muscle fibers, 
this study proposes a semi-supervised segmentation frame-
work based on contrastive learning and explores the feasibil-
ity of this method in radiomics analysis. The segmentation 
model is mainly composed of a transformer and CNN, which 
uses a dual encoder branch, instead of the traditional single 
encoder branch structure to extract rich local features and 
global contextual information. Through enhancing the intra-
class compactness and inter-class separability of local and 
global information of muscle fibers, valuable information 
is extracted from unlabeled data. The whole workflow is 
shown in Fig. 1.

Related Work

Evaluation of Muscle Atrophy Based  
on Pathological Images

Skeletal muscle is one of the largest organs in the human 
body. However, long-term exposure to microgravity can 
lead to severe decline of the skeletal muscle system, which 
is mainly manifested as the reduction in muscle volume, 
the decrease in muscle fiber CSA, and the change of mus-
cle fiber types. Previous research results have shown that 
neuromuscular activity decreases by 35–40% after a space 
flight, and the average leg extensor muscle strength of astro-
nauts decreases by 20% after 28 days of flight [25–27]. To 

reduce these risks, maintaining astronaut strength through 
early diagnosis and treatment of muscle atrophy is crucial 
for achieving long-term space travel and exploration.

At present, muscle histological examination is a routine 
method for studying muscle atrophy. In clinical practice, 
H&E staining and immunofluorescence staining are com-
monly used to examine muscle histology and muscle fiber 
types, respectively. H&E staining can be used for morpho-
logical analysis of muscle fibers, such as muscle fiber diam-
eter, CSA, and regenerated muscle fibers. By calculating 
the CSA, perimeter, and diameter of each muscle fiber in 
the H&E image, the degree of muscle atrophy and changes 
can be evaluated [28, 29]. Compared to the currently used 
imaging systems, including CT, magnetic resonance imag-
ing (MRI), ultrasound, and electromyography, histological 
analysis methods are very effective tools for determining the 
morphological indicators of muscle health status. Quanti-
tative analysis of muscle tissue morphometry can provide 
insights into the dynamic adaptation of skeletal muscle 
fibers during muscle atrophy [30]. However, evaluating 
muscle atrophy by calculating parameters such as CSA has 
certain limitations, as these indicators are influenced by 
the patient’s physical activity, dietary intake, and specific 
muscles, making it difficult to effectively evaluate muscle 
atrophy [9]. Therefore, it is necessary to search for a new 
potential biomarker for evaluating muscle atrophy through 
H&E images. In this study, an analysis framework for mus-
cle atrophy based on radiomics was established using H&E 
images obtained from the shank muscle tissue of macaques 
as the analysis object.

Fig. 1   Overall workflow of the radiomics framework
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A Semi‑supervised Medical Image Segmentation 
Method Using DL

In recent years, semi-supervised learning has attracted 
increasing attention in the field of medical imaging. Com-
pared with fully supervised methods, semi-supervised 
methods utilize a large amount of available unlabeled data 
to supplement a small number of labeled datasets in order 
to address the drawbacks of manual annotation work being 
time-consuming and labor-intensive, as well as the scarcity 
of labeled data [21]. Traditional semi-supervised segmenta-
tion methods usually use artificially designed shallow fea-
tures, which have limited representation ability, especially 
for medical images with severe noise interference and low 
contrast, and cannot achieve ideal segmentation results. 
Compared with the above segmentation methods, the semi-
supervised method based on DL utilizes representation 
learning to learn data-driven features, which can provide 
accurate segmentation results [31, 32]. In this study, in order 
to better utilize unlabeled data, we adopted consistency 
learning and contrastive learning to improve the segmenta-
tion performance of the network. For consistency learning, 
a mean teacher (MT) model was proposed in 2017, which 
updates the teacher’s parameters through weight averaging 
and performs consistency learning under different data per-
turbations [33]. Subsequently, on the basis of MT, more and 
more studies have improved it based on different medical 
image characteristics and tasks and used different consist-
ency strategies to improve the prediction accuracy of unla-
beled data. For example, Yu et al. proposed a new uncer-
tainty aware semi-supervised framework that effectively 
utilizes unlabeled data by encouraging consistent predic-
tions of the same input under different perturbations [34]. 
However, the learning ability of the model is subject to error 
supervision from unlabeled data, neglecting the relationship 
between labeled and unlabeled data, resulting in inaccurate 
prediction results. Lei et al. proposed a dynamic convolu-
tional-based adversarial self-ensembling network (ASE-Net) 
to address this issue. Firstly, adversarial consistency train-
ing was used to obtain a prior relationship between labeled 
and unlabeled data, and then, a dynamic convolution-based 
bidirectional attention component (DyBAC) was used to 
improve the feature representation ability of ASE-Net [35]. 
However, the network models lack the utilization of the fea-
ture structure of the entire dataset, ignoring the similarities 
or differences between different features, which can lead to 
unstable training and reduced segmentation performance. 
To address this issue, Lou et al. proposed a semi-supervised 
segmentation network based on contrastive learning with 
minimum–maximum similarity (MMS), which evaluates the 
consistency of unlabeled predictions through pixel contrast 
loss between positive and negative pairs [36]. In order to 
make it easier for the deep model to learn the representation 

of target distribution, Wu et al. added a patch level contras-
tive learning module on the basis of pixel level contrastive 
learning, strengthening the compactness between features 
and better segmenting of the nucleus in tissue pathology 
images [37]. Based on the above research foundation, we 
propose a semi-supervised segmentation network based on 
local–global feature contrastive learning tasks to learn bet-
ter general features from muscle fibers in unlabeled H&E 
images in this study.

