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Abstract

Multi-paradigm deep learning models show great potential for dynamic functional connectivity 

(dFC) analysis by integrating complementary information. However, many of them cannot use 

information from different paradigms effectively and have poor explainability, that is, the ability to 

identify significant features that contribute to decision making. In this paper, we propose a multi-

paradigm fusion-based explainable deep sparse autoencoder (MF-EDSAE) to address these issues. 

Considering explainability, the MF-EDSAE is constructed based on a deep sparse autoencoder 

(DSAE). For integrating information effectively, the MF-EDASE contains the nonlinear fusion 

layer and multi-paradigm hypergraph regularization. We apply the model to the Philadelphia 

Neurodevelopmental Cohort and demonstrate it achieves better performance in detecting dynamic 

FC (dFC) that differ significantly during brain development than the single-paradigm DSAE. 

The experimental results show that children have more dispersive dFC patterns than adults. 

The function of the brain transits from undifferentiated systems to specialized networks during 

brain development. Meanwhile, adults have stronger connectivities between task-related functional 

networks for a given task than children. As the brain develops, the patterns of the global dFC 

change more quickly when stimulated by a task.
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1. Introduction

The human brain is a complex and efficient system composed of many interconnected 

regions, and its organization has been studied through functional connectivity (FC) networks 

(Li, 2022; Li et al., 2021; Xiao et al., 2020). Functional magnetic resonance imaging (fMRI) 

techniques are widely used for the analysis of functional connectivity networks in the brain 

due to their non-invasiveness, high spatial resolution (Allen et al., 2014; Tokuda, Yamashita, 

& Yoshimoto, 2021). By studying FC networks with fMRI data, we can discover functional 

networks inherent in the brain and understand how neural developmental patterns change 

throughout the life span (Zhang et al., 2021). Recently, dynamic functional connectivity 

(dFC) networks have received increasing attention because they can further discover the 

spontaneous activity, macro-scale spatio-temporal organization of the brain, and topological 

characteristics, while capturing the functional diversity and switching properties of the brain 

networks (Allen et al., 2014; Zhu et al., 2021).

Deep learning models have been widely applied in FC analysis due to their ability to 

extract highly abstract features (Jang, Plis, Calhoun, & Lee, 2017; Lu, Liu, Wei, Chen, & 

Geng, 2021; Qiao, Yang, Calhoun, Xu, & Wang, 2021). In recent years, multi-paradigm 

deep learning methods have gained extensive attention because they can comprehensively 

utilize data from different paradigms to discover biomarkers that cannot be found based on 

a single paradigm alone (Baltrušaitis, Ahuja, & Morency, 2018). For example, Qu et al. 

(2021) proposed a multi-paradigm graph neural network to fuse information from different 

paradigms of fMRI data to predict an individual’s wide range of achievement test scores. 

Huang, Zhou, Wang, and Zhang (2020) proposed an attentional diffusion bilinear neural 

network to integrate brain functional connectivity features from fMRIs to predict epilepsy. 

Hu et al. (2021) proposed a convolutional collaborative model to integrate multi-paradigm 

fMRI data for classifying low/high cognitive groups. However, there remain many issues 

with the use of such multi-paradigm deep learning models. Firstly, despite their good 

performances in classification (Nandakumar et al., 2021), they lack good explainability, i.e., 

the ability to identify the features that contribute to decision making (Talukder, Barham, 

Li, & Hu, 2021). An explainable model is especially crucial in neuroimaging, where we 

are often interested in identifying biomarkers underlying brain development or disorders. 

In addition, many fusion models combine latent vectors learned from different paradigms 

respectively (Huang et al., 2020; Qu et al., 2021), without effective use of complementary 

information from multi-paradigm data (Ning, Xiao, Feng, Chen, & Zhang, 2021).

