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Abstract
Deep learning models have demonstrated great potential in medical imaging but are limited by the expensive, large volume 
of annotations required. To address this, we compared different active learning strategies by training models on subsets of 
the most informative images using real-world clinical datasets for brain tumor segmentation and proposing a framework that 
minimizes the data needed while maintaining performance. Then, 638 multi-institutional brain tumor magnetic resonance 
imaging scans were used to train three-dimensional U-net models and compare active learning strategies. Uncertainty estima-
tion techniques including Bayesian estimation with dropout, bootstrapping, and margins sampling were compared to random 
query. Strategies to avoid annotating similar images were also considered. We determined the minimum data necessary to 
achieve performance equivalent to the model trained on the full dataset (α = 0.05). Bayesian approximation with dropout 
at training and testing showed results equivalent to that of the full data model (target) with around 30% of the training data 
needed by random query to achieve target performance (p = 0.018). Annotation redundancy restriction techniques can reduce 
the training data needed by random query to achieve target performance by 20%. We investigated various active learning 
strategies to minimize the annotation burden for three-dimensional brain tumor segmentation. Dropout uncertainty estima-
tion achieved target performance with the least annotated data.
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Introduction

Deep learning (DL) in medical imaging has made substan-
tial progress, achieving near or superior performance to 
that of human experts [1]. These models, however, are lim-
ited by requiring substantial training data and annotations, 
which are expensive and time-consuming to produce [2].

Active learning (AL) is a strategy that only annotates 
the most informative subset of data to reduce the amount 
of training data needed without compromising perfor-
mance [2]. Models are built iteratively until acceptable 
performance is achieved. By reducing the training data 
required, a wider gamut of clinical problems, including 
more niche tasks, can be addressed with DL. Model build-
ing would no longer require as much manpower and fund-
ing as traditionally required to annotate large datasets. In 
addition, DL models may be now accessible to institutions 
in earlier stages of incorporating artificial intelligence 
where resources to annotate local datasets are limited. The 
need for reducing the annotation burden not only exists to 
first develop the models but also to update them. For mag-
netic resonance imaging (MRI) images for example, acqui-
sition parameters are being constantly adjusted to enhance 
image resolution and reduce acquisition times, while more 
images are being produced with higher strength magnets 
[3, 4]. Unless training data is augmented with these newer 
images, existing models are quickly outdated. Further-
more, there is increased data that earlier models trained 
on smaller cohorts may have biases against marginalized 
communities, necessitating new annotations and retrain-
ing with a more inclusive dataset [5]. With how much DL 
models depend on annotation reduction in order to stay 
relevant, we were motivated to pursue this study and inves-
tigate the efficacy of various AL strategies.

AL strategies generally have two approaches: (a) cal-
culating uncertainty and annotating the most uncertain 
images or (b) grouping images based on similarity and 
selecting a subset from each similarity group to identify 
a representative cohort [2]. To identify uncertain images, 
Wang et al. used a preliminary model to predict on unan-
notated data and assigned images with the smallest prob-
ability of the most probable class as most uncertain [6]. 
An ensemble approach instead estimates uncertainty by 
quantifying the disagreement among models [7]. Bayes-
ian neural networks generate a probability distribution 
from one model, and wider distributions suggest higher 
uncertainty [8, 9]. To reduce annotation redundancy, Yang 
et al. compared the output from convolutional neural net-
works, which are ultimately high-level feature vectors, to 
assess the similarity of images and identify a representa-
tive cohort to annotate [7]. Similarly, traditional com-
puter vision techniques have also been used for feature 

extraction [10]. Kim et al. combined both uncertainty and 
representativeness techniques for their AL approach when 
selecting data to annotate for skin lesion classification and 
segmentation [11].

Many AL strategies, including the ones above, have 
focused on 2D imaging, classification tasks, or non-medical 
imaging [2, 6, 7, 9, 10]. However, application of validated 
techniques onto 3D medical imaging, such as MRI or CT, 
is not straightforward. Some medical imaging tasks have an 
additional complexity in that they focus on a small region of 
interest (ROI). Prognosis of brain cancer for example focuses 
on contrast-enhancing tumor, which is much smaller than 
the whole brain [12]. This characteristic is exacerbated in 
3D imaging as uncertainty calculations can be immensely 
sensitive to background noise. Sharma et al. demonstrated 
remarkable success here by combining least confidence 
uncertainty estimation and representativeness to create a 
high-performing model using less than 15% of the 2018 
Brain Tumor Segmentation (BraTS) dataset [13].