Radiomics

Radiomics is a method of extracting quantitative image fea-
tures from medical images, which improves decision support 
for tumor diagnosis in a low-cost and non-invasive manner. 
The features extracted by radiomics include the intensity, 
shape, texture, and wavelet information of the target area, 
which can reveal the diagnosis, prediction, and prognosis 
of cancer patients through their correlation with objective 
response criteria such as survival or treatment response 
[38, 39]. Although radiomics is often applied to tumor dif-
ferentiation and grading in medical images, it has recently 
expanded to predict pathological tissue images. Chen et al. 
established a machine learning (ML) algorithm based on 
pathological data to construct and cross-verify the auto-
matic diagnosis and prognosis model, solving the problem 
that traditional histopathology conducted by pathological 
experts through the naked eye cannot accurately diagnose 
bladder cancer [40]. Kim et al. utilized tissue feature engi-
neering technology to extract texture features based on first-
order statistics (FOS) from staining channels and classified 
tumors based on important features [41]. Based on the above 
research reports, radiomics models have shown potential in 
quantitative characterization of pathological tissues, provid-
ing new ideas for evaluating muscle atrophy. To our knowl-
edge, there have been no published studies on whether a 
radiomics model based on H&E pathological images can be 
used to evaluate muscle atrophy. In this study, we utilized 
radiomics techniques to identify quantitative imaging fea-
tures related to changes in muscle fibers after muscle atro-
phy and explore their ability to evaluate novel biomarkers 
for muscle atrophy.

Materials and Method

Animal Model Establishment

This study investigated muscle atrophy caused by weight-
lessness in a simulated space environment by establishing 
a BR macaque model (Fig. 2A). We collaborated with the 
Chinese Astronaut Training Animal Experiment Center and 
used six normal macaques as the experimental subjects, with 
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an average age of 6 years and all males. They were ran-
domly divided into control groups (n = 3) and BR groups 
(n = 3); the BR group was subjected to a − 10° continuous 
42-day BR to model a space weightlessness environment 
and establish a weightless muscle atrophy model [42]. The 
CSA and perimeter changes of each experimental group 
on day 42 are shown in Fig. 2D. All animal experiments 
were approved by Institutional Animal Care and Use Com-
mittee of China Astronaut Research and Training Center 
(ACC-IACUC-2019–2002).

Semi‑supervised Segmentation Method

Overview

The proposed semi-supervised segmentation method is based 
on the MT framework, and the specific structure is shown in 
Fig. 3A. The student and teacher models share the same archi-
tecture, consisting of a segmentation network and a projector. 
In the segmentation network, a dual encoder segmentation 
network composed of a U-net framework–based transformer 
and CNN is used to capture both local features and global 
contextual information of muscle fibers. In the supervised 
branch, the labeled data are utilized by calculating the loss 
(cross-entropy + Dice loss) between the predicted results of the 
network and the ground truth (Fig. 3, blue arrows). In unsuper-
vised branches, the global features extracted from the trans-
former encoder branch and the local features extracted from 
the CNN encoder branch are compared and learned through 
the output features of the projector, and the prediction results 
output by the student model and the pseudo labels output by 
the teacher model are uniformly regularized. This can drive 
the network to extract useful information from unlabeled data. 
Figure 4 shows the visual process of the pseudo-label evolu-
tion of the teacher model output, the training updates every 
ten epochs, the contour of muscle fibers gradually approaches 
ground truth, and non-muscle fiber areas gradually decrease. 

In the tenth round, most of the muscle fibers have been accu-
rately predicted.

The weighted sum formula for the total loss of the entire 
semi-supervised segmentation model is as follows:

where LGcontra and LLcontra represent the contrastive learn-
ing loss of global contextual information and the contras-
tive learning loss of local features, respectively, Lcons is an 
unsupervised consistency loss based on cross-entropy, and 
� is the weight factor used to balance the impact of each 
loss on the model. We set �cons as a slope weighting coef-
ficient, as shown in formula (2), where max_epoch is the 
maximum epoch for the current training, ep is the current 
training epoch, �sup = 1 , �Gcontra = 0.1 , and �Lcontra = 0.1 . In 
this study, the training parameters of teacher model �t were 
updated by setting the exponential moving average (EMA) 
of student model weights.

Local–Global Feature Contrastive Learning

In this work, due to the irregular shape changes and low 
contrast between muscle fibers and non-muscle fibers in 
H&E images, it is difficult to accurately distinguish the 
differences between muscle fibers and background pixels. 
Therefore, we designed a dual encoder input branch on the 
major segmentation framework, which integrates the global 
context features extracted by the transformer encoder on the 
basis of local features extracted by traditional convolutional 
neural network (CNN) encoders (as shown in Fig. 3B). We 
transferred the same image to the student and teacher mod-
els separately and projected the features output by the dual 
encoder onto the low-dimensional feature map. We sampled 

(1)
Loss = �sup ∗ Lsup + �Gcontra ∗ LGcontra

+ �Lcontra ∗ LLcontra + �cons ∗ Lcons

(2)�cons = 0.1 ∗ e−5∗(1−ep∕max_epoch)∗(1−ep∕max_epoch)

Fig. 2   Example of H&E muscle 
fiber images. A The process of 
establishing a weightlessness 
model for macaques. B The 
H&E image of normal shank 
muscle tissue, with the blue area 
indicating normal muscle fibers. 
C H&E image of the atrophic 
shank muscle tissue, with the 
red area indicating the atrophic 
muscle fibers. D On the 42nd 
day, changes in CSA and perim-
eter of normal and BR macaque 
muscle fibers
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positive/negative pairs in the global and local features of 
the muscle fibers. The function of projectors is to retain 
key contextual information in extracted features, which has 
been proven to be beneficial for contrastive learning [43]. 
Considering the feature of muscle fiber H&E images, our 
local–global feature contrastive learning module, as shown 
in Fig. 5, is developed based on the idea of contrastive 
learning from the original feature map. A feature map will 
be selected from the student model, and its corresponding 
position will be selected from the teacher model to sample 
its corresponding feature. Between these two patches, fea-
tures with the same position form patch level positive pairs, 

while opposite positions form negative pairs. The purpose 
is to pull in the distance between positive samples and push 
away irrelevant samples. Finally, we will calculate losses 
separately on the global–local features, aiming to provide 
the model with a deeper understanding of the interaction 
between local and global contextual information in H&E 
muscle fiber images.