To address these issues, we propose a multi-paradigm fusion-based explainable deep sparse 

autoencoder (MF-EDSAE). For the explainability, we construct MF-EDSAE based on a 

deep sparse autoencoder (DSAE). DSAE not only has powerful data representation but also 

good explainability by only keeping essential features (Qiao, Hu, Xiao, Calhoun, & Wang, 
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2021). In particular, the use of sparsity constraints ensures generalizability and promotes 

the learning capacity of the model. Moreover, a feature selection layer with k-means and 

relief strategies is added to the reconstruction layer for better explainability. The proposed 

MF-EDSAE exploits multi-paradigm information through the following two strategies. 

Firstly, the combining layer of different paradigms is replaced by the nonlinear fusion layer. 

Secondly, a hypergraph regularization is enforced to preserve the high-order relationships 

both within each paradigm and between paradigms. Through the above methods, the MF-

EDSAE integrates complementary information from multiple paradigm data effectively and 

identify biomarkers that are common or specific to each paradigm.

The proposed MF-EDSAE is finally applied to characterize intrinsic functional changes 

during brain development based on three different fMRI data including resting-state fMRI, 

fMRI of working memory, and emotion identification tasks (called rest fMRI, nback 

fMRI, and emoid fMRI) from the Philadelphia Neurodevelopmental Cohort (PNC) and 

demonstrated it achieves better performance in detecting dFC that differs significantly 

during brain development than the single-paradigm deep sparse autoencoder. As a result, 

we can gain an insight into the dFC networks and understand the functional mechanism 

of the brain. Our results show that, in commonality, children have more dispersive dFC 

patterns while the dFC patterns in adults are more focused, and the function of the brain 

transits from undifferentiated systems to specialized networks during brain development. 

In specificity, adults can update their patterns of global dFC more quickly stimulated by a 

task than children. Adults in a given task have stronger connectivities between task-related 

functional networks relative to children, for example, adults have stronger dFC between 

subcortical network and visual network in emoid fMRI, between subcortical network and 

salience network in nback fMRI.

2. Methodology

In this section, we will introduce the proposed MF-EDSAE. It contains a deep sparse 

autoencoder to reconstruct the data, a nonlinear fusion layer to fuse information from 

different paradigms, a hypergraph regularization term to incorporate the high-order 

relationships in each paradigm, a multi-paradigm hypergraph regularization to consider 

the high-order relationships within and across different paradigms, and a feature selection 

layer to remove the redundant features for better explainability. Firstly, we will present 

the hypergraph regularization with its extension to multi-paradigms. Then, we discuss 

the training process of MF-EDSAE including both the single-paradigm training and 

multi-paradigm cases. Finally, we describe the details of the feature selection layer. The 

architecture of MF-EDSAE with its learning process is shown in Fig. 1.

2.1. Hypergraph regularization

Hypergraph, as a generalization of a graph, has been widely used in machine learning 

to analyze high-dimensional data (Ma & Fu, 2012; Weighill & Jacobson, 2015). The 

hypergraph can consider higher-order relationships among samples to better characterize 

the structural information of the data. Unlike an edge of a graph linking two subjects, the 

edge of a hypergraph, called hyperedge, connects multiple nodes to represent high-order 
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relationships among samples. A hypergraph G is defined as G = V , E, W  comprising a node 

set V = vj ∣ j = 1,2, …, N  with each vj = vj1, …, vjd
T  being a d-dim node vector, a hyperedge 

set E = ei ∣ i = 1,2, …, S  and a weight matrix W . A hyperedge ei is a subset of the node set 

V  with size ei  and has a non-negative weight W ei. The structure of a hypergraph is described 

by H ∈ ℝN × S, which is defined as

Hji = H vj, ei =
1 vj ∈ ei

0 otℎer wise

The degree matrices of nodes and hyperedges are defined as diagonal matrices Dv and De

with their diagonal elements as follows:

Dvj = ∑
ei ∈ E

W eiH vj, ei j = 1, 2, …, N

Dei = ∑
vj ∈ V

H vj, ei i = 1, 2, …, S

The geometrical relationship can be approximately represented by the nearest neighbor 

graph of data points (Wang, Yu, & Tao, 2013). Therefore, we use the k-nearest neighbor 

(KNN) method to construct the hyperedge (Zien, Schlag, & Chan, 1999). Specifically, we 

select a node as the central node, calculate the distance between the central node and the rest 

nodes, and connect the central node and the k nearest nodes into a hyperedge. The weight of 

ei is calculated by

W ei = ∑
vj ∈ ei

exp −
vi − vj 2

2

σi
i = 1, 2, …, S

where σi = ∑vj ∈ ei vi − vj 2
2/k, with k being the number of nearest neighbors.

