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A polygenic score method boosted by non-
additive models

Rikifumi Ohta 1,4 , Yosuke Tanigawa 2,3,4 , Yuta Suzuki 1,
Manolis Kellis 2,3 & Shinichi Morishita 1

Dominance heritability in complex traits has received increasing recognition.
However, most polygenic score (PGS) approaches do not incorporate non-
additive effects. Here, we present GenoBoost, a flexible PGS modeling fra-
mework capable of considering both additive and non-additive effects, spe-
cifically focusing on genetic dominance. Building on statistical boosting
theory, we derive provably optimal GenoBoost scores and provide its efficient
implementation for analyzing large-scale cohorts. We benchmark it against
seven commonly used PGS methods and demonstrate its competitive pre-
dictive performance. GenoBoost is ranked the best for four traits and second-
best for three traits among twelve tested disease outcomes in UK Biobank. We
reveal that GenoBoost improves prediction for autoimmune diseases by
incorporating non-additive effects localized in the MHC locus and, more
broadly, works best in less polygenic traits. We further demonstrate that
GenoBoost can infer the mode of genetic inheritance without requiring prior
knowledge. For example, GenoBoost finds non-zero genetic dominance
effects for 602 of 900 selected genetic variants, resulting in 2.5% improve-
ments in predicting psoriasis cases. Lastly, we show that GenoBoost can
prioritize genetic loci with genetic dominance not previously reported in the
GWAS catalog. Our results highlight the increased accuracy and biological
insights from incorporating non-additive effects in PGS models.

Predicting heritable traits and genetic liability of disease from indivi-
duals’ genomes has important implications for tailoring medical pre-
vention and intervention strategies in precision medicine. Polygenic
score (PGS), a statistical approach, has recently attracted substantial
attention due to its potential relevance in clinical practice1–3. To esti-
mate genetic predisposition, PGS aggregates the effects of multiple
genetic variants into a single score for each individual. Most existing
PGS approaches benefit from the increased sample size in modern
genome-wide association studies (GWAS). Specifically, summary-
statistics-based approaches take GWAS-based univariate effect size
estimates of additive effects and ancestry-matched linkage-

disequilibrium (LD) reference panels as input to constructmultivariate
predictive models, as implemented, for example, in clumping and
thresholding (C+ T, also known as pruning and thresholding)4,
LDpred5, lassosum6, PRS-CS7, and SBayesR8.

Genetic dominance is well-documented in the classical genetics
literature. It refers to any deviation from additive effects of allelic
dosage of a genetic variant on a trait and consists of dominant,
recessive, over-dominant, and over-recessive effects. Each non-
additive effect differs by the relationship among the estimated effect
sizes for heterozygous or homozygous genotypes (Supplementary
Methods). Earlier studies focused on a smaller number of samples and
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estimated that the relative contribution of non-additive effects on trait
heritability is smaller than that of additive effects9. However, the
increase in sample sizes in recent studies coupledwithmethodological
advancements started to demonstrate the presence of non-additive
heritability, and their relative contribution varies depending on the
genetic architecture of traits10–14. For example, some highlight sub-
stantial roles of non-additive effects in autoimmune diseases, most
notably in rheumatoid arthritis and psoriasis15, suggesting the poten-
tial benefits of considering non-additive effects in polygenic score
modeling for some traits. Indeed, several case studies have already
started to explore PGS, focusing on non-additive effects. For example,
a recent study reported that replacing additive GWAS p-values with
recessive GWAS p-values in C + T PGS modeling improves predictive
performance for aggressive behavior16. However, the advantage of
incorporating non-additive genetic dominance effects in PGS model-
ing across a wide range of traits is largely unknown, partly because
most existing PGS approaches are limited and consider only linear
additive effects, given their dependencies on the GWAS summary
statistics characterized by additive association tests.

Here, we overcome the technical limitations and present Geno-
Boost, the first computationally efficient and flexible polygenic mod-
eling framework capable of considering both additive and non-
additive genetic dominance effects in a unified framework. To
account for genetic dominance not captured in additive GWAS sum-
mary statistics, GenoBoost directly operates on individual-level data,
building on top of the recent methodological innovations by us and
others on PGS modeling, including penalized regression17–25 and sta-
tistical boosting26–30, both relying on individual-level data. Among
those emerging approaches, we hypothesize that a statistical boosting
framework would be ideally suited for integrating additive and non-
additive genetic dominance effects in PGS, given its modularity and
flexibility, robustness in high-dimensional problems, and its high pre-
dictive ability across a wide range of machine learning problems
spanning several decades26,31–33. We develop an iterative algorithm for
GenoBoost, where we find the genetic effects of homozygous and
heterozygousminor alleles relative to homozygousmajor alleles using
analytical solutions (Supplementary Methods), enabling computa-
tionally efficient inference on large-scale genetic datasets consisting of
hundreds of thousands of individuals. We demonstrate the competi-
tive predictive performance of GenoBoost by benchmarking our
approach against seven widely used PGS approaches. GenoBoost
shows competitive predictive performance across twelve disease
outcomes in UKBiobank, including the best predictive performanceof
four traits and second best for three phenotypes. We also highlight
that the genetic loci prioritized by GenoBoost are often supported by
experiments in the literature, suggesting the utility of our approach to
capturing biologically validated effects. Overall, our work highlights
the advantage of GenoBoost in incorporating non-additive genetic
dominance effects in polygenic prediction.

Results
Overview of the GenoBoost study
With GenoBoost, we fit a PGS model using individual-level data in an
iterative procedure. We first adjust for the covariate effects and gra-
dually expand the set of genetic variants included in the model in the
subsequent iterative steps (Fig. 1). We designed the GenoBoost algo-
rithm using a statistical boosting framework26, where we construct a
PGS predictor as a sum of weak predictors, each of which considers
only one genetic variant as an input and returns a score based on the
individual’s genotype for the variant. In each iteration, we focus on the
residualized phenotypes adjusted for the effects of covariates and
genetic variants already selected in the previous iteration steps and
select the most informative genetic variant in predicting the residua-
lized phenotype (Fig. 1a, step 1). To calculate the genotype-dependent
scores in the weak predictor for the selected variant for homozygous

major and minor alleles and heterozygous alleles (denoted as s0, s2,
and s1, respectively), we take advantage of our analytical solution on
the provably optimal genotype-dependent scores (Supplementary
Methods), thus enabling the application of GenoBoost to large-scale
datasets consisting of hundreds of thousands of individuals and more
than one million genetic variants (Methods). We derive the analytical
solutions in Theorem 1-7 in Supplementary Methods. Following the
theoretical foundations and the best practices in constructing boost-
ing models on high-dimensional datasets while minimizing the risk of
overfitting34, we shrink the optimal scores by the learning rate, γ
(0 < γ ≤ 1), and iteratively update the GenoBoost model with the reg-
ularized scores (Fig. 1a, step 2). The number of iterations and the
learning rate are thehyperparameters of theGenoBoostmodel, andwe
optimized them using five-fold cross-validation, where we randomly
split the model development set into five folds to define training and
validation sets (Fig. 1a, step 3, Fig. 1b, Methods). We used the held-out
test set for the predictive performance evaluation. We considered two
types of GenoBoost models: Additive GenoBoost and Non-additive
GenoBoost. The former considers additive effects alone, whereas the
latter considers additive and non-additive genetic dominance effects.
We used the validation set to select the best-performing model
between the two and reported it as the GenoBoost model (Methods).