Radiomics Feature Extraction

We extracted radiomics features of muscle fibers in H&E 
images, including normal and atrophic muscle fibers. We 

Fig. 3   Overall architecture. A The semi-supervised muscle fiber seg-
mentation framework updates the student network model through 
the weighted sum of Lsup , LGcontra , LLcontra , and Lcons , while the 
teacher model accelerates the update by performing EMA based on 

the weight of the student model. Blue arrows represent supervised 
branches, while red arrows represent unsupervised branches. B The 
main body segmentation network architecture consists of a trans-
former and a CNN for the input branch of the network
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extracted three sets of radiomics features to describe the ROI 
of muscle fiber regions: (1) shape features, (2) intensity fea-
tures, and (3) texture features. In radiology, shape features 
denote representation information of physical features of 
muscle fibers, such as CSA, perimeter, diameter, and Fou-
rier descriptors, which include the roundness, scattering, 
slenderness, and eccentricity of muscle fibers. The grayscale 
intensity feature is based on the differences in signal intensity 
histograms and distributions within muscle fibers. Texture 
features refer to the spatial distribution and grayscale varia-
tion patterns of pixels in an image, which extract quantitative 
texture features from gray-level co-occurrence matrix features 
(GLCM), gray-level size zone matrix features (GLSZM), 
gray-level run length matrix features (GLRLM), and neigh-
borhood gray-tone difference matrix features (NGTDM). All 

radiomics feature extraction and analyses were completed in 
the MATLAB toolkit [44]. In this study, a total of 77 radiom-
ics features were extracted, including 24 shape features, 11 
intensity features, and 42 texture features.

Radiomics Feature Selection

In order to improve the evaluation effect of muscle atrophy, 
it is necessary to screen out features related to muscle atro-
phy from a large amount of feature data. Firstly, normal-
ize the radiomics features into radiomics labels, which can 
eliminate the unit limitation of each feature data. Then, in 
order to solve the problem of overfitting caused by exces-
sive features, we use the binary discrete LASSO method 
to reduce the dimensionality of the feature space to con-
struct a logistic regression model [45]. LASSO is a con-
traction method that restricts model coefficients by adding 
L1 regularization, which limits as many model coefficients 
as possible to 0. This allows for feature selection, reducing 
unselected feature coefficients to 0. The objective function 
of LASSO regression is shown in formula (3):

where y is the dependent variable, X is the independent 
variable, β is the vector of regression coefficients to be esti-
mated, and λ is the hyperparameter controlling the strength 
of regularization. The value of 

∑
(y − X�)2 is minimized by 

(3)J(�) =
∑

(y − X�)2 +
∑

�|�|

(4)argmin
∑

(y − X�)2

(5)�
∑

|�| ≤ t

Fig. 4   Example of pseudo-labels

Fig. 5   Proposed local–global 
feature contrastive learning 
module for semi-supervised 
muscle fiber segmentation
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satisfying �
∑

��� ≤ t , where t ≥ 0 is the contraction param-
eter. For the LASSO filtering method, we use the “glmnet” 
package in R software to complete the feature selection and 
use a tenfold cross-validation method to select the most suit-
able λ. We use the remaining non-zero variables to construct 
a radiomics model.

Establishment and Evaluation of Radiomics Models

In this study, we first divided the data into a training set and 
a test set in a 4:1 ratio. Then, a muscle atrophy evaluation 
model was established based on the selected radiomics fea-
tures and SVM. The SVM classifier constructs a hyperplane 
that provides the best separation boundary, which maxi-
mally separates objects in high-dimensional space. SVM 
is widely used because it can effectively avoid overfitting 
and has stable classification performance [46]. We analyzed 
each feature and all feature sets using an SVM classifier and 
established a model. In order to obtain a stable radiomics 
model, we used a tenfold cross-validation method to opti-
mize the hyperparameters on the training set. Finally, the 
performance of the radiomics model was evaluated by the 
mean area under curve (AUC) and mean accuracy (ACC) in 
the training and validation sets.

Statistical Analysis

We used Matlab2019a (MathWorks, Natick, USA) and R 
software version 4.2.1 for the statistical analysis. We used 
Matlab2019a to extract features and calculate AUC of mus-
cle fibers in H&E images. We used R software package 
“glmnet” for LASSO feature selection. We used a bilateral 
double sample t-test or Mann–Whitney test to evaluate the 
inter-group differences between normal and atrophic mus-
cle fibers in each feature, depending on whether they are 
normally distributed. If the p-value is less than 0.05, the 
results are considered statistically significant. Spearman’s 
correlation coefficient and intra-class correlation coefficient 
(ICC) were used to evaluate the impact of segmentation on 
radiomics features, where ICC evaluates the consistency 
between automatic segmentation and manual segmentation 
features [47].

Experiments and Results

Dataset

Macaque Dataset

This study used H&E images of the calves of six macaques 
as experimental data. We prepared glass slides according 

to standard procedures, including slicing and fixed frozen 
sections on a freezing microtome (Cryotome E, Thermo), 
followed by cutting 3-µm-thick sections and staining them 
with H&E, where eosin renders the cytoplasm red. We 
placed tissue slices under a pathological scanner (Panno-
ramic MIDI, 3DHISTECH, Hungary) to capture images at 
a magnification of × 20. A total of six muscle tissue H&E 
images were obtained, with the size of 1920 × 1017 for each 
H&E image (Fig. 2B, C). The muscle fiber labeling in all 
six H&E whole-slice images was performed by two experi-
enced pathologists (over 2 years of work experience) on the 
Matlab Image Labeler App. In order to adapt to the training 
of semi-supervised segmentation models, this study used 
the overlap method to crop 6 H&E images and ground truth 
into 540 small patches of size 256 × 256, with an overlap 
step size of 64. In this study, 540 images were allocated in 
an 8:2 ratio, with a training set of 432 and a testing set of 
108. We randomly selected 25% of the images in the training 
set as labeled data, leaving 324 images as unlabeled data. 
The 108 images included in this test set all have manually 
labeled ground truth.