Based on the definition of hypergraph, the hypergraph regularization is thus defined as

1
2 ∑

vq, vp ∈ ei

∑
ei ∈ E

W ei
Dei

vq − vp

2

2

= 1
2 ∑

vq, vp ∈ ei

∑
ei ∈ E

ϕi vq − vp

2

2

= Tr V TLℎyperV

(1)

where ϕi ≜ W ei
Dei

 is the weight, Lℎyper ≜ Dv − S is the hypergraph Laplace matrix with 

S ≜ HW De
−1HT  being the similarity matrix, and W  is a diagonal matrix with W ei being 

the diagonal element. V = v1, …, vN  represents the node matrix. Compared with graph based 
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regularization, hypergraph based regularization can better capture the relationship among 

multiple samples (Nguyen & Mamitsuka, 2020).

2.2. Multi-paradigm hypergraph regularization

We apply the hypergraph regularization to multi-paradigm manifold learning. Compared to 

the work in Xiao, Stephen, Wilson, Calhoun, and Wang (2019), multi-paradigm hypergraph 

regularization used here can effectively capture and utilize the high-order relationships 

within and between paradigms. The multi-paradigm hypergraph regularization is defined as

β1
2 ∑

p = 1

M
∑
i, j

N
Sij

p vi
p − vj

p
2
2 + β2

2 ∑
p = 1

M
∑

p ≠ q

M
∑
i, j

M
Sij

p, q vi
p − vj

q
2
2

= Tr V TLmℎyperV

(2)

where the first term is to incorporate manifold structure information within each paradigm, 

and the second term considers the mutual relationship between paradigms. N is the number 

of samples, and M is the number of paradigms. β1 and β2 are the tuning parameters 

for intra-paradigm and inter-paradigms, respectively. V = V 1; ⋯; V M  with V p = v1
p, …, vN

p

p = 1, …, M  being the node matrix of the pth paradigm. Lmℎyper ≜ D − S is the multi-

paradigm hypergraph Laplacian matrix, where D is a diagonal matrix, with Dii = ∑j Sij, and 

S is the similarity matrix. Specifically,

S =

β1S1, 1 β2S1, 2 ⋯ β2S1, n

β2S2, 1 β1S2, 2 ⋯ β2S2, n

⋮ ⋮ ⋮

β2Sn, 1 β2Sn, 2 ⋯ β1Sn, n

where Sp, q ≜ SpSq, Sp is the similarity matrix of the pth paradigm. The element Sij
p, q of Sp, q

is calculated by Sij
p, q = ∑k = 1

N Sik
p Skj

q .

2.3. Model training

2.3.1. Training with single-paradigm data—In the training stage, data from each 

paradigm are used to train a deep sparse autoencoder (DSAE) in a stack-wise way. 

Specifically, using single-paradigm data we first train a sparse autoencoder (SAE) with 

Kullback–Leibler (KL) divergence and hypergraph regularization. Next, only the weights 

between the input layer and the hidden layer, and the responses of the hidden neurons 

are kept, which are then used as the input to train a sparse autoencoder. In this way, the 

pre-training of DSAE is formed by repeating the above process with K SAEs. Based on 

this, DSAE with 2K + 1 layers is set up to be a pre-trained component in the multi-paradigm 

network.
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For the mth paradigm, let W k, m = W k, m, bk, m ≜ wji
k, m ∈ ℝnk + 1