We assembled a panel of twelve disease outcomes with known
heritable basis and high prevalence in UK Biobank and systematically
applied GenoBoost to each trait using 1,073,318 imputed biallelic sin-
gle nucleotide variants (SNVs) for n = 338,138 unrelated white British
individuals (Methods, Fig. 1b, Supplementary Fig. 1)35,36. Using the held-
out test set individuals, we evaluated the predictive performance of
the resulting model using four metrics: (1) covariate-adjusted pseudo-
R2 as in the literature7,37,38, (2) odds ratios of disease incidence rates
stratified by the top 1, 3, 5, and 10% of PGS value, which measure the
ability of PGS models in stratifying the individuals with high genetic
liability of the disease, (3) area under the receiver operating char-
acteristic curve (AUC), and (4) area under precision-recall curve
(AUPRC) (Methods, Fig. 1c). We considered all five models from the
five-fold cross-validation when evaluating the predictive performance
metrics. Subsequently, we randomly selected one of them to interpret
the genetic variants selected in the model (Methods). We inferred the
mode of genetic inheritance (i.e., additive, dominant, recessive, over-
dominant, or over-recessive) of the selected genetic variants based on
the relationship between the threeweights for the variants assigned by
GenoBoost (Methods, Fig. 1d, Supplementary Fig. 2).We comparedour
classification of the genetic effects against the ones from an ortho-
gonal approach based on additive and non-additive GWAS analyses.
We sought literature support for the biologically relevant roles of
genes annotated as the closest genes for the selected variants with
genetic dominance effects (Methods, Fig. 1e).

BenchmarkingGenoBoost across twelvediseaseoutcomes inUK
Biobank
We applied GenoBoost and seven previously published PGS methods
to the twelve disease outcomes and evaluated their predictive per-
formance (Table 1). In the panel of twelve disease outcomes in UK
Biobank35,36, we included seven commonly studied traits (rheumatoid
arthritis, inflammatory bowel disease, asthma, atrial fibrillation, breast
cancer, coronary artery disease, and type 2 diabetes) in the PGS
literature5,7,8,20,39–41 and five disease outcomes (psoriasis42, gout43, all-
cause dementia44, Alzheimer’s disease45, and colorectal cancer46) with
high prevalence and genetic basis (Methods)36. Among the twelve
traits selected, rheumatoid arthritis and psoriasis are included in the
list of candidate phenotypes with substantial non-additive genetic
dominance effects in a recent study15. Our selection of twelve disease
outcomes has a minimum overlap of case individuals among others,
except for the moderate overlap between Alzheimer’s disease and all-
cause dementia (Jaccard index =0.41) (Supplementary Fig. 3). We fit
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each model five times using the five training sets from the five-fold
cross-validation, and we evaluated the median of the predictive per-
formance metrics in the held-out test set individuals (Fig. 2, Supple-
mentary Fig. 4, Supplementary Data 1).

Overall, GenoBoost demonstrated a competitive predictive per-
formance, showing the best predictive performance for four pheno-
types and the second-best predictive performance for three
phenotypes. No single method ranked the best across all tested traits
when we evaluated covariate-adjusted pseudo-R2, suggesting the best-
performing PGS methods depend on the genetic architecture of the
trait (Fig. 2a). GenoBoost and LDpred5 ranked the best predictive
performance across four out of twelve phenotypes each (rheumatoid
arthritis, psoriasis, gout, and inflammatory bowel disease for Geno-
Boost and atrial fibrillation, breast cancer, colorectal cancer, and cor-
onary artery disease for LDpred), positioning them as the best-
performing models. For example, GenoBoost showed the best pre-
dictive performance for inflammatory bowel disease (covariate-
adjusted pseudo-R2 = 0.00796) with 2.2% improvements over
lassosum6, the second-best PGS method (pseudo-R2 = 0.00778);
LDpred showed the best predictive performance for breast cancer
(pseudo-R2 = 0.0286) followed by snpboost27 (pseudo-R2 = 0.0277) and
GenoBoost (pseudo-R2 = 0.0263). For the remaining four phenotypes,
snpnet20 was the best PGS method for all-cause dementia and Alzhei-
mer’s disease, and snpboost and PRS-CS7 were the best for asthma and
type 2 diabetes, respectively.

We found that the PGS models from GenoBoost have the least
number of genetic variants (Fig. 2d, Supplementary Fig. 4e, Supple-
mentary Data 1) while maintaining competitive predictive perfor-
mance. The sparsity of the GenoBoost model is advantageous in
interpreting the genetic loci contributing to the prediction, which we
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Fig. 1 | Schematic overview of the study. a GenoBoost algorithm fits a polygenic
score (PGS) function in an iterative procedure. In each iteration, GenoBoost selects
the most informative SNV for trait prediction conditioned on the previously char-
acterized effects and characterizes the genotype-dependent GenoBoost scores, s0,
s1, and s2. We considered two types of GenoBoostmodels: Non-additive GenoBoost
and Additive GenoBoost, where an additional constraint among the three Geno-
Boost scores ensures non-additive geneticdominanceeffects are always set to zero.
GenoBoost iterativelyupdates itsmodel using twohyperparameters: learning rate γ
(0 < γ ≤ 1) and the number of iterations. We optimized the hyperparameters based
on the predictive performance in the validation set using five-fold cross-validation.

b Model development and evaluation dataset. We randomly split the unrelated
white British individuals in UK Biobank into training, validation, and test sets. We
applied five-fold cross-validation. c Predictive performance evaluation of PGS
models. We used covariate-adjusted pseudo-R2 as the primary metric of predictive
performance. dWe inferred the mode of inheritance of each genetic variant based
on the deviation from the linearity in the three GenoBoost scores (Methods). eWe
showed that the inferred genetic inheritance is consistent with GWAS-based
approaches. We applied GenoBoost to prioritize genetic loci with genetic dom-
inance not previously reported in the GWAS catalog.