MoNuSeg Dataset

This dataset contains a total of 44 H&E images, of which 
2163 annotated nuclei from 30 H&E images were used 
for training and 7223 annotated nuclei from 14 H&E 
images were used for testing [48]. The size of each image 
is 1000 × 1000. These images come from 18 different 
centers and 7 different organs. In order to increase the 
amount of data, we use four data augmentation techniques 
to alleviate overfitting: (1) random rotation on [0, 10], 
(2) random rotation on [− 10, 0], (3) mirroring, and (4) 
Gaussian blur.

Implementation Details of Semi‑supervised 
Segmentation

For the training of the H&E image muscle fiber dataset, we 
used the Adaptive Moment Estimation optimizer (Adam) 
with an initial learning rate of 0.01 and an input image size 
of 256 × 256, with a training epoch of 100, and we set the 
batch size for supervised and unsupervised training to 16. In 
order to achieve better initialization of the segmentation net-
work and reduce the impact of deviating from pseudo labels, 
the unsupervised branch only starts training from the sixth 
epoch. Poly scheduling is used to reduce the learning rate in 
the training process, lr = lrInitial ∗ (1 −

ep

max_epoch
)
0.9 . Due to 

the limited amount of imaging data, we conducted five data 
augmentation techniques, including (1) random rotation 
within the range of [− 10, 10], (2) mirroring, (3) translation, 
(4) Gaussian blur, and (5) image scaling.
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Comparison with State‑of‑the‑Art Methods

We compared the proposed method with the following semi-
supervised semantic segmentation methods: MT [33], UA-MT 
[34], ASE-Net [35], and MMS [36]. We used the same seg-
mentation network and experimental environment to imple-
ment four state-of-the-art semi-supervised segmentation meth-
ods to ensure fairness. To demonstrate the effectiveness and 
accuracy of our method, five evaluation metrics, Dice similar-
ity coefficient (DSC), intersection-over-union (IoU), precision, 
recall, and F1-score, were calculated on the H&E muscle fiber 
image dataset and compared with existing methods. Among 
them, DSC and IoU are the main indicators for evaluating the 
accuracy of medical image segmentation. From Table 1, it can 
be seen that the proposed method outperforms only by 9.57%, 
10.19%, 5.73%, and 1.95% under 1/16, 1/8, and 1/4 partition 
protocols, respectively. Overall, the proposed method outper-
forms other semi-supervised segmentation methods, especially 
for 1/4 labeled data, with a DSC exceeding 2.11% of MMS. In 
addition, we visualized and compared FullSup, SupOnly, and 
four semi-supervised segmentation methods in Fig. 6. From it, 
it can be observed that the proposed method can better predict 
the contours and details of muscle fibers, and there are fewer 
false predictions (yellow pixels).

In radiomics analysis, the segmentation method has a sig-
nificant impact on the repeatability and reliability of radiom-
ics features. We extracted 77 radiomics features from seg-
mented and manually delineated regions, respectively. The 
reliability of radiomics parameters evaluated by Spearman’s 
correlation coefficients is shown in Supplementary Fig. 1, 

where radiomics features exhibit a high correlation between 
automatic segmentation and manual segmentation, with an 
average Spearman’s correlation coefficient of 0.88 (95% CI, 
0.85–0.91). The repeatability of radiomics features evaluated 
by ICC has an average value of 0.86 (95% CI, 0.83–0.89). 
The Spearman’s correlation coefficients and ICC for all 77 
features are presented in Supplementary Table 1.

Due to the limited amount of data in muscle fiber H&E 
images, this may affect the generalization ability of our 
segmentation method. Therefore, we conducted experi-
ments on the MoNuSeg dataset using the proposed semi-
supervised segmentation model. The quantitative results 
are shown in Table 2, and it is clear that our method out-
performs other state-of-the-art semi-supervised segmenta-
tion models under different numbers of labeled images. 
Especially in the 1/4 labeled image quantity, our method 
improved by 2.59% and 4.14% on DSC and IoU, respec-
tively, compared to MMS. Figure 7 shows the visualization 
results of segmentation. Compared with other methods, 
our method can accurately segment cell regions and has a 
significantly lower false-positive rate (yellow pixels).

Ablation Studies

This ablation experiment mainly explores the performance 
of different components in muscle fiber segmentation in 
H&E images. As shown in Table 3, we conducted ablation 
experiments on the proposed semi-supervised segmentation 
method. In this experiment, only 1/4 of the training data 
were labeled for the following ablation experiments.

Table 1   Performance 
comparison with state-of-the-art 
semi-supervised segmentation 
methods on the H&E image 
muscle fiber dataset

Values in bold indicate the best experimental results

Label Method DSC (%) IoU (%) Precision (%) Recall (%) F1-score (%)

1/16 (27) SupOnly 64.88 50.48 78.46 58.52 67.04
MT [29] 51.16 37.05 53.29 56.08 54.64
UA-MT [30] 68.56 57.39 72.15 69.49 70.79
ASE-Net [31] 71.46 58.51 77.63 72.38 74.91
MMS [32] 72.88 59.87 78.94 66.68 72.29
Our method 74.45 61.68 79.81 72.12 75.77

1/8 (54) SupOnly 73.28 60.32 78.68 71.97 75.18
MT [29] 66.43 51.67 71.12 67.36 69.19
UA-MT [30] 79.82 68.65 86.85 77.24 81.76
ASE-Net [31] 82.98 73.15 82.69 83.71 83.19
MMS [32] 82.63 70.09 87.65 78.27 82.69
Our method 83.47 73.75 85.59 83.23 84.39