In this paper, we take multiple uncertainty and repre-
sentative techniques used in general DL model building 
and evaluate their impact on reducing the annotation bur-
den on medical images. First, we discuss how each of the 
AL methods iteratively identify images to annotate. Then, 
we apply our methods on a popularly studied task of brain 
tumor segmentation on a real-world, multi-institutional brain 
MRI dataset and go into detail the experiment parameters, 
the degree each AL technique reduces data requirements, 
and the statistical tests we use to compare techniques. Peng 
et al. evaluated DL model performance using the full brain 
MRI dataset, finding the model’s predictions were in strong 
agreement with human segmentations, and here we explore 
how AL can reduce the data necessary to achieve similar 
performance [14]. The contributions of this study are briefly 
summarized below:

• Quantifying how effective AL techniques that use uncer-
tainty and redundancy reduction strategies can be in 
reducing annotations

• Showing the impact of combining various AL techniques 
to determine synergy

• Demonstrating that AL strategies can be computationally 
efficient and robust to background noise

Materials and Methods

Neural Network Architecture

Our models incorporated the 5-layered 3D U-net neural net-
work architecture and hyperparameters from Peng et al. [14, 
15]. Models used both contrast-enhanced T1-weighted and 
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T2-weighted sequences to segment the contrast-enhancing 
region. Two patches of size 128 × 128 × 128 from each 
image were used for training. Data augmentation included 
scaling, rotation, and flipping transformations. Models opti-
mized a joint Dice and cross entropy loss function on the 
validation set until there was no improvement for 50 epochs 
or had trained for 500 epochs. During validation and test-
ing, we inputted the full image. For training and predicting, 
models used a 16 GB NVIDIA V100 Tensor Core graphical 
processing unit (GPU). Table 1 displays the full implementa-
tion details of the network architecture, and Supplementary 
Fig. 1 shows a diagram of the 3D U-net architecture [16].

Active Learning Algorithm

Our proposed methods to improve AL for 3D image segmen-
tation consisted of two major components: (1) uncertainty 
sampling and (2) annotation redundancy restriction (Fig. 1). 
After randomly selecting a subset of the data for training an 
initial model, uncertainty sampling and annotation redun-
dancy restriction techniques then iteratively selected addi-
tional images to be incorporated for model retraining.

Uncertainty Sampling

Uncertainty sampling uses a preliminary model trained on a 
subset of data to predict segmentations on unannotated data. 
We calculated uncertainty using the predicted segmentations 
and annotated k images with the highest uncertainty. Uncer-
tainty scores estimate the model’s confidence on data that 
was not included in training. We explored three different 
uncertainty estimating techniques as outlined below.

The first technique involved bootstrapping. At each AL 
iteration, we generated n bootstrapped datasets by sampling 
with replacement and used each to train a separate model. 
Higher variance in predictions across models suggested 
ensemble disagreement and higher uncertainty [7]. The 
uncertainty score was the mean of the variance map of all 
the probability maps returned from each bootstrapped model.

Next, we discuss margins sampling. Each voxel- 
probability within a probability map pi for image i ranged 
from values from [0,1]. Voxel probabilities closer to 0.5 are 
associated with higher uncertainty  [17]. Eq. 1 demonstrates 
how the uncertainty score ui was calculated.

The final uncertainty estimation technique involved 
Bayesian approximation using dropout. Bayesian mod-
els return a probability distribution rather than a single 

(1)ui = −(mean(|pi − 0.5|))