m × nk
m + 1 , where 

W k, m ≜ wji
k, m ∈ ℝnk + 1

m × nk
m
 is the connection weight matrix between the k layer and the 

k + 1 th layer and bk, m ≜ bj
k, m ∈ ℝnk + 1

m
 is the bias of the k + 1 th layer. In order to maintain 

the sparsity of the hidden layer and the high-order relationships between samples, which can 

improve the learning ability of the autoencoder, the loss function of SAE is defined with KL 

divergence and hypergraph regularization

L W = 1
2 ∑

p = 1

N
∑

j = 1

n3
xpj

m − xpj
m 2 + λ1 ∑

j = 1

n2
KL ρ ρj

2, m + λ2 ∑
k = 2

3
Tr Ak, m TLℎyperAk, m

+ λ3
2 ∑

k = 1

2
∑

i = 1

nk

∑
j = 1

nk + 1
wji

k, m 2

(3)

where N is the number of samples, m is the mth paradigm, nk k = 1,2, 3  is the number of 

neurons in the k-layer, xpj
m is the value of the jth feature of the pth sample, and x̂pj

m  is the 

reconstructed value of xpj
m. KL ρ ρ̂j

2, m  is the KL divergence between two Bernoulli random 

variables; one has mean value ρ, and the other has mean value ρ̂j
2, m. It is defined as

KL ρ ρj
2, m = ρ log ρ

ρj
2, m + 1 − ρ log 1 − ρ

1 − ρj
2, m

where ρ is a sparsity parameter and ρ̂j
2, m = 1

N ∑p = 1
N apj

2, m ⋅ apj
k, m k = 2, 3  is the activation value 

of the jth neuron in the kth layer for the pth sample. Tr Ak, m TLℎyperAk, m  is the hypergraph 

regularization defined by Eq. (1), where Ak, m = a1
k, m, …, aN

k, m  and ap
k, m = ap1

k, m, …, ap, nk
k, m T

represent the activation matrix in the kth layer and the activation vector of the pth sample in 

the kth layer, respectively.

The goal of training with single-paradigm data is to minimize the loss function (3). For the 

pth sample, the residual terms of the jth neuron in the output layer and the hidden layer, i.e., 

δpj
3, m and δpj

2, m, are calculated by

δpj
3, m = xpj

m − xpj
m + λ2 ∑

ei
m ∈ Em

∑
aq

m ∈ ei
m

ϕi apj
3, m − aqj

3, m f′ zpj
3, m

δpj
2, m = ∑

i = 1

n3
δpi

3, mwij
2, m + λ1

1 − ρ
1 − ρj

2, m − ρ
ρj

2, m +λ2 ∑
ei

m ∈ Em
∑

aq
m ∈ ei

m
ϕi apj

2, m − aqj
2, m f′ zpj

2, m

where zpj
k, m is the activation value of the jth neuron in the kth layer (k = 2, 3) for the pth 

sample, f ⋅  is a nonlinear differentiable function and f′ ⋅  is its derivative function. Thus, 

the gradient is
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∇wji
k, m =

δpj
k + 1, mapi

2, m k = 2
δpj

k + 1, mxpi
m k = 1

its matrix form is

∇W p
k, m =

δp
k + 1, m ap

k, m T k = 2

δp
k + 1, m xp

m T k = 1

where ap
k, m = ap1

k, m, …, ap, nk
k, m T , δp

k, m = δp1
k, m, …, δp, nk

k, m T .

Thus, we can get the parameter update formula

W k, m = W k, m − η
N ∑

p = 1

N
∇W p

k, m + λ3W k, m

where η is the learning rate.

After the training of SAE is over, the decoder will be ignored while the encoder and the 

responses of the hidden neurons are kept, and the responses are used as the input to train a 

new SAE. Repeating the above process with K autoencoders, a DSAE with 2K + 1 layers is 

obtained.

2.3.2. Feature fusion—For an MF-EDSAE consisting of M deep autoencoders, where 

M is the number of paradigms and each autoencoder has an input layer, an output layer and 

2K − 1 hidden layers, we add a nonlinear fusion layer between the K + 1 th layer and the 

K + 2 th layer. The activation value of nonlinear layer for the pth sample is

ap
F = f ∑

m = 1

M
W F , map

K + 1, m

where ap
K + 1, m represents the activation value in the K + 1 th layer. 