Table 1 | The panel of twelve disease outcomes in UK Biobank
analyzed in the study

Phenotype ncase ncontrol case prevalence

Rheumatoid arthritis 8040 329,098 2.38%

Psoriasis 6595 330,543 1.96%

Gout 9462 327,676 2.81%

Inflammatory bowel
disease

3703 333,435 1.10%

Asthma 48,234 288,904 14.31%

All-cause dementia 4987 332,151 1.48%

Alzheimer’s disease 2060 335,078 0.61%

Atrial fibrillation 25,839 311,299 7.66%

Breast cancer 14,870 181,027 7.59%

Colorectal cancer 6869 330,269 2.04%

Coronary artery disease 23,184 313,954 6.88%

Type 2 diabetes 25,589 311,549 7.59%

For each phenotype, the number of case and control individuals and case prevalence in the
unrelated white British individuals are shown.
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Fig. 2 | Benchmarking GenoBoost across twelve disease outcomes in UK Bio-
bank. a Predictive performance in covariate-adjusted pseudo-R2 across eight PGS
methods (i-viii, including GenoBoost) and twelve disease outcomes in UK Biobank.
C + T: clumping and thresholding. b Comparison of Additive (method A) and Non-
additive (method B) GenoBoost in their predictive performance across three
immune-related disorders: rheumatoid arthritis, psoriasis, and gout. The Geno-
Boost PGS (method i) was selected between the two based on the predictive per-
formance in the validation set. c Comparison of the eight genotype-only PGS
models in their ability to stratify case individuals in the top 1, 3, 5, or 10percentile (x-

axis) of the predicted PGS scores in the held-out test set. We show the odds ratio
comparing the stratified individuals and the remainder of the population.
d Number of selected genetic variants (y-axis) in eight PGS models. The y-axis is
shown in a log scale. The results from five-fold cross-validation (n = 5 folds) are
shown in the plots. The box plots show the median and interquartile range (IQR,
defined as the difference between the third and the first quartile points, i.e., Q3 and
Q1) with whiskers (Q1-1.5 * IQR and Q3+ 1.5 * IQR). SBayesR raised convergence
error for psoriasis and Alzheimer’s disease and for four out of five cross-validations
of gout. Source data are provided as a Source Data file.
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will use to examine the factors influencing the best PGS models as we
investigate in the next section.

The impacts of non-additive effects at the MHC locus and poly-
genicity on the best PGS models
We focused on three immune-related disorders, where GenoBoost
showed the best predictive performance with themost improvements
over the second-best methods. Specifically, our Non-additive Geno-
Boost performed the best for the two autoimmune diseases, rheuma-
toid arthritis and psoriasis, with covariate-adjusted pseudo-R2 of
0.0129 and 0.0436, showing 11.3% and 2.78% improvements over
snpboost27, the second-best performing PGS methods (Fig. 2b, Sup-
plementary Fig. 4a, Supplementary Data 1). Additive GenoBoost was
ranked the best for gout (pseudo-R2 = 0.0401), showing 2.09%
improvements over snpboost.

We found that the improvements in the predictive performance
for autoimmune diseases with GenoBoost can be attributed to non-
additive genetic dominance effects in a relatively small number of
genetic loci. For example, genetic variants in the major histocompat-
ibility complex (MHC) locus in chromosome6 contribute substantially
to predicting the genetic liability of autoimmune diseases in the Gen-
oBoost model. The heterozygosity of the MHC regions is protective
against psoriatic arthritis47, and some reports indicate over-dominant
selection at the locus48. To evaluate the contribution of non-additive
genetic dominance effects at the MHC locus, we prepared additional
sets of Additive and Non-additive GenoBoost models for autoimmune
disease outcomes without using genetic variants on chromosome 6.
Specifically, we removed genetic variants on chromosome 6 from
GenoBoost models and additionally constructed another set of Gen-
oBoost models without considering chromosome 6 in model training.
In both cases, we found that the predictive performance of Additive
and Non-additive GenoBoost models are largely consistent (Supple-
mentary Fig. 5, Supplementary Data 1, Supplementary Note 1), high-
lighting the unique ability of GenoBoost to incorporate non-additive
genetic dominance effects at the MHC locus in improving genetic risk
prediction of autoimmune diseases.

We hypothesized that the moderate regularization of non-
additive genetic dominance effects in GenoBoost would further
improve the predictive performance, given the lower frequency of
homozygous carriers in populations and limited roles of non-additive
effects beyond the MHC locus. We introduced the maximum absolute
value for the GenoBoost s2 score, representing the effect of homo-
zygous minor alleles in the GenoBoost model. We indeed found that
the modest regularization improved the predictive performance
(Supplementary Figs. 6, 7, Supplementary Data 1).

We also found that the polygenicity of the trait also influences the
best-performing PGS models, and our sparse GenoBoost PGS model
performs the best for less polygenic traits. We first investigated the
results for psoriasis and asthma, where GenoBoost ranked second
(pseudo-R2 = 0.0308) after snpboost27 (pseudo-R2 = 0.0310), given the
known role of theMHC locus in both traits and the difference between
the two traits in the polygenicity (Supplementary Fig. 8). The dis-
tribution of the PGS scores in the held-out test set individuals also
reflects the difference in polygenicity (Supplementary Fig. 9). To fur-
ther test the effects of polygenicity on the predictive performance, we
generated 80 synthetic phenotypes under eight simulation config-
urations with varying levels of polygenicity and heritability, applied
GenoBoost and LDpred5, the best-performing method without the
sparsity constraints, and compared their predictive performance
(Supplementary Fig. 10, Supplementary Data 1, Supplementary
Note 2). GenoBoost outperformed LDpred for seven out of eight
parameter configurations tested in our simulation analysis. The dif-
ference in the predictive performance between GenoBoost and
LDpred is larger in less polygenic scenarios. In our benchmarking on
the twelve UK Biobank disease outcomes, LDpred was ranked as the

best-performing PGS method for highly polygenic traits, such as atrial
fibrillation, breast cancer, and coronary artery disease, suggesting that
sparse PGS methods like ours are most advantageous for less poly-
genic traits.

Comparison among PGS methods on the individual-level data
We next compared GenoBoost against snpnet20 and snpboost27, the
two recently developed PGS methods that directly operate on
individual-level data. The comparison demonstrated the unique
advantage of GenoBoost in incorporating non-additive genetic dom-
inance effects and also resulting in extremely sparse PGS models.
Across twelve traits, the three PGS methods on the individual-level
data have fewer genetic variants than those based on summary sta-
tistics (Fig. 2d, Supplementary Figs. 4e, 8, Supplementary Data 1).
Indeed, GenoBoost selected the least number of genetic variants for
ten out of twelve traits. Among the three methods on the individual-
level data, GenoBoost has the highest level of sparsity with themedian
of 195 genetic variants, while snpnet and GenoBoost selected the
median of 913 and 727 genetic variants across twelve traits.

We compared GenoBoost against snpboost27, given that both
methods are built on statistical boosting. Overall, GenoBoost showed
improved predictive performance over snpboost across eight out of
twelve traits, in which our methodological advancements in statistical
boosting likely played a substantial role. Specifically, our theoretical
results on the analytical solution for optimal GenoBoost score enabled
computationally efficient PGS modeling while allowing us to consider
both additive and non-additive genetic dominance effects.