1/4 (108) SupOnly 83.53 73.58 84.35 83.97 84.16
MT [29] 73.98 61.22 82.42 70.15 75.79
UA-MT [30] 84.56 75.09 91.18 81.36 85.99
ASE-Net [31] 86.82 78.31 91.51 94.46 93.07
MMS [32] 87.15 76.62 90.47 83.39 86.79
Our method 89.26 82.13 91.54 88.69 89.77

100% FullSup 90.14 83.27 90.25 90.35 90.29
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Ablation Studies for L
Gcontra

 and L
Lcontra

In this study, the features of the teacher and student models 
in the same position are formed as positive pairs, while 
those in different positions are negative pairs. In order to 

discuss the performance of contrastive learning, in model 
3 and model 5, it can be seen that the segmentation perfor-
mance decreased by 1.29% and 1.18%, respectively, by cal-
culating only the global feature information and the local 
feature information. In model 1, we did not use contrastive 

Fig. 6   Visualization comparison of segmentation results with differ-
ent advanced methods. Full leverage labeled images (FullSup) rep-
resent training with 100% labeled data, while only leverage labeled 
images (SupOnly) represent training with only 1/4 labeled data. 
These two results represent the upper and lower bounds of the semi-

supervised segmentation method. Other methods are trained using 1/4 
labeled data and 3/4 unlabeled data. Orange pixels represent the cor-
rectly segmented area, white pixels represent ground truth, and yel-
low pixels represent incorrectly segmented area

Table 2   Performance 
comparison with state-of-the-art 
semi-supervised segmentation 
methods on the MoNuSeg 
dataset

Values in bold indicate the best experimental results

Label Method DSC (%) IoU (%) Precision (%) Recall (%) F1-score (%)

1/16 MT [29] 71.03 55.68 69.34 76.24 72.71
UA-MT [30] 72.08 57.20 67.82 81.11 73.87
MMS [32] 72.64 56.71 64.84 83.78 73.10
Our method 74.04 59.12 70.92 78.52 74.53

1/8 MT [29] 72.52 57.48 71.31 76.95 73.77
UA-MT [30] 74.48 59.90 69.19 83.91 75.84
MMS [32] 75.35 60.25 72.19 80.10 75.94
Our method 76.06 61.73 73.14 80.25 76.53

1/4 MT [29] 74.32 59.48 72.41 78.00 75.10
UA-MT [30] 76.18 61.80 75.98 78.69 77.31
MMS [32] 76.33 61.30 74.00 78.23 76.06
Our method 78.92 65.44 77.80 80.90 79.32

100% FullSup 79.27 65.90 75.06 84.54 79.52



2334	 Journal of Imaging Informatics in Medicine (2024) 37:2324–2341

learning loss, but the result showed a significant decrease 
in DSC, from 89.25 to 86.58%, proving that contrastive 
learning can effectively extract feature information from 
unlabeled data, and integrating local and global informa-
tion can better learn the diversity of muscle fiber features.

Ablation Studies for L
cons

 and L
Dice

In order to ensure better convergence of the teacher and 
student models, this study used cross-entropy loss as the 
consistency loss to perform consistency regularization on 
the predicted results of the teacher and student models. 
From model 2 in Table 3, it can be seen that adding con-
sistency loss increased DSC by 1.6%. Due to the fact that 

the number of positive samples is smaller than the number 
of negative samples in some H&E images after cropping, 
it is challenging to develop accurate semi-supervised seg-
mentation algorithms. To address this imbalance issue, 
we introduce Dice loss into the supervised branch and 
combine it with cross-entropy loss to improve the per-
formance of the training model. From model 4 and our 
method, it can be seen that adding Dice loss improves 
both DSC and IoU.

Radiomics Feature Selection and Analysis

In order to determine the predictive factors related to mus-
cle atrophy, 77 features were selected from H&E images, 

Fig. 7   Visualization comparison of segmentation results with different advanced methods in nuclei segmentation. Orange pixels represent the 
correctly segmented area, white pixels represent ground truth, and yellow pixels represent incorrectly segmented area

Table 3   Comparison of the 
quantitative results of ablation 
experiments for each module 
based on the training results of 
1/4 labeled data as a benchmark

Values in bold indicate the best experimental results

Method Loss Evaluation index

L
Gcontra

L
Lcontra

L
Dice

L
cons

DSC (%) IoU (%) F1-score (%)

Method 1 √ √ 86.58 77.85 87.25
Method 2 √ √ √ 87.65 79.19 88.93
Method 3 √ √ √ 87.96 79.84 88.52
Method 4 √ √ √ 87.99 79.87 88.54
Method 5 √ √ √ 88.07 80.14 88.69
Our method √ √ √ √ 89.25 82.13 89.77
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of which 64 features had an ICC ≥ 0.75. All 64 radiomics 
features were included in the LASSO logistic regression 
algorithm, and the dependent variable for normal mus-
cle fibers was set to 0, while the dependent variable for 
atrophic muscle fibers was set to 1. As shown in Fig. 8, 
the features with non-zero coefficients were selected using 
the one-time standard deviation λ determined in Fig. 8A. 
Fig. 8B shows the distribution of LASSO coefficients for 
64 radiomics features. Based on the LASSO regression 
model and muscle state, 7 potential predictive factors were 
selected from 64 features in the training set after remov-
ing features with zero regression coefficients, including 4 
texture features, 2 intensity features, and 1 shape feature. 
Correlation analysis shows that the correlation coefficients 
between the radiomics features of the optimal feature sub-
set obtained from the Spearman correlation coefficient are 
all less than 0.85 (Fig. 8C). Table 4 shows the relationship 
between the selected seven radiomics features and mus-
cle atrophy status. “ − ” indicates a negative correlation 
between radiomics features and muscle atrophy status, 

while “ + ” indicates a positive correlation. Fig. 8D shows 
the coefficients of the seven selected radiomics features 
and the importance of their impact on the dependent vari-
able. From Fig. 8D, it can be seen that for a single radiom-
ics feature, the absolute coefficient value of GLSZM_SZE 
for texture features is the highest, at 11.36. For single 