W F , m ≜ wji
F , m ∈ ℝnF × nK + 1

m
 is the weight for fusion and nF  is the dimension of the fusion 

layer. f ⋅  is a nonlinear differentiable function. After adding the nonlinear fusion layer, 

MF-EDSAE has 2K + 2 layers, where the kth layer k = 1, …, K + 1  is the encoding layer, 

the kth layer (k = K + 2, …, 2K + 1) is the decoding layer, and k = F  is used to denote the 

fusion layer between the K + 1 th and the K + 2 th layers. The parameter update formula for 

the fusion layer will be given in the next subsection.

By adding a nonlinear fusion layer, the semantic and complementary information learned 

from each paradigm can be well combined.
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2.3.3. Training with multi-paradigm data—In the training stage with multi-paradigm 

data, we add KL divergence to the reconstruction layer and the hidden layers to obtain 

sparse reconstruction. Meanwhile, the hypergraph regularization and the multi-paradigm 

hypergraph regularization are added to the encoding layers and the decoding layers 

respectively to incorporate high-order relationships within and between paradigms. To 

further avoid overfitting, we use the log-sum regularization, which is an effective 

approximation to the L0 regularization (Rao & Kreutz Delgado, 1999). The loss function 

of the multi-paradigm training is thus defined as

L x, W = ∑
m = 1

M 1
2 ∑

p = 1

N
∑

j = 1

n2K + 1
xpj

m − xpj
m 2 + λ1 ∑

k = 2

2K + 1
∑

j = 1

nk
KL ρ ρj

k, m +λ2 ∑
k = 2

K + 1
Tr Ak, m TLℎyper

m Ak, m

+ ∑
k = K + 2

2K + 1
Tr Ak TLmℎyperAk + λ3 ∑

m = 1

M
∑

k = 1

2K
∑

i = 1

nk

∑
j = 1

nk + 1
log 1 + wji

k, m

ϵ

where nk
m is the number of neurons in the kth layer of the mth paradigm. For the pth sample 

in the mth paradigm, xpj
m is the value of the jth feature, x̂pj

m  is the reconstruction of xpj
m, and apj

k, m

represents the activation value of the jth neuron in the kth layer. Specifically, apj
1, m and apj

2K + 1, m

denote xpj
m and x̂pj

m .

apj
k + 1, m = f ∑

i = 1

nk
m

wji
k, mapi

k, m + bj
k, m k = 1, …, K, K + 2, …, 2K

apj
k + 1, m = f ∑

i = 1

nF
wji

k, mf ∑
m = 1

M
∑

t = 1

nk
m

wit
F , mapt

k, m + bj
k, m k = K + 1

(4)

where nF  is the number of neurons in the fusion layer. f ⋅  is a nonlinear differentiable 

function.

In the loss function L x, W , the last term is only related to the weight W , while the first 

four terms are related to the weight W  and the response values. So the first four terms are 

denoted as L1 x, W  and the last term is L2 W .

In L1 x, W , the first term is the reconstruction error of the autoencoder. The second term 

KL ρ ρ̂j
k, m  is the KL divergence between two Bernoulli random variables; one has mean 

value ρ, and the other has mean value ρ̂j
k, m. It is defined as

KL ρ ρj
k, m = ρ log ρ

ρj
k, m + 1 − ρ log 1 − ρ

1 − ρj
k, m

where ρ is a sparsity parameter and ρ̂j
k, m = 1

N ∑p = 1
N apj

k, m. The third term Tr Ak, m TLℎyper
m Ak, m

is the hypergraph based regularization and calculated by Eq. (1), where for the pth 

sample in the mth paradigm, Ak, m = a1
k, m, …, ap

k, m  with ai
k, m = ai1

k, m, …, ai, nk
mk, m T  representing 
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the activation matrix and the activation vector in the kth layer respectively. The fourth 

term Tr Ak TLmℎyperAk  is the multi-paradigm hypergraph regularization and calculated by 

Eq. (2), where Ak = Ak, 1; ⋯; Ak, M . In L2 W , log 1 + wji
k, m

ϵ  is the log-sum regularization 

and ϵ is the disturbance term to ensure the validity of the log-sum regularization when 

wji
k, m 0 . β1, β2, λ1, λ2, λ3 are penalty parameters.