We showed 4.9% average improvements across the twelve traits
over snpnet20, an implementation of batch screening iterative lasso on
large-scale genetic datasets while considering additive effects alone
(Fig. 2a). For Alzheimer’s disease and all-cause dementia, snpnet
showed the best predictive performance (covariate-adjusted pseudo-
R2 = 0.0408 and 0.0344, respectively), followed by GenoBoost with a
small difference in predictive performance (pseudo-R2 = 0.0408 and
0.0342, respectively), highlighting the competitive performance of
GenoBoost. To quantify the benefits of non-additive genetic dom-
inance effects in a penalized regression framework, we considered a
variant of snpnet capable of considering both additive and non-
additive effects and evaluated the predictive performance (Supple-
mentary Methods). We found that non-additive snpnet models
improved prediction for rheumatoid arthritis and psoriasis over
additive snpnet models (Supplementary Fig. 11, Supplementary Data 1,
Supplementary Note 3). Nonetheless, GenoBoost outperformed non-
additive snpnet, highlighting its competitive advantage.

Stratifying individuals with high genetic liability of diseases
We next demonstrated the ability of GenoBoost to stratify individuals
with the high genetic liability of immune-related disorders within a
population. Specifically, weusedGenoBoost to predict genetic liability
of the disease outcomes in the individuals in the held-out test set,
evaluated the enrichment of disease prevalence in the identified high-
risk group over that in the rest, and summarized the enrichment of
case prevalence as odds ratio (Fig. 2c, Methods). For psoriasis, for
example, where GenoBoost showed the covariate-adjusted pseudo-R2

of 0.0436, individuals in the top 1% genetic liability predicted by
GenoBoost have five-fold enrichment in case prevalence compared to
the remainder of the population (odds ratio=5.05). When compared
against the snpboost27 and snpnet20, the second-best and the third-best
predictors with covariate-adjusted pseudo-R2 of 0.0424 and 0.0417
and odds ratio of 4.46 and 4.08, GenoBoost showed 2% and 13%
improvements in stratifying psoriasis cases basedonpredicted genetic
liability. We observed similar competitive advantages of GenoBoost
across other immune-related disorders, such as rheumatoid arthritis
and gout, and at different threshold levels, including the top 3%, 5%,
and 10%. When applied across all twelve traits, we found that the top-
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ranked PGS by odds ratio is largely consistent with that by covariate-
adjusted pseudo-R2 (Supplementary Fig. 4d, Supplementary Data 1).
We also confirmed that other commonly used metrics of binary clas-
sification accuracy, including AUC and AUPRC, capture consistent
patterns (Supplementary Fig. 4a-c, Supplementary Data 1). We
observed a limited predictive performance of GenoBoost in non-
European population groups in UK Biobank, as in other PGS methods
trained only on genetic datasets from European individuals (Supple-
mentary Fig. 12, Supplementary Data 1, Supplementary Note 4). We
observed substantial variability in predictive performance in non-
European populations across disease outcomes and PGSmethods. For
example, GenoBoost showed the best predictive performance for
psoriasis for the East Asian population and gout for the South Asian
population, whereas other methods showed better performance for
gout for the African population and type 2 diabetes for the South Asian
population, motivating further expansion of GenoBoost into multi-
ancestry settings in future studies (Discussion). Together, those results
highlight the competitive predictive performance of GenoBoost.

GenoBoost scores allow inference of the mode of inheritance
The three GenoBoost scores for each genetic variant (s0, s1, and s2) in
the sparse GenoBoost PGS models allow us to classify the genetic
variant effects based on the types of the estimated inheritance mode
into additive, dominant, recessive, over-dominant, and over-recessive
(Supplementary Fig. 2, Supplementary Methods). Applying this tech-
nique, we inferred that 40–67% of genetic variants selected by Geno-
Boost show non-zero non-additive genetic dominance effects, of
which 10-22% of all of the selected genetic variants have non-zero
recessive effects (Fig. 3a). For example, our approach classified 53% (16
of 30 variants) and 67% (602 of 900 variants) of the selected genetic
variants as the ones with non-zero genetic dominance effects for
rheumatoid arthritis and psoriasis, where the GenoBoost was ranked
top as the one with the best predictive performance. We found a
modest correlation (Pearson’s correlation =0.70) between the number
of genetic variants selected in the GenoBoost PGS model and the
fraction of the genetic variants classified as having non-additive
genetic dominance effects (Supplementary Fig. 13a, Supplementary
Data 1). We also observed modest correlations when we used the
number of genetic variants in other PGS models or the estimated
additive liability-scale heritability (Supplementary Fig. 13b-f, Supple-
mentary Data 1, 2).

We validated that the inferred mode of genetic inheritance by
GenoBoost is highly consistent with what one may infer from the
GWAS association statistics conducted under the various genetic
inheritance modes12,14. Specifically, we conducted GWAS analysis for
each genetic variant under additive and all non-additive genetic
dominancemodes and inferred the genetic inheritancemode to be the
one that resulted in the most significant association summary statis-
tics. We found the inferred inheritance modes from the two approa-
ches are largely consistent, although the two approaches rely on
different metrics (Fig. 3b).

For example, we found four genetic variants selected by Geno-
Boost for psoriasis in a 3Mbp intergenic region on chromosome 11
(position: 96M–99M; the nearest transcription start site is at position
96.51M for the JRKL gene). The four genetic variants consist of a
mixture of distinct inferred inheritance modes: two genetic variants
with additive effects, one with recessive effect, and another with over-
dominant effect (Fig. 3c). The inferred inheritance modes for each of
the selected genetic variants are highly consistent with the ones from
GWAS-based approaches (Fig. 3d). For example, across all of the 900
genetic variants selected in the GenoBoost PGS model for psoriasis,
730 variants (81%) have the same inheritance mode classification.
Across the twelve traits, 56%–93% of genetic variants enjoyed agree-
ment with inferred inheritance modes. For 52 of 186 (28%) genetic
variants, we foundGenoBoost andGWAS classified them into recessive

and additive, respectively, and they consist of the most common dis-
crepancy between the two approaches. The lower number of homo-
zygous careersmay result in limited power in recessive GWAS in those
cases. On the other hand, GenoBoost considers all individuals with
non-missing genotypes when inferring the underlying genetic inheri-
tance mode of the variants, highlighting the advantage of GenoBoost
in inferring the underlying inheritance modes of the genetic variants
without requiring prior knowledge of the underlying biology.

Applying GenoBoost to prioritize genetic loci previously not
reported in the GWAS catalog
Motivated by the competitive predictive performance and the ability
to infer the genetic inheritancemodes, we evaluated and subsequently
showed the utility of GenoBoost to prioritize genetic loci that were
previously not reported in the GWAS catalog49. To that end, we iden-
tified the list of 240genetic variants with putative non-additive genetic
dominance effects where the relevance of the closest genes (within a
100,000bp window) to the traits was not previously reported in the
GWAS catalog (Fig. 4, Supplementary Fig. 14, Supplementary Data 3,
Supplementary Methods). We focused on the three identified variants
for rheumatoid arthritis and the top five genetic variants for psoriasis,
ranked by their relative contributions in binary classification in Gen-
oBoost for psoriasis, as case studies. We found that four out of the
eight genes showed independent support of their relevance to the
traits in the literature.