Fig. 8   Radiomics feature selection based on the LASSO method. 
A The penalty term in the LASSO model through a tenfold cross-
validation based on the minimum criterion λ. The y-axis represents 
binomial deviation. The lower x-axis represents the logarithm (λ). 
The upper x-axis represents the average number of predictive factors. 
The red dots indicate average deviance values for each λ where differ-
ent models have different deviance. B LASSO coefficient spectrum of 
77 radiomics features. C The correlation between radiomics features 

related to muscle status, and the depth of their color indicates the 
degree of correlation between different features. D The coefficients of 
seven radiomics features filtered out through the LASSO algorithm. 
We selected the minimum standard based on tenfold cross-validation 
(λ = 0.0353956, the 1 − SE criterion). E The total LASSO coefficients 
showing the radiomics features of each class are presented. F The 
number of selected radiomics features in each class

Table 4   Definition, name, class, and weight value of seven selected 
radiomics features

Definition Name of the 
feature

Class Value of weights

Radiomics 1 GLSZM_SZHGE Texture feature  − 0.01118295
Radiomics 2 Pixel_Entropy Intensity feature 1.42789398
Radiomics 3 Global.Variance Texture feature  − 1.87595125
Radiomics 4 SD_Area_outer Shape feature  − 2.19355039
Radiomics 5 Pixel_ kurtosis Intensity feature  − 3.82902944
Radiomics 6 GLSZM_GLN Texture feature  − 4.22294183
Radiomics 7 GLSZM_SZE Texture feature  − 11.36601396
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class radiomics feature groups, the absolute coefficient 
value and quantity of texture feature groups are the high-
est, at 17.48 (Fig. 8E, F). Therefore, texture features have 
a greater impact on distinguishing between normal and 
atrophic muscle fibers.

Analyzing Muscle Status Based on Individual 
Radiomics Features

In order to further analyze the p-values and differences 
of radiomics features one to seven between normal and 
atrophic muscle fibers, calculate the p-value of individual 
radiomics features for two muscle states using the t-test 
statistical analysis method. As shown in Fig. 9, the seven 
radiomics features showed extremely significant differ-
ences in normal and atrophic muscle fibers. Figure 9 shows 
that as the muscle fiber status transitions from normal to 
atrophy, only Global_Variance and SD_Area_outer show 
a significant increase. From Fig. 9, it can be seen that the 
GLSZM_SZE, GLSZM_GLN, and GLSZM_SZHGE fea-
tures are significantly reduced, and all have extremely sig-
nificant differences. However, the Global_Variance value 
(15.97) of atrophic muscle fibers is higher than that of 
normal muscle fibers (14.74), and the difference is not as 
significant as the first three texture features. Pixel_Entropy 
and Pixel_ kurtosis in Fig. 9 represent entropy and kurtosis 
in intensity features, with the most significant decrease in 
kurtosis compared to entropy, decreasing from 10.19 to 
7.11, respectively. Through the selection of seven features, 
it was found that the changes in muscle fibers are also 
reflected in their shape, as shown in Fig. 9. Compared with 

the texture and intensity features, the standard deviation 
of the circumscribed area from normal muscle fibers to 
atrophic muscle fibers increased by 11.2%, indicating that 
after muscle fiber atrophy, the shape changed significantly 
and became irregular.

Performance Differences of Individual Feature 
Models Compared to Combined Models

We randomly selected 80% of H&E imaging data as the 
training set and the remaining 20% as the test set. We 
constructed an SVM prediction model using the fea-
tures selected in Table 4 and evaluated it through AUC 
and ACC. As shown in Table 5, the feature combination 
composed of seven radiomics features achieved good 
classification performance in distinguishing normal and 
atrophic muscle fibers, with an AUC and ACC of 0.9687 
and 0.8841 in the test set, respectively. To evaluate the per-
formance of individual radiomics features, we constructed 
SVM classification models for each feature and compared 
them with feature combinations. The results in Table 5 
indicate that GLSZM_SZE is the single radiomics feature 
with the highest AUC value in the test queue (0.9151), 
although it is lower than the overall model obtained by 
combining seven features (AUC = 0.9687). This dem-
onstrates the importance of GLSZM_SZE in evaluating 
changes in muscle fibers during muscle atrophy. In addi-
tion, a comparison was made between the predictive per-
formance of models based solely on CSA features that 
were more clinically focused and the radiomics features 
screened in this study. The results showed that the AUC of 

Fig. 9   The trend of changes in 
the seven selected radiomics 
features in normal and atrophy 
fibers
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any single radiomics feature was higher than that based on 
CSA features (Table 5), demonstrating that radiomics fea-
tures can better distinguish between normal and atrophic 
muscle fibers.

The Stability of the GLSZM_SZE Feature

In order to further analyze whether texture features and 
GLSZM_SZE features are affected by image contrast [49], 
this resulted in excellent performance of this feature in 
evaluating muscle atrophy. We extracted radiomics fea-
tures from three different contrast H&E images and ana-
lyzed them. As shown in Fig. 10, the LASSO coefficients 
of the texture feature group are the highest in low-contrast 
and high-contrast images at 13.01 and 13.46, respectively. 
In the texture feature group, the maximum LASSO coef-
ficients of the GLSZM feature group are 11.78 and 12.61, 
respectively. This proves that the GLSZM feature group has 
a greater advantage in evaluating changes in normal and 
atrophic muscle fibers. In addition, GLSZM_SZE, as the 
feature with the highest coefficient in the GLSZM_SZE 
feature group, still contributes the most in evaluating muscle 
atrophy in three different contrast images, indicating that 
GLSZM_SZE features are not affected by image contrast.