Table 1  Implementation architecture of the neural networks used

Implementation Details

Input/tensor size 128 × 128 × 128 × 2
Kernel size 3 × 3 × 3
Batch size 1
Stride 1
Patch overlap 75%
Learning rate 0.001
Learning rate scheduler Cosine anneal with warm restarts
Weight decay 0.00002
Optimizer Stochastic gradient descent
Levels 5
Input image orientation Right, anterior, inferior
Input image resolution 1 mm × 1 mm × 1 mm
Image resampling Bspline interpolation
Ground truth resampling Nearest neighbors
Activation function Rectified linear unit (ReLU)
Pooling operation Maxpool
Normalization method Group normalization
Upsampling used in decoder Trilinear interpolation
Voxel-wise probability cutoff for 

foreground class
0.5

Fig. 1  Workflow of the full active learning framework
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probability. Wider distributions suggest higher uncertainty. 
These models can be approximated by generating n predic-
tions from a model that includes a dropout layer [8]. To 
create a Bayesian approximation model, we added a dropout 
layer to the last decoding convolutional layer in the model 
and compared performance when dropout was enabled dur-
ing both training and testing versus only at testing. We used 
a variance map from the n predictions to measure the dis-
tribution spread. To localize uncertainty estimation to ROIs 
and to filter out noise, we used the mean of only the top 0.1% 
of values within the variance map to calculate uncertainty.

Annotation Redundancy Restriction

While uncertainty sampling identifies images unfamiliar 
to the current model, annotation redundancy restriction 
prevents annotation of images similar to one another. The 
first annotation redundancy restriction method selected the 
most representative uncertain images. Consider a subset of k 
uncertain, unannotated images. If there are j images, where 
j < k , similar to one another, then annotating only some of 
j images may be sufficient. To evaluate image similarity, we 
compared the high-level features between two images. U-net 
has both an encoder and decoder arm [15]. The encoder 
arm uses multiple convolutional layers in series to generate 
an array of high-level features. We modified Yang et al.’s 
approach of using cosine similarity to compare arrays of 
high-level features for 3D images [7]. The encoder arm 
returns a 4D array of size (x, y, z, 512), where x, y, and z are 
variable to the size of the input image. We flattened this 4D 
array to a 1D array of size 512 by taking the mean across 
other axes. We then measured the similarity between two 
images by calculating the similarity score ss

(
Ii, Ij

)
 , as shown 

in Eq. 2 where hi is flattened high-level features of image i , 
and hj is that of image j.

Next, we used the maximum set cover approach to 
approximate a subset Sm that most represents the entire set 
of uncertain, unannotated images Sk (Supplementary Algo-
rithm 1) [7].

The second redundancy restriction method selected 
uncertain images most non-similar to the already annotated 
data. Consider a subset of k uncertain, unannotated images 
where there are j images, where j < k , similar to the images 
already annotated. Then, annotating images from Sj may 
not be informative to the model. In order to get a subset 
Sm ⊂ Sk that is most non-similar to the set of already anno-
tated images Sa and images already selected to be annotated, 
we iteratively built Sm by comparing each image in Sk to 
the images in Sa and those already in Sm and added the one 

(2)ss(Ii, Ij) = cosine_similarity
�
hi, hj

�
=

hi∙hj

‖hi‖‖hj‖

least similar to these images to Sm from Sk (Supplementary 
Algorithm 2).

Dataset Details

We retrospectively collected the imaging prior to treatment 
from pediatric patients with intracranial brain tumors who 
were admitted to the Children’s Hospital of Philadelphia 
(CHOP) from January 2005 to December 2019 and 4 large 
academic hospitals in Hunan Province, China, from January 
2011 to December 2018. We manually reviewed the data for 
deidentification. Exclusion criteria included patients above 
18 years old or patients with missing pathological reports 
or image sequences. The institutional review boards of all 
involved institutions approved this study and waived the 
requirement for informed consent.

A neuro-oncologist (JP) with 7 years of post-graduate 
experience manually segmented the contrast-enhancing 
tumor using the Level Tracing and Threshold tools in 3D 
Slicer (v.4.10) in all patients, and a radiologist (HXB) with 
4 years of post-graduate experience reviewed the segmenta-
tions. JP and HXB resolved any disagreements in consensus. 
We specifically segmented the contrast-enhancing region as 
it is the primary area of interest for determining prognosis 
[12]. Supplementary Figs. 2 and 3 show the MR acquisition 
parameters. We partitioned 20% of the data at the patient 
level as the testing set. At each AL iteration, we used 20% 
of the annotated training data as the validation set. Images 
were preprocessed before training and predicting. Preproc-
essing included resampling to isotropic 1 mm [3] resolu-
tion, co-registration, skull stripping, N4 bias correction, and 
finally normalization. For experimentation purposes, we 
proactively annotated all images for the contrast-enhancing 
lesion. However, we assigned the images unannotated and 
annotated states based on the AL algorithm and only used 
images with annotated states for training.