For rheumatoid arthritis, an intronic variant (rs7237982) in the
TNFRSF11A (RANK) gene was prioritized by GenoBoost, with the
dominant mode as the inferred mode of inheritance. The TNFRSF11A
(RANK) gene is partof theRANKL/RANK/OPGpathway, activatedduring
osteoclast maturation and bone modeling50. The RANK gene was
overexpressed in the rheumatoid arthritis patients compared to con-
trol donors51. Similarly, the differential expression of the ARHGAP15
gene, annotated for the closest gene for an intronic variant with
dominance (rs2731561), was also reported in the synovial fluid52.

For psoriasis, an intronic variant (rs7291930) of the MED15 gene
was selected under the inferred dominant mode. TheMED15 gene was
overexpressed in psoriatic arthritis patients53. Similarly, an intronic
variant (rs10193337) for the SPRED2 gene, which is known to be
involved in endochondral ossification for bone development, was also
selected by GenoBoost under the over-dominant inheritance mode.
The gene is also upregulated in the synovial biopsies in the cases54.
Beyond the gene body, we found a genetic variant in the MICD pseu-
dogene, which was reported to be a potential pleiotropic gene for
immune and skeletal disease, including psoriasis55 (Supplemen-
tary Data 3).

Across the eight examples examined, our classification of inheri-
tance mode with GenoBoost is consistent with those from GWAS
association summary statistics (Supplementary Figs. 15, 16, Supple-
mentary Table 7). Intriguingly, the associations between rs6773050
and rheumatoid arthritis and rs10193337 and psoriasis were not sta-
tistically significant under the additive GWAS analysis, highlighting the
advantage of GenoBoost in prioritizing those loci.

Discussion
We present GenoBoost, a flexible polygenic modeling framework
capable of incorporating both additive and non-additive genetic
dominance effects without requiring prior knowledge of the genetic
architecture of the trait. Systematic benchmarking of GenoBoost
against seven commonly used PGS methods demonstrates the com-
petitive predictive performance of GenoBoost, although no single
method outperforms the other approaches across the panel of twelve
disease outcomes in UK Biobank evaluated in our study. Taking
advantage of the sparsity of GenoBoost models, we investigate the
factors that may influence the relative predictive performance of PGS
methods. We show that GenoBoost improves prediction for
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autoimmune diseases by incorporating non-additive effects in the
MHC locus and, more broadly, works best in less polygenic traits.

We also demonstrate that GenoBoost allows inference of the
inheritance mode of each selected genetic variant. We compared the
inferred inheritance modes with an orthogonal approach based on

GWAS summary statistics and showed that the inferred modes of
inheritance from the two approaches are largely consistent. Focusing
on the genetic variants with inferred non-additive effects, we demon-
strate the ability of GenoBoost to prioritize genetic loci with genetic
dominance that were previously not reported in the GWAS catalog49.
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900 genetic variants selected in
GenoBoost PGS for psoriasis

GenoBoost’s predictive utility for psoriasis

GWAS –log10(p-values) for psoriasis

Fig. 3 | GenoBoost scores allow for the inference of the mode of inheritance.
a For the genetic variants selected in Non-additive GenoBoost models across the
twelve disease outcomes in UK Biobank (x-axis), the fractions of the inferred
inheritance mode are shown (y-axis). b We compared the inferred inheritance
mode fromGenoBoost (y-axis) and the ones fromGWAS summary statistics (x-axis)
and showed the results as a colored confusion matrix. Add: additive. Dom: domi-
nant. Rec: recessive. c, d Comparison of GenoBoost scores and GWAS p-values,
focusing on psoriasis and genetic variants in an intergenic region in chromosome
11. For each genetic variant selected in the Non-additive GenoBoost model within

the 3 Mbp window (x-axis), we show the predictive utility of the variant in Non-
additive GenoBoost (Supplementary Methods) (c). We also show the statistical
significance from GWAS for the variant under additive, recessive, and
heterozygous-only regressionmodels (d). The statistical significance is the nominal
p-values of the slope of the logistic regression from two-sided tests using up to
n = 215,768 samples. Four genetic variants with the largest predictive utilities in
GenoBoost are highlighted and colored based on the inferred mode of genetic
inheritance. Source data are provided as a Source Data file.
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Methodologically, our study provides substantial advancements
in PGSmodeling efforts for complex traits. For example, to the best of
our knowledge, GenoBoost is the first PGS method that can consider
the effects of additive and non-additive genetic dominance effects
simultaneously. The advantage of our analytical solution is evident
whenwecompareGenoBoost against snpboost27, a recentlydeveloped
PGS method based on the application of statistical boosting on the
individual-level genetic data: snpboost is based on L2-boosting56, a
specific kind of statistical boosting technique best suited for quanti-
tative traits, and is limited to additive effects; GenoBoost, in contrast,
builds on LogitBoost, which was originally developed for binary
classification33, and also on our theoretical results. The analytical
solutions for the optimal GenoBoost scores (SupplementaryMethods)
overcome the limitations in previous approaches and allow efficient
inference of additive and non-additive genetic dominance effects.
Indeed, GenoBoost is efficient and is applicable to large-scale datasets
frompopulation-based cohorts. In our application ofGenoBoost to the
UK Biobank dataset consisting of ~1.1million genetic variants and

ntrain ~ 216,000 individuals, GenoBoost required only up to 10 h and 30
GBofmemoryonour cluster computing systemconsisting of a 32-core
CPU (AMD EPYC 7302, 1.5 GHz clock rate) and 2TB of memory (DDR4
RAM, 2.6GHz clock rate).

Biologically, our flexible and sparse GenoBoost PGS models
offer interpretation. We showed the ability of GenoBoost to infer
the genetic inheritance mode based on the three GenoBoost scores
(s0, s1, and s2). We demonstrated that our classification of inheri-
tance mode was highly consistent with that from GWAS association
summary statistics. Compared with the GWAS-based approach,
which requires a series of association analyses with varying inheri-
tance mode assumptions, GenoBoost readily inferred genetic
inheritance mode while fitting a PGS model in a single run. The
ability of GenoBoost to consider all the samples in inferring the
mode of genetic inheritance can be advantageous when searching
for recessive effects. We further showed the ability of GenoBoost to
prioritize genetic loci that were not previously reported in the
GWAS catalog49 by demonstrating that four out of eight tested

Phenotype Variant MAF 
[%]

Gene GenoBoost Relative effect size to major 
homozygotes (log odds ratio) calculated 
from genotype counts