Discussion

Long-term space flight and microgravity environments can 
lead to a decrease in mass and strength of skeletal muscles. 
The most direct reason for this is the reduced contrac-
tion of muscle fibers, which will affect the efficiency of 

astronauts’ work and their ability to adapt to gravity when 
returning to Earth. Accurately evaluating weightless mus-
cle atrophy is of great significance for the early diagnosis 
and treatment of muscle atrophy. At present, in the field 
of muscle disease and rehabilitation, researchers usually 
use pathological biopsy to evaluate quantifiable indicators 
(CSA, perimeter) of muscle fibers. However, these indica-
tors are influenced by patients’ physical activity, dietary 
intake, and specific muscles, which have a certain impact 
on the accurate assessment of weightless muscle atrophy 
[9]. Hence, we attempted to explore a potential biomarker 
for evaluating muscle atrophy based on H&E images using 
radiomics methods. The main work includes the follow-
ing two points. Firstly, a semi-supervised segmentation 
model based on contrastive learning is proposed to solve 
the problem of manual labeling difficulty due to the large 
number of muscle fibers. Then, we analyzed the radiomics 
features of normal and atrophic muscle fibers and demon-
strate that radiomics features derived from H&E images 
have predictive value for evaluating muscle atrophy.

ROI segmentation is the first step in the radiomics 
workflow. When manually performing target segmenta-
tion, the data have a high degree of variability. However, 
hundreds or even thousands of muscle fibers need to be 
analyzed in the study of muscle fibers in H&E images, 

Table 5   Summary of radiomics features related to muscle atrophy 
and performance based on individual features and feature combina-
tions in the test queue

Values in bold indicate the best experimental results

Modality Feature type Feature AUC​ ACC​

Individual 
feature

Muscle mor-
phometric 
parameters

CSA 0.5454 0.6147

Radiomics 1 Texture feature GLSZM_
SZHGE

0.8137 0.7248

Radiomics 2 Intensity 
feature

Pixel_Entropy 0.7363 0.6697

Radiomics 3 Texture feature Global_Vari-
ance

0.5931 0.4862

Radiomics 4 Shape feature SD_Area_outer 0.7029 0.5910
Radiomics 5 Intensity 

feature
Pixel_Kurtosis 0.7933 0.7773

Radiomics 6 Texture feature GLSZM_GLN 0.7927 0.7193
Radiomics 7 Texture fea-

ture
GLSZM_SZE 0.9151 0.8440

All combined 0.9687 0.8841

Fig. 10   The importance of features under different H&E image con-
trasts. The x-axis represents the name of the radiomics feature, and 
the y-axis represents the coefficient of the radiomics feature. All 
experimental groups used the LASSO method for feature selection, 
with eight radiomics features selected from low-contrast images and 
ten radiomics features selected from high-contrast images
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making manual segmentation very time-consuming. With 
the introduction and continuous improvement of DL, DL 
models have achieved significant success in segmenting 
cells in histopathological images [37]. However, in order 
to achieve good segmentation performance, a large amount 
of annotated data are required. Such labeled data is quite 
time-consuming in the collection process and even requires 
multiple labeling of the target area. Therefore, how to train 
deep models with only a few labeled data has become a hot 
topic of concern for researchers. Currently, semi-super-
vised segmentation models have become a more promis-
ing learning method, with the advantage of requiring only 
a few pixel level annotated data and being able to learn 
from a large amount of unlabeled data [33, 34]. Based 
on the above insights, we propose a semi-supervised seg-
mentation algorithm based on contrastive learning to dem-
onstrate its effectiveness on our own H&E muscle fiber 
image dataset. As shown in Table 1, the proposed method 
is more accurate in segmenting muscle fiber regions com-
pared to other state-of-the-art methods. In addition, we use 
the segmentation results obtained from fully supervised 
training as the upper limit of semi-supervised segmenta-
tion performance and include different amounts of unla-
beled data in the training. From Table 3, it can be seen 
that the 1/4 labeled data is closer to fully supervised seg-
mentation performance, which can prove that the proposed 
method can achieve fully supervised performance by only 
using a small amount of labeled training data. Although 
encoder and decoder structures have been widely used in 
medical image segmentation, a single encoder captures 
global features while obtaining local features, making it 
difficult to accurately distinguish the differences between 
muscle fibers and the background, especially in challeng-
ing situations such as low contrast between muscle fibers 
and background noise, and irregular muscle fiber shapes 
[50]. In order to achieve better feature extraction capabil-
ity of the model, we adopted a dual encoder input branch 
composed of a transformer and CNN in the feature extrac-
tion module to encourage the network to capture both 
global contextual information and local features of muscle 
fibers simultaneously. In addition, we use the contrast loss 
of global and local features to enhance pixel level intra-
class compactness and inter-class separability, in order to 
extract important feature information from unlabeled data. 
In recent years, radiomics features have been proven to 
be closely related to muscle biological characteristics and 
disease assessment. However, segmentation methods have 
a significant impact on the repeatability and reliability of 
radiomics features. Therefore, in this study, the average 
Spearman’s correlation coefficient and ICC between semi-
supervised segmentation results and manual segmentation 
results were 0.88 and 0.86, respectively. This proves that 
the features extracted by the semi-supervised segmentation 

method have high repeatability and reliability and can 
replace manual segmentation methods.