Experiments

For clarification on how our results were generated and inter-
preted, we defined the true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN) cases at the voxel 
level and the individual patient level. At the voxel level, a 
TP was where a model assigned a voxel that was labeled as 
tumor by a human annotator as the ROI. A TN was where 
a model agreed with a human annotator that a voxel was 
background. A FP was where a model assigned a voxel that 
a human annotator considered background as ROI, and a FN 
was where a model assigned a voxel that a human annotator 
considered tumor as background. At the individual level, the 
TP was the averaged performance of voxel level TPs in the 
entire image. TN, FP, and FN were defined similarly.
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Experiment 1 compared different uncertainty sampling 
techniques. We initialized a random training set of 40 images 
and trained a preliminary model. We then iteratively anno-
tated 50 of the most uncertain, unannotated images (~ 10% 
of entire dataset) returned by the uncertainty sampling tech-
nique and retrained the model. We evaluated model perfor-
mance at each AL iteration with Dice scores. To determine 
if the results would depend on the initial random set of 40 
images, we also trained models on 15 different randomly 
initialized datasets and compared their performances.

Experiment 2 compared different annotation redundancy 
restriction techniques after uncertainty sampling. We ini-
tialized a random training set of 40 images and trained a 
preliminary model. For each subsequent iteration, of the 
100 most uncertain images, we annotated 50 of the most 
representative images and retrained the model incorporating 
these 50 images.

Because we were interested in when the performance of 
the model was similar to that of the full data model, we used 
a statistical test for equivalence for Experiments 1 and 2. 
The equivalence test consisted of two one-sided Student’s 
t  tests (TOST) where the null hypotheses were that there 
is a difference relative to the full data model that is: (1) 
less than a lower equivalence bound and (2) greater than a 
upper equivalence bound [18]. Rejecting both null hypoth-
eses (α = 0.05) suggested the model performance could be 
considered equivalent. We first calculated the upper and 
lower equivalence bounds (UEFD, LEFD ) at which the full 
data model was considered equivalent to itself with a p value 
of 0.05 using this test. We then determined the upper and 
lower equivalence bounds used for statistical analysis by 
doubling the range between UEFD and LEFD (upper equiva-
lence = 2UEFD ; lower equivalence = 2LEFD).

Results

Contrast-enhanced T1-weighted and T2-weighted sequences 
with contrast-enhancing tumor segmentation were available 
for 683 two-dimensional brain MRIs from 683 patients (598 
CHOP, 85 Hunan). We excluded 39 patients due to skull strip-
ping failure and 6 patients due to co-registration failure. Table 2 
shows the characteristics for the remaining 638 patients. Each 
model took approximately 1–5 h to train depending on the AL 
iteration or training data size. The mean number of epochs 
at which the model’s validation loss saturated during model 
development was 90 epochs for all models in Table 3. There 
was no correlation between the number of epochs at which 
improvements in the model’s validation loss saturated and 
AL iteration number with no significant difference between 
the average number of epochs at iteration 1 (n = 90) versus at 
iteration 7 (n = 340) (p = 0.287). Supplementary Fig. 4 shows 
graphs of the training and validation dice scores and loss during 

model development. The AL framework and pre-trained mod-
els are publicly accessible at https:// github. com/ nadda n27/  
Activ eLear ning.

Figure 2 compares the mean and median Dice scores of 
the uncertainty estimation techniques at different percentages 
of the training data from Experiment 1. Both bootstrapping 
and Bayesian approximation using dropout at training and 
testing (dropout train test) outperformed random query. In 
contrast, margins and Bayesian approximation using dropout 
only at testing (dropout test) performed worse than random 
query. Random query was able to train a model that achieved 
mean Dice performance equivalent to that of the model 
trained with the full data at 56.5% of the data. This suggests 
that a model can be fully trained with about half of the data, 
and therefore, we will report when a model trained with an 
AL strategy was able to achieve full data performance rela-
tive to when the random query model was able to. The model 
trained with the bootstrapping strategy was able to achieve 