Nearest 
gene

Variant 
type

Reference to 
suggest the 
association 
of gene to 
phenotype

Inheritance 
mode 
inferred by 
GenoBoost

Rheumatoid 
arthritis

rs7237982 24
TNFRSF11A
(RANK) Intron

Tobeiha et al.50, 
Poubelle et al.51 Dominant

rs2731561 25 ARHGAP15 Intron Song et al.52 Dominant

rs6773050 47 ARHGAP31 Intron - Overrecessive
Psoriasis

rs7291930 23 MED15 Intron Dolcino et al.53 Dominant

rs13395354 18 ACOXL Intron - Recessive

rs11751451 14 KIF25 Intron - Overdominant

rs12479220 23 SPHKAP Intron - Recessive

rs10193337 5.2 SPRED2 Intron Dolcino et al.54 Overdominant

2
1
0

Al
le

lic
 d
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ag

e

Relative effect size

Recessive SNV

Fig. 4 | Prioritizing genetic loci previously not reported in the literature with
GenoBoost. Three and five genetic variants selected for rheumatoid arthritis and
psoriasis in GenoBoost are shown as illustrative examples, where GenoBoost
selected the genetic variants with inferred non-additive genetic dominance effects,
and their closest genes (within the 1Mbp window) were not reported in the GWAS
catalog. We show the following in the table: phenotype, variant, minor allele fre-
quency (MAF), annotated gene symbol, and predicted consequence of genetic
variant, references for the literature reporting the relevance of the closest gene in

the phenotype, inferred mode of inheritance. The line plots in the rightmost col-
umn represent the log odds ratio (x-axis) of the sample counts of heterozygous and
homozygous minor alleles relative to homozygous major alleles. The error bars
represent the 95% confidence intervals for Wald’s statistics with n = 215,768 sam-
ples. The three dots connected by a line (y-axis) represent the allelic dosage of 0, 1,
and 2 from the top to bottom. The color represents the inferred mode of genetic
inheritance by GenoBoost. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-48654-x

Nature Communications |         (2024) 15:4433 8



genes prioritized by GenoBoost have literature support for their
relevance to the trait.

There are several directions for future studies. First, the current
implementation of GenoBoost supports binary phenotypes alone;
future expansion of themethodology into quantitative traits would be
helpful. Second, our current approach operates directly on the
individual-level data; further extension of our method coupled with
the increasing availability of non-additive GWAS summary statistics
would expand the opportunity for joint modeling of additive and non-
additive genetic effects across multiple traits and cohorts. Third, our
study focused on common SNVs alone; future studies should incor-
porate a broader type of genetic variants, including indels, HLA
allelotypes57, copy number variations, short tandem repeat expan-
sions, microsatellites, and structural variants, given the increasing
catalog of rare genetic variants from short- and long-read sequencing-
based studies and methodological innovations of integrating those
effects in genetic scores58. Fourth, we currently focus on European
individuals alone in UK Biobank as proof of principle, but future stu-
dies will benefit greatly by incorporating individuals across diverse
genetic ancestry from multiple cohorts25,59. Fifth, our current model
did not consider the interaction between genetic variants; future non-
additive PGS models should incorporate such effects.

Our results highlight the benefits of incorporating non-additive
genetic dominance effects in PGS models. We demonstrate the
advantage of our sparse PGS models in improving predictive perfor-
mance for autoimmune diseases and less polygenic traits with non-
additive effects. We make the coefficients of GenoBoost models pub-
licly available in the PGS catalog (publication ID: PGP000546)60.

Methods
Ethics
This research was conducted using the UK Biobank Resource under
Application Number 48405, “Understanding disease subtypes from
genotype information” (https://www.ukbiobank.ac.uk/enable-your-
research/approved-research/understanding-disease-subtypes-from-
genotype-information). All participants of the UK Biobank provided
written informed consent (more information is available at https://
www.ukbiobank.ac.uk/2018/02/gdpr/).

The study population in UK Biobank
UK Biobank is a population-based cohort study with genomic and
phenotypicdatasets across about 500,000volunteers collected across
multiple sites in the United Kingdom35,36. We performed sample-level
quality control (QC).We focused on unrelated individuals with genetic
data based on the following criteria: (1) not reported in “Outliers for
heterozygosity or missing rate” (UK Biobank Data Field 22027); (2) not
reported in “Sex chromosome aneuploidy” (Data Field 22019); and (3)
used to compute principal components (Data Field 22020). Using a
combination of self-reported ethnic background (Data Field 21000)
and genotype principal components (Data Field 22009), we subse-
quently defined white British (n = 337,138), African (n = 6487), South
Asian (n = 7952), and East Asian (n = 1770) individuals (Supplementary
Methods)40.

For the 337,138 unrelated white British (WB) individuals, we ran-
domly split them into themodel development (n = 269,710 individuals;
equivalent to 80% of the unrelated WB individuals) and the held-out
test (n = 67,428, 20%) sets without using phenotypes (Supplementary
Fig. 1). For cross-validation, we further randomly split the model
development set into five folds, where we used four of the five folds
(ntrain = 215,768, 64%, consisting of ntrain = 115,722 female samples) and
the remaining fold (n = 53,942, 16%) for model fitting and optimizing
the hyperparameters in the model, respectively. We used the held-out
test set to evaluate the predictive performance. One of the folds was
randomly selected as the primary fold. For breast cancer, we focused

on the female individuals. We used the same population split for all
tested traits and PGS methods.

For the 6,487 African, 7,952 South Asian, and 1,770 East Asian
individuals, defined using the self-reported ethnic background and
genotype principal components (Data Field 22009) (Supplementary
Methods), we randomly split them into validation (20%) and test sets
(80%). We used the validation set of individuals to account for the
covariate effects and the test set to evaluate the predictive perfor-
mance of PGS models.

Variant annotation and quality control in UK Biobank
Throughout the study, we used the imputed genotypes (release
version 3) and GRCh37 human reference genome. We performed
variant annotation with Ensembl’s Variant Effect Predictor (VEP)
(version 110)61. We focused on variants passing the following criteria:
(1) unambiguous single nucleotide variants (SNVs) where both
reference and alternate alleles are represented by one of the four
canonical nucleobases (A, T, G, C); (2) minor allele frequency (MAF)
>1%; (3) Hardy-Weinberg disequilibrium test p-value > 1.0 × 10-6; (4)
the missingness of the variant is <5%; (5) imputation quality score
(INFO score) >0.3; and (6) present in the HapMap Phase 3 dataset62.
We focused on the most and the second most major alleles for
multiallelic sites and set the remaining alleles as missing. We com-
puted the quality control metrics using PLINK 2.063. The quality
control procedure above resulted in 1,073,718 variants considered in
the analysis.

For prioritizing genetic loci with GenoBoost, we annotated the
closest gene (up to 100,000 base pairs) for each genetic variant. To
select the lead tagging associations in linkage disequilibrium, we
excluded variants if another variant with larger predictive utility was
already selected within a 1million base pair window.

Phenotype definition in UK Biobank
We defined a panel of twelve disease outcomes in UK Biobank by
combining the following data sources: (1) self-reported diagnoses, (2)
cancer diagnosis code from the UK Cancer Registry, (3) disease diag-
noses from the UK National Health Service Hospital Episode Statistics,
and (4) operative procedure from theHealth Episode Statistics records
coded in the Office of Population Censuses and Surveys Classification
of Interventions and Procedures, version 4 (OPCS-4) (Table 1, Sup-
plementary Methods). The self-reported diagnoses of cancer and non-
cancer outcomes were collected at UK Biobank’s assessment center
across up to four instances, each of which corresponds to (1) the initial
assessment visit (2006-2010), (2) the first repeat assessment visit
(2012-2013), (3) the imaging visit (2014-present), and (4) first repeat
imaging visit (2019-present). We assigned “case” status if the partici-
pants were classified as the case in at least one of the data sources and
“control” otherwise.