In the following we derive the gradient update formula during model training. 

We provide the gradient calculation of L1 x, W  on wji
k, m. For convenience, let 

api
F = f ∑m = 1

M ∑t = 1
nK + 1
m

wit
F , mapt

K + 1, m . For the pth sample in the mth paradigm, zpj
k, m is the net 

activation of the jth neuron in the kth layer. The detailed derivation process can be found in 

our supplement. First, we give the gradient formula of the connection weight matrix in the 

decoding layers W K + 1, m, …, W 2K, m m = 1, …, M . Let

δpj
k, m =

xpj
m − xpj

m + λ1
1 − ρ

1 − ρj
k, m − ρ

ρj
k, m + β1 ∑

q = 1

N
Spq

m xpj
m − xqj

m + β2 ∑
t ≠ m

M
∑

q = 1

N
Spq

m, t + Spq
t, m xpj

m − xqj
t f′ zpj

k, m k = 2K + 1

∑
i = 1

nk + 1
m

δpi
k + 1, mwij

k, m + λ1
1 − ρ

1 − ρj
k, m − ρ

ρj
k, m + β1 ∑

q = 1

N
Spq

m apj
k, m − aqj

k, m + β2 ∑
t ≠ m

M
∑

q = 1

N
Spq

m, t + Spq
t, m apj

k, m − aqj
k, t f′ zpj

k, m k = K + 2, …, 2K

Thus, the gradient is

∇wji
k, m =

δpj
k + 1, mapi

k, m k = K + 2, …, 2K
δpj

k + 1, mapi
F k = K + 1

and its matrix formula is

∇W p
k, m =

δp
k + 1, m ap

k, m T k = K + 2, …, 2K

δp
k + 1, m ap

F T k = K + 1

(5)

where ap
k, m = ap1

k, m, …, ap, nk
mk, m T , ap

F = ap1
F , …, ap, nF

F T , δp
k, m = δp1

k, m, …, δp, nk
mk, m T .

Furthermore, we present the gradient formula of the fusion layer. Since

∂L1

∂wji
F , m = ∑

n = 1

M
∑

t = 1

nK + 2
δpt

K + 2, nwtj
K + 1, n f′ zpj

F api
K + 1, m

= δpj
F apk

K + 1, m

then
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∇W p
F , m = δp

F ap
K + 1, m T

Lastly, we give the gradient formula of the connection weight matrix in the encoding layers 

W 1, m, …, W K, m m = 1, …, M . Here Em and ei
m denote the set of hyperedges and the ith 

hyperedge to the mth paradigm, respectively.

δpj
k, m =

∑
i = 1

nF
δpi

Fwij
F , m + λ1

1 − ρ
1 − ρj

k, m − ρ
ρj

k, m + λ2 ∑
ei

m ∈ Em
∑

aq
m ∈ ei

m
ϕi

m apj
k, m − aqj

k, m f′ zpj
k, m k = K + 1

∑
i = 1

nk + 1
δpi

k + 1, mwij
k, m + λ1

1 − ρ
1 − ρj

k, m − ρ
ρj

k, m + λ2 ∑
ei

m ∈ Em
∑

aq
m ∈ ei

m
ϕi

m apj
k, m − aqj

k, m f′ zpj
k, m k = 2, …, K

Thus, the gradient is

∇wji
k, m =

δpj
k + 1, mapi

k, m k = 2, …, K
δpi

k + 1, mxpi
m k = 1

its matrix formula is

∇W p
k, m =

δp
k + 1, m ap

k, m T k = 2, …, K

δp
k + 1, m xp

m T k = 1

(6)