Table 2  Study population characteristics

Characteristics Number (percent)

Median age at diagnosis in years: mean (range) 9.4 (0.1–17.9)
Sex
  Male 355 (55.6%)
  Female 283 (44.4%)
Anaplastic astrocytoma 53 (8.4%)
Fibrillary astrocytoma 35 (5.5%)
Glioblastoma 22 (3.4%)
Infiltrating astrocytoma 20 (3.1%)
Pilocytic astrocytoma 119 (18.7%)
Pilomyxoid astrocytoma 13 (2.1%)
Medulloblastoma 72 (11.3%)
Craniopharyngioma 32 (5%)
Dysembryoplastic neuroepithelial tumor 

(DNET)
25 (3.9%)

Ependymoma 54 (8.5%)
Gangliocytoma/ganglioglioma 58 (9.1%)
Meningioma 22 (3.4%)
Neurocytoma 4 (0.6%)
Pleomorphic xanthoastrocytoma (PXA) 3 (0.4%)
Schwannoma 4 (0.6%)
Subependymal giant cell tumor 10 (1.6%)
Embryonal tumor group
  Atypical teratoid rhabdoid tumor 18 (2.8%)
  Pineoblastoma 4 (0.6%)
  Primitive neuroectodermal tumor 17 (2.7%)
Germ cell tumor group
  Germinoma 15 (2.4%)
  Germ cell tumor 4 (0.6%)
Choroid plexus papilloma 26 (4.1%)
Other 8 (1.2%)

https://github.com/naddan27/ActiveLearning
https://github.com/naddan27/ActiveLearning


2104 Journal of Imaging Informatics in Medicine (2024) 37:2099–2107

full data performance at 48.3% of the data needed by random 
query (p = 0.001), whereas the model trained with dropout 
train test needed 31.0% of the data needed by random query 
(p = 0.018). The performance of the initial model was con-
sistent with any random dataset initialization. The mean of 
the mean dice scores across 15 first iteration models trained 
with randomly initialized datasets was 0.549 with the stand-
ard deviation of the distribution of the means 0.008.

In Experiment 2, we used dropout train test to identify 
the uncertain, unannotated images before annotation redun-
dancy restriction due to its performance in Experiment 1 and 
smaller computational burden than bootstrapping. Table 3 
shows the effect of adding an annotation redundancy restric-
tion technique after uncertainty sampling versus just uncer-
tainty sampling alone. While the non-similar restriction 
technique achieved equivalent performance to that of the 

full model before random query, both redundancy restriction 
techniques were not able to outperform AL strategies that 
solely used uncertainty sampling. Figure 3 shows examples 
of predicted segmentations by models that were built using 
uncertainty and annotation redundancy restriction strategies.

Discussion

We compared multiple uncertainty and representative tech-
niques and evaluated their individual and synergistic perfor-
mance in reducing the annotations burden on multi-institutional 
clinical data. We showed that an AL framework using Bayesian 
approximation with dropout at training and testing only needs 
approximately 30% of the data that a random query strategy 
would need to achieve full data performance.

Table 3  Mean dice of uncertainty and redundancy reduction methods. First iteration considered to have equivalent performance to full data 
model is bolded. Standard deviation in parentheses

p values of bolded dice scores: random query (p = 0.001), dropout train test (p = 0.018), bootstrapping (p = 0.001), representative (p = 0.003), 
non-similar (p = 0.006). Note that these reported p values represent the larger of the two obtained from the two one-sided Student’s t tests when 
testing for equivalence

Percentage of 
training data

7.8% n = 40 17.5% n = 90 27.3% n = 140 37.0% n = 190 46.8% n = 240 56.5% n = 290 66.3% n = 340 100% n = 513

Random query 0.552 (0.341) 0.568 (0.332) 0.615 (0.337) 0.644 (0.329) 0.652 (0.328) 0.715 (0.308) 0.675 (0.309) |
Uncertainty only |
  Dropout train 

test
0.547 (0.330) 0.683 (0.322) 0.670 (0.318) 0.691 (0.335) 0.607 (0.346) 0.774 (0.253) 0.756 (0.267) |