Genome-wide association analysis
We applied genome-wide association analysis with PLINK (v2.00
alpha)63 using age, sex, and the first ten genotype PCs (Data Field
22009) provided by UK Biobank as covariates implemented as “--glm
zs omit-ref firth-fallback” command in PLINK2. We normalized cov-
ariates using the “--covar-variance-standardize” command. We com-
puted the age of the participants in March 2020 based on year and
month of birth (Data Field 33). To benchmark the predictive perfor-
mance of summary-statistics-based PGS methods trained on the same
number of individuals, we applied genome-wide association analysis
using the default additivemodel, focusing on the ntrain = 115,722 female
individuals (breast cancer) or ntrain = 215,768 individuals (the other
eleven traits) in the training set. We used the resulting summary sta-
tistics for lassosum6, C + T4, LDpred5, PRS-CS7, and SBayesR8, as
described below. To infer the mode of genetic inheritance using the
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statistical significance of GWAS associations, we repeated the GWAS
analysis with PLINK using the following list of modifiers in the “--glm”

command: “dominant”, “recessive”, and “hetonly”.

Overview of the GenoBoost algorithm
Wefit sparse polygenic scoremodels usingGenoBoost appliedon the
individual-level data consisting of covariate-adjusted phenotypes
y = (y1, …, yn)T∈Rn and genotypic dosage and covariate matrix X = (x1,
…,xn)T∈Rn×(d+c), where n is the number of individuals in the training
set, d is the number of genetic variants, and c is the number of cov-
ariates. We designed GenoBoost based on statistical boosting26, and
we fit polygenic score models in an iterative procedure, where we
gradually expand the set of genetic variants considered in the
boosting model (Algorithm 1). Tominimize the risks of confounding,
we first adjusted for the effects of covariates using logistic regres-
sion. In each iteration with GenoBoost, we focus on the residualized
phenotypes adjusted for the effects of covariates and genetic var-
iants that have already been selected in the previous iteration steps
and identify the most informative genetic variant in predicting the
residualized phenotype. Specifically, we defined the predictive utility
of each genetic variant as their potential contribution to reducing the
objective function (loss function) of GenoBoost (Supplementary
Methods). We infer additive and non-additive effects of the selected
genetic variants and assign weights for homozygous and hetero-
zygous minor alleles relative to homozygous major alleles using
analytical solutions. To minimize the impact of high variance stem-
ming from a small number of minor homozygous carriers, we reg-
ularized the genotype-dependent scores for the homozygous minor
alleles (s2) so that they will not have extremely large absolute values
(Supplementary Methods, Supplementary Fig. 6). We apply batch
screening for large-scale datasets, as shown in the full description of
the GenoBoost algorithm in Supplementary Methods. We provide
the theoretical proof of their optimality of the GenoBoost weights in
Theorem 1-7 in the Supplementary Methods. The number of itera-
tions,T, and the learning rate, γ, are hyperparametersweoptimize via
five-fold cross-validation.

Algorithm 1. A simplified description of Additive and Non-Additive
GenoBoost.
Given: training data fðx1, y1Þ, ðx2, y2Þ, . . . ,ðxN , yNÞg
User-given parameter: learning rate 0< γ ≤ 1 and the maximum itera-
tion count T
Initialize: t =0, F0 xð Þ= FcovðxÞ
For t =0, . . . ,T � 1:
1. Compute the probability of sample i being a disease case pt,i, the
sample working response zt,i, and the sample weight wt,i:

pt,i =
1

1 + exp �Ft xi

� �� � , zt,i =
1
pt,i

yi = + 1
� �

� 1
1�pt,i

yi = � 1
� �

8
<

:
, wt,i =pt,i 1� pt,i

� �
,

ð1Þ

and set Wt,k =
P

i:Gt xið Þ= kwt,i and Ut,k =
P

i:Gt xið Þ= kwt,izt,i.
2. For each SNV, compute the parameters for the optimal GenoBoost
scores under the additive model:

ct =
Wt,1 + 4Wt,2

� �
Ut,0 + 2Wt,2Ut,1 �Wt,1Ut,2

Wt,0Wt,1 +Wt,1Wt,2 + 4Wt,2Wt,0
, ð2Þ

αt =
�Wt,1 � 2Wt,2

� �
Ut,0 + �Wt,2 +Wt,0

� �
Ut,1 + 2Wt,0 +Wt,1

� �
Ut,2

Wt,0Wt,1 +Wt,1Wt,2 + 4Wt,2Wt,0
:

ð3Þ

To consider the non-additive model, set:

st,k =
Ut,k

Wt,k
: ð4Þ

3. Compute the loss function
PN

i = 1 wt,i f t xi

� �� zt,i
� �2, where f t xi

� �
is

defined as in Eq. (5) for the additivemodel and as in Eq. (6) for the non-
additive model:

f t xi

� �
=

ct Gt xi

� �
=0

ct +αt Gt xi

� �
= 1

ct +2αt Gt xi

� �
=2

8
><

>:
, ð5Þ

f t xi

� �
=

st,0 Gt xi

� �
=0

st,1 Gt xi

� �
= 1

st,2 Gt xi

� �
=2

8
><

>:
: ð6Þ

4. Select the SNV with the smallest loss function and update the pre-
dictor:

Ft + 1 xð Þ= Ft xð Þ+ γf t xð Þ: ð7Þ
Output: FT xð Þ

We considered two variants of GenoBoost models: Additive
GenoBoost and Non-additive GenoBoost. When fitting Additive Gen-
oBoost models, we imposed an additional constraint so that non-
additive genetic dominance effects are always set to zero (Supple-
mentary Methods). When fitting Non-additive GenoBoost, we did not
apply such a constraint, resulting in a model that considered both
additive and non-additive effects. Using the validation set metric
(covariate-adjusted pseudo-R2), we selected the best-performing
model and reported it as the GenoBoost model.

PGS performance evaluation
We evaluated the predictive performance of PGS models. We eval-
uated the following four predictive performance metrics in the held-
out test set individuals: (1) covariate-adjusted pseudo-R2, (2) odds ratio
stratified at the top 1% of the predicted genetic liability, (3) area under
the receiver operating characteristic curve (AUC), and (4) area under
the precision-recall curve (AUPRC).