Based on the above segmentation results, another pur-
pose of this study is to demonstrate the significant value of 
radiomics features derived from H&E images in evaluating 
muscle atrophy. Based on the LASSO algorithm, seven radi-
omics features were selected, including four texture features, 
two intensity features, and one shape feature. Among the 
four texture features, three are GLSZM and one is a global 
texture feature. The two intensity features are kurtosis and 
entropy, and the one shape feature is the standard deviation 
of the circumscribed circle area. The kurtosis feature high-
lights the intensity changes in the muscle fiber region, while 
the entropy value reflects the texture changes of the muscle 
fibers, which is similar to the texture feature. On the other 
hand, GLSZM accounts for the most in texture features, 
representing the number of areas with a grayscale value of 
i and a connected area of j in the image, reflecting the fine-
ness of the image texture [51]. As shown in Fig. 9, it can be 
seen that normal muscle fibers and atrophic muscle fibers 
exhibit significant strength differences, and changes in pixel 
strength can reflect the differences between texture features 
of GLSZM. Based on this observation, it can be concluded 
that GLSZM-derived features are potentially effective rep-
resentations of muscle fiber H&E images to evaluate muscle 
atrophy. Previous studies have shown that the elimination 
of anti-gravity loading may lead to a decrease in protein 
synthesis [52] and a decrease in the expression of MyHC-I 
[53], which may be reflected in the texture refinement of 
H&E images. These features are related to the changes in 
the types of proteins inside muscle fibers. The more proteins 
there are, the higher the expression level of their proteins, 
indicating that the texture information inside muscle fibers is 
more abundant. The small zone emphasis (SZE) in GLSZM 
features refers to the proportion of the small- and medium-
sized area of the image in the whole connected area, which 
precisely reflects this feature [54]. Figure 9A shows the 
significant difference between normal and atrophic muscle 
fibers in GLSZM_SZE. The GLSZM_SZE value of normal 
muscle fibers is 0.1 higher than that of atrophic muscle fib-
ers, indicating that the larger the GLSZM_SZE value, the 
smaller the regions, and the finer the image texture. This 
proves that the features of GLSZM_SZE may be related 
to changes in certain key proteins in muscle atrophy. The 
results in Table 5 also confirm that GLSZM_SZE performs 
best in evaluating muscle atrophy.

To further validate the performance of radiomics features 
in evaluating muscle atrophy, this study used SVM models 
to test the performance of individual radiomics features and 
the performance of combined features. Previous studies have 
shown that pathologists are more focused on morphometric 
indicators such as CSA and the perimeter of muscle fib-
ers [27, 28]. After 42 days of BR in macaques, there was 
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a significant decrease in the CSA and perimeter of muscle 
fibers (Fig. 2D). However, in this study, the texture feature 
group had a 20.37% higher prediction accuracy than the 
muscle morphology measurement group in the performance 
comparison of feature categories (Table 6), indicating that 
texture features have a significant advantage in evaluating 
muscle atrophy. For the evaluation performance of indi-
vidual features, the performance of the established muscle 
classification model is higher than that of CSA. As shown 
in Table 5, particularly GLSZM_SZE and GLSZM_SZHGE 
are 36.97% and 26.83% higher than CSA feature in AUC 
indicators. This indicates that during the process of muscle 
atrophy, the fine-grained texture of muscle fibers can bet-
ter reflect changes in muscle atrophy than CSA. In order 
to evaluate the importance of GLSZM_SZE without the 
influence of H&E image contrast, we used three types of 
contrast images for validation, extracting radiomics features 
and using the LASSO algorithm to filter features. As shown 
in Fig. 10, although the number of features included in low-
contrast and high-contrast images has changed compared to 
the original image, GLSZM_SZE remains the same among 
all features and has the greatest impact. This indicates that 
the importance of GLSZM_SZE features in evaluating mus-
cle atrophy is not affected by image contrast and can be 
considered as a potential biomarker for evaluating muscle 
atrophy in the future. Based on the above analysis, this study 
can conclude that the radiomics features of H&E images 
have potential value in evaluating the state of muscle fibers 
in muscle atrophy, and the precision of texture features may 
help further explain the changes in some proteins of muscle 
fibers during the atrophy process.

Our research still has the following limitations. Firstly, 
due to the difficulty in establishing a BR model for macaques 
in this study, six macaques were used as experimental sub-
jects, with three as the control group and three as the BR 
group. However, a small sample size can have a certain 

impact on the training of segmentation models. For example, 
when taking patches, if the overlap coefficient is too high, 
it can cause too many duplicate images, resulting in poor 
reliability of the results. On the contrary, if the overlap coef-
ficient is equal to 0, it will cause a decrease in data volume, 
which is not conducive to improving segmentation results. 
In future work, the amount of data will increase, which may 
be beneficial for improving the accuracy of segmentation 
and evaluation of muscle atrophy. Secondly, this study only 
focuses on the evaluation of radiomics features and does not 
take into account the changes in molecular level indicators in 
muscle atrophy. Therefore, more molecular indicators need 
to be collected in future work, which not only helps to better 
explain the significance of radiomics features but may also 
construct more accurate evaluation models.

Conclusion

This study explores a radiomics feature based on H&E 
images as a potential biomarker for evaluating muscle atro-
phy. By establishing a semi-supervised automatic segmen-
tation method based on contrastive learning, the inherent 
limitations of limited training data annotations are addressed. 
The experimental results show that the semi-supervised 
automatic segmentation method has high accuracy in mus-
cle fiber H&E images, and the extracted features have high 
repeatability and reliability. We performed a radiomics analy-
sis using features extracted from automatically segmented 
muscle fiber regions to evaluate muscle atrophy and find a 
potential biomarker. The experimental results indicate that 
the fineness of the texture can better reflect the difference 
between normal and atrophic muscle fibers. For a single fea-
ture, GLSZM_SZE may be a potential biomarker for effec-
tively evaluating weightless muscle atrophy, with the best 
performance in AUC and ACC, with values of 0.915 and 
0.844, respectively. In summary, the predictive model estab-
lished in this study and the explored biomarkers provide a 
powerful auxiliary tool for the early diagnosis and treatment 
of weightless muscle atrophy in the future.
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Table 6   Evaluate performance based on each feature class in the test 
queue

Values in bold indicate the best experimental results

Modality Feature class Feature AUC​ ACC​

Feature subset Muscle mor-
phometric 
parameters

CSA
Perimeter
Diameter

0.7174 0.6697

Feature subset Intensity feature Pixel_Entropy
Pixel_Kurtosis

0.8050 0.7706

Feature subset Texture feature GLSZM_
SZHGE

Global_Vari-
ance

GLSZM_GLN
GLSZM_SZE

0.9460 0.8734

All combined 0.9687 0.8841
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