  Bootstrapping 0.585 (0.332) 0.644 (0.320) 0.729 (0.281) 0.696 (0.297) 0.697 (0.303) 0.731 (0.281) 0.762 (0.266) 0.724 (0.295)
With dropout 

train test
|

  Redundancy 
representative

0.547 (0.330) 0.561 (0.333) 0.613 (0.341) 0.663 (0.317) 0.638 (0.316) 0.612 (0.335) 0.707 (0.301) |

  Redundancy 
non-similar

0.547 (0.330) 0.621 (0.338) 0.590 (0.345) 0.650 (0.330) 0.697 (0.303) 0.651 (0.329) 0.730 (0.285) |

Fig. 2  Dice scores of uncertainty techniques at different percentages of training data. Horizontal dashed line is performance with full training 
data. Error bars represent the standard error
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We used a U-net architecture within our AL framework 
given its ubiquity in medical imaging models and its suc-
cessful performance in brain tumor segmentation within 
the literature. In a review of state-of-the-art deep learning 
methods for brain tumor segmentation, Magadza et al. com-
pared the performances of U-net, cascaded, and ensemble 
architectures using multiple BraTS datasets, finding that the 
U-net architecture was able to produce exceptional results 
and to achieve Dice scores of above 0.9 for whole tumor seg-
mentation [19]. In their review of brain tumor image analy-
sis, Sailunaz et al. similarly supported that U-net models 
were successful in brain tumor segmentation, also reaching 
Dice scores above 0.9 when applied to BraTS datasets [20]. 
They described other successful methods as well, including 
a deep learning-based feature selection method known as 
saliency-based deep learning for tumor detection, achieving 
Dice scores of over 0.8 using BraTS datasets, in addition to 
a long short-term memory model evaluated on BraTS and 
a dataset for stroke lesions, reaching Dice scores above 0.9 
[20]. Lastly, in their review of brain tumor segmentation 
describing pretrained architecture, cascaded methods, and 
ensemble networks, Ahamed et al. highlighted ensemble 
methods that included U-net models reaching Dice scores 
above 0.9 for whole tumor segmentation using BraTS data-
sets [21].

Our study demonstrates the utility of AL in annotation 
burden restriction in 3D imaging. Whereas Sharma et al. 
similarly used an AL framework for reducing the amount 
of labeled data necessary for training a brain tumor seg-
mentation model using the 2018 BraTS dataset, our study 
demonstrates the success of AL in brain tumor segmentation 
using real-world clinical data [13]. Other works have pur-
sued AL in 3D medical imaging, including by incorporat-
ing techniques such as reinforcement learning rather than 
traditional uncertainty and representative strategies [22, 
23]. Wang et al. demonstrated a reduction in the amount of 
labeled data needed for classifying lung disease from chest 
CT and for classifying the degree of diabetic retinopathy 
from fundus images by employing a reinforcement learning 
approach for the AL framework [22]. Li et al. used an AL 

method based on uncertainty to reduce the annotation effort 
necessary for gland segmentation in colon histology images 
in addition to brain MRI segmentation [23].

For 3D brain tumor segmentation, we compared four dif-
ferent uncertainty estimation techniques to random query: 
bootstrapping, margins, dropout train test, and dropout test. 
While bootstrapping did reduce training data by 50%, its 
computational demand can be prohibitive. We were therefore 
interested in using dropout as an alternative. The primary 
concern was that a single dropout layer would not be able 
to generate distinct enough predictions to generate a reli-
able uncertainty score compared to having multiple models 
trained on different datasets or model architectures [2, 9]. 
Furthermore, the prediction variability, which is generally 
concentrated at the ROI, would be diluted by the substantial 
number of background voxels in 3D imaging. To address 
this concern, we presented a dropout strategy that focuses 
on regions of high disagreement within the image to esti-
mate uncertainty. With this strategy, we show that dropout 
is generalizable to AL in 3D segmentation tasks and in fact 
superior to bootstrapping. We also attempted removing drop-
out training stabilization by implementing dropout only at 
testing to force more diverse predictions. However, model 
prediction instability had a stronger negative effect than the 
possible positive effects of having diverse predictions for 
uncertainty estimation as demonstrated by its low perfor-
mance. Results also show that uncertainty estimation may 
require calibration given the substantial amount of noise 
contributed by the background voxels in 3D imaging. This 
may explain margins sampling performing worse than ran-
dom query in our paper despite other studies showing better 
performance on 2D images [2].