Covariate-adjustedpseudo-R2. Toassess theoverall goodness offit of
the PGS models, we evaluated covariate-adjusted pseudo-R2 as in the
literature7, which can be interpreted as Nagelkerke’s pseudo-R2 (also
knownasCragg andUhler’s pseudo-R2)37,38 computed for the covariate-
adjusted phenotype and defined as

R2 = 1� Lcovars=Lfull
� �2=n� �

= 1� Lcovars
2=n

� �
, ð8Þ

where Lcovars and Lfull represent the likelihood of the covariate-only
model and the full model that considers both covariates and genetic
variants, respectively, and n represents the sample size. We fit amodel
on the validation set, obtained the coefficients of covariates and
genotype-only models, and reported the predictive performance in
the held-out test set.

Odds ratio. To assess the ability of PGS models to stratify the indivi-
duals with high genetic liability of the disease in a population, we
evaluated the odds ratio of disease incidence rates stratified by the top
1% of genotype-only PGS value. Specifically, we focused on the indivi-
duals in the held-out test set, ranked them based on the PGS scores,
defined high-risk and lower-risk groups as the individuals in the top
first percentile and the remainder of the population, and evaluated the
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odds ratio using the disease incidence rates in the two stratified
groups. We also evaluated the odds ratio at different threshold levels,
i.e., the top 3%, 5%, and 10%.

AUC. To assess the overall performance of PGS models in risk strati-
fication at different threshold levels, we evaluated the area under the
receiver operating characteristic curve (AUC), a commonly used
metric for binary classification tasks. AUC values would be 0.5 and 1.0
for random and perfect classifiers, respectively.

AUPRC. To assess the ability of PGS in stratifying case individuals in
populations, we evaluated the area under the precision-recall curve
(AUPRC), another commonly used metric for binary classification for
imbalanced datasets. AUPRC values would be equivalent to the pro-
portion of the cases and 1.0 for random and perfect classifiers,
respectively.

Applying GenoBoost to UK Biobank disease outcomes
We applied GenoBoost to a panel of twelve disease outcomes in UK
Biobank (Table 1). We considered the effects of the same set of cov-
ariate terms as in GWAS, i.e., age, sex, and the first ten genotype PCs.
We set the batch size Mbatch to 50 (Supplementary Methods). We
applied five-fold cross-validation and optimized hyperparameters via
grid search based on covariate-adjusted pseudo-R2. Specifically, we
considered four values (0.05, 0.1, 0.2, and 0.5) for learning rate, γ, and
the following 29 values for the maximum iteration count, T: [5, 10, 20,
30,…, 90, 100, 200, 300,…, 900, 1000, 2000, 3000,…, 9000, 10000]
(Supplementary Fig. 17). The maximum number of unique selected
genetic variants is constrained to be 10,000, given the maximum
iteration count, T, tested in the grid search. We confirmed that the
cross-validation selected <10,000 genetic variants (Supplementary
Fig. 18, Supplementary Data 1). We reported all of the predictive per-
formancemetrics, i.e., covariate-adjusted pseudo-R2, odds ratio for the
top 1% individuals, AUC, and AUPRC, evaluated in the held-out test set
using the five models from the cross-validation.

Additional analyses on the MHC locus, polygenicity, and reg-
ularization for the homozygous alleles
We performed additional analyses of GenoBoost by excluding chro-
mosome6 to investigate the effects of theMHC locus.We conducted a
simulation study to investigate the effects of polygenicity. We intro-
duced regularization for GenoBoost scores for the homozygous effect
alleles. We provide methodological details for those additional ana-
lyses in Supplementary Methods.

Applying previously published PGS methods to UK Biobank
disease outcomes
We applied seven previously published PGS methods to the twelve
disease outcomes in UK Biobank. We considered five GWAS summary-
statistics-based methods (C + T4, Lassosum6, LDpred5, PRS-CS7, and
SBayesR8) and additional two methods (snpboost27 and snpnet20)
based on the individual-level data. We evaluated the predictive per-
formance of each model and compared them against the ones from
GenoBoost. The details of the application of the seven previously
published PGSmethods are described in the Supplementary Methods.

Incorporating non-additive effects in snpnet
With snpnet20, we considered non-additive genetic dominance effects
by augmenting its input files for the genetic data. Specifically, we
prepared a dummy non-additive genotype matrix D ∈ Rn×d from the
corresponding genotypic dosage matrix G ∈ Rn×d . Di,j ∈ {0, 1} for j-th
SNV of the i-th sample is defined as Di,j = 1 if Gi,j = 1 and Di,j =0 if Gi,j = 0
or 2. Applying snpnet on [G, D], instead of applying it on G, we incor-
porated non-additive genetic dominance effects in snpnet via learning
the polygenic function Gβ +Dγ.

Inferring mode of genetic inheritance with GenoBoost scores
We used the triplet of GenoBoost scores (s0, s1, and s2) to infer the
mode of genetic inheritance for each genetic variant selected in Non-
additive GenoBoost models (Supplementary Methods). For the same
set of genetic variants, we compared the magnitude of statistical
significance of the associations from GWAS under additive and
dominance regression models (dominant, recessive, and hetero-
zygotes-only). We selected the genetic inheritance mode that resul-
ted in the most significant association for each variant and
considered that as the inferred mode of genetic inheritance with
GWAS summary statistics.

Estimating additive heritability of UKBiobankdisease outcomes
We used all samples in the training, validation, and test datasets to
perform genome-wide association analysis using PLINK 2.063. We used
the GWAS summary statistics to estimate additive heritability in the
liability-scalewithout ascertainment correction using d-ldsc software15.

Validation of selected SNVs in the GWAS catalog and literature
We downloaded the GWAS catalog data (version 1.0) for the twelve
disease phenotypes considered in the study49. We focused on the
genetic variants selected in GenoBoost trained on the primary fold and
checked whether the locus was previously reported in the GWAS cat-
alog (Supplementary Methods).

Statistics
For computational and statistical analysis, we used Python. For visua-
lization, we used matplotlib64 and seaborn65. The p-values were com-
puted from two-sided tests unless otherwise specified.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The analyses presented in this study were based on the individual-
level data accessed through UK Biobank: https://www.ukbiobank.ac.
uk. This research was conducted using the UK Biobank Resource
under Application Number 48405. We used the reference panels
from the 1000 genomes project (https://www.internationalgenome.
org/) and the list of genetic variants from the HapMap3 projects
(https://www.broadinstitute.org/medical-and-population-genetics/
hapmap-3). The PGS model weights generated from this study are
publicly available in the PGS catalog (publication ID: PGP000546).
The experimental data generated in this study have been deposited
in the Zenodo database under accession code (https://doi.org/10.
5281/zenodo.10200754). Source data are provided with this paper.

Code availability
The GenoBoost software is available on GitHub (https://github.com/
rickyota/genoboost) and also as a Docker image (https://hub.docker.
com/repository/docker/rickyota/genoboost/). The analysis scripts
used in the manuscript are available on GitHub (https://github.com/
rickyota/genoboost-paper-script). We also deposit the contents of the
GitHub repositories at Zenodo datasets: GenoBoost software (https://
doi.org/10.5281/zenodo.10205707) and analysis scripts (https://doi.
org/10.5281/zenodo.10200597). The code is released under the GNU
General Public License version 3.0.
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