Skip to main content
. 2024 Apr 23;37(5):2324–2341. doi: 10.1007/s10278-024-01122-w

Table 1.

Performance comparison with state-of-the-art semi-supervised segmentation methods on the H&E image muscle fiber dataset

Label Method DSC (%) IoU (%) Precision (%) Recall (%) F1-score (%)
1/16 (27) SupOnly 64.88 50.48 78.46 58.52 67.04
MT [29] 51.16 37.05 53.29 56.08 54.64
UA-MT [30] 68.56 57.39 72.15 69.49 70.79
ASE-Net [31] 71.46 58.51 77.63 72.38 74.91
MMS [32] 72.88 59.87 78.94 66.68 72.29
Our method 74.45 61.68 79.81 72.12 75.77
1/8 (54) SupOnly 73.28 60.32 78.68 71.97 75.18
MT [29] 66.43 51.67 71.12 67.36 69.19
UA-MT [30] 79.82 68.65 86.85 77.24 81.76
ASE-Net [31] 82.98 73.15 82.69 83.71 83.19
MMS [32] 82.63 70.09 87.65 78.27 82.69
Our method 83.47 73.75 85.59 83.23 84.39
1/4 (108) SupOnly 83.53 73.58 84.35 83.97 84.16
MT [29] 73.98 61.22 82.42 70.15 75.79
UA-MT [30] 84.56 75.09 91.18 81.36 85.99
ASE-Net [31] 86.82 78.31 91.51 94.46 93.07
MMS [32] 87.15 76.62 90.47 83.39 86.79
Our method 89.26 82.13 91.54 88.69 89.77
100% FullSup 90.14 83.27 90.25 90.35 90.29

Values in bold indicate the best experimental results