We were also interested in reducing annotation redun-
dancy. While these techniques were able to reduce the 
training data needed by approximately 20%, they were not 
able to outperform AL strategies that only incorporated 
uncertainty. Adding a redundancy restriction strategy can 
bias training away from uncertain images. Future projects 
may prioritize more uncertain images within the represent-
ative cohort. Uncertain images can be clustered based on 

Fig. 3  Examples of predicted (blue) vs. expert (red) segmentations at 
17.5% of training data with random query, dropout train test, boot-
strapping, redundancy representative, and redundancy non-similar in 

order. The contrast-enhanced T1-weighted sequence is shown. Dice 
scores are shown for each respective image
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similarity, where each cluster is assigned an overall uncer-
tainty. While only a subset of images from each cluster are 
selected for annotation, training can be biased toward the 
uncertain images by artificially increasing images from 
uncertain clusters with data transformations or generative 
adversarial networks [24–28].

The major strength of our study is its demonstration of 
the specific reduction in annotation burden of each AL 
technique when applied by itself or when combined with 
multiple techniques. Recent studies have used combined 
uncertainty and representative approaches [11, 13], but as 
demonstrated in our uncertainty experiments, AL frame-
works are sensitive to calibration when applied to clinical 
imaging. By doing a detailed analysis of each technique 
on annotation reduction, our study can guide future studies 
that combine AL techniques. Furthermore, given the cali-
bration sensitivity and need to optimize hyperparameters 
at each iteration, our study suggests that AL frameworks 
may benefit from an adaptative strategy as AL iterations 
are added. Wang et al. incorporated reinforcement learning 
with Markov models to create an adaptive AL framework 
for example [22], and our study can be used to understand 
the adaptive strategies returned by reinforcement learning 
strategies in future studies.

Our study does have limitations. First, we purposefully 
used the hyperparameters optimized for the full data model 
on all AL models to address hyperparameter confounding 
bias, and therefore, results at each iteration may be lower 
than if they were trained with hyperparameters optimized 
for each iteration. We assumed performance would be 
similarly affected for each iteration. Additionally, we ran-
domly split the annotated data into the training and valida-
tion set at each AL iteration rather than having a consistent 
validation set at each iteration. We designed experiments 
as such with the thought that already deployed AL models 
should continuously look for more informative samples to 
add to the training data as time passes and more imaging is 
available. However, this may bias and overfit models to the 
training data, hindering model performance at larger AL 
iterations. Furthermore, our sole metric was Dice score, 
which is the most common metric for segmentation models 
for medical images. However, Dice has limitations in that 
it does not consider the distance of nonoverlapping regions 
between the prediction and ground truth and is more sen-
sitive to smaller ROI [29]. Our study shows how AL can 
be a catalyst in enabling DL to be more accessible within 
radiology, but further metrics should also be included to 
truly understand the clinical significance behind perfor-
mance improvements of each iteration. Lastly, we apply 
AL strategies on a single task of brain tumor segmenta-
tion. Further studies with different datasets and tasks are 
needed before AL strategies are regularly incorporated 
into models for medical imaging.

Conclusions

In conclusion, we demonstrate that AL can be successfully 
applied onto medical imaging to reduce the annotation bur-
den through our experiments on brain tumor segmentation. 
Reducing the annotation burden is increasingly becoming 
a necessity to keep DL models relevant in medical imag-
ing. With imaging constantly becoming refined with new 
acquisition parameters and improving scanning technology, 
existing models quickly become outdated. Furthermore, as 
imaging volume increases and a wider range of demograph-
ics has access to imaging, newer models that accommodate 
all patient backgrounds must be trained to keep biases 
within DL models in check. Unless the annotation burden is 
addressed, constantly retraining models is impossible, and 
therefore, our study was necessary to demonstrate AL as a 
solution to preserving the sustainability of medical DL mod-
els. Furthermore, the contributions of our study are quanti-
fying the efficacy of multiple AL techniques and showing 
the impact of combining various uncertainty estimation and 
annotation redundancy restriction methods, finding that a 
dropout uncertainty estimation framework is optimal.
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