Skip to main content
. 2024 Apr 23;37(5):2324–2341. doi: 10.1007/s10278-024-01122-w

Table 2.

Performance comparison with state-of-the-art semi-supervised segmentation methods on the MoNuSeg dataset

Label Method DSC (%) IoU (%) Precision (%) Recall (%) F1-score (%)
1/16 MT [29] 71.03 55.68 69.34 76.24 72.71
UA-MT [30] 72.08 57.20 67.82 81.11 73.87
MMS [32] 72.64 56.71 64.84 83.78 73.10
Our method 74.04 59.12 70.92 78.52 74.53
1/8 MT [29] 72.52 57.48 71.31 76.95 73.77
UA-MT [30] 74.48 59.90 69.19 83.91 75.84
MMS [32] 75.35 60.25 72.19 80.10 75.94
Our method 76.06 61.73 73.14 80.25 76.53
1/4 MT [29] 74.32 59.48 72.41 78.00 75.10
UA-MT [30] 76.18 61.80 75.98 78.69 77.31
MMS [32] 76.33 61.30 74.00 78.23 76.06
Our method 78.92 65.44 77.80 80.90 79.32
100% FullSup 79.27 65.90 75.06 84.54 79.52

Values in bold indicate the best experimental results