The gradient of L2 is calculated by

∂L2 W
∂wji

k, m = sign wji
k, m

ϵ + wji
k, m

∂L2 W
∂bj

k, m = 0

Based on the above derivations, we can give the parameter update formula used in MF-

EDSAE. For the fusion layer, the parameters update formula is

W F , m = W F , m − η1
N ∑

p = 1

N
∇W p

F , m

For the decoding layers and encoding layers, the parameters update formula is

W k, m = W k, m − η1
N ∑

p = 1

N
∇W p

k, m + λ3
∂L2 W

∂W k, m

Xu et al. Page 10

Neural Netw. Author manuscript; available in PMC 2024 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where η1 is the learning rate, 
∂L2 W

∂W k, m = ∂L2 W
∂wji

k, m , W p
k, m

 is calculated by Eq. (5) for decoding 

layers and is calculated by (6) for encoding layers.

2.4. Feature selection layer

Through the above training process, we can obtain the sparse reconstruction of the original 

data to identify the features, i.e., dFC with significant differences in brain development. In 

order to further improve the explainability of the model, a feature selection layer is added.

In the feature selection layer of MF-EEDSAE, k-means (Aloise, Deshpande, Hansen, 

& Popat, 2009) with k = 2 is firstly used to cluster the features of the reconstructed 

data into two clusters. Cluster with mean value near to zero is considered as inactive 

and thus removed, while the other cluster is consider as active features and kept. Then, 

relief (Brankovic & Piroddi, 2019) is used to select the most discriminative features. By 

adding the feature selection layer, the redundant features are removed and only the most 

discriminative features are retained, resulting in better explainability of the model.

3. Analysis of multi-paradigm dynamic functional connectivity data

3.1. Data collection and preprocessing

The Philadelphia Neurodevelopmental Cohort (PNC) is a large scale collaborative project 

between the Brain Behavior Laboratory at the University of Pennsylvania and the Children’s 

Hospital of Philadelphia, which contains nearly 900 adolescents with ages from 8 to 21 

underwent multi-paradigm neuroimaging including resting-state fMRI, fMRI of working 

memory and emotion identification tasks (called rest fMRI, nback fMRI, and emoid fMRI) 

(Satterthwaite et al., 2014). We selected the children under 144 months and the adults over 

216 months to study the difference of brain function network between the two groups based 

on the rest fMRI, nback fMRI, and emoid fMRI, which continues the way of dividing the 

age range of PNC data in our previous works (Qiao, Hu, et al., 2021; Qiao, Yang, et al., 

2021). The details of the subjects are listed in Table 1. The statistical parametric mapping 

12 (SPM12) was used to implement the standard brain imaging preprocessing (Xiao et al., 

2019), which includes motion correction, spatial normalization to the standard Montreal 

Neurological Institute space (spatial resolution of 3 × 3 × 3 mm), and spatial smoothing 

with a 3 mm full width half maximum Gaussian kernel. Then a regression procedure was 

implemented to remove the influence of motion. Finally, according to the definition of brain 

region by Power et al. (2011), the brain is divided into 264 regions of interest (ROI) with 

a sphere radius parameter of 5 mm to reduce the dimensionality of the data. The time 

sequences from different voxels in the same ROI are averaged, thus the data is finally 

reduced to a 264 × T  matrix for every subject, in which T  denotes the number of time 

points with a repetition time value being 3 s and the value of T  is different for different 

paradigms. The value of T  for emoid fMRI is 210, for nback fMRI is 231 and for rest fMRI 

is 124. We use the sliding-window technique to estimate the dynamic functional connectivity 

(dFC). In the sliding-window technique, a window with length r moves along with the time 

series with step size s, and the dFC between two ROIs are calculated for each window by 

calculating the Pearson correlation coefficient. For a time series including T  time points, 
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there are totally K = T − r /s + 1 sliding windows. By grid search, r and s are chosen to 

be 14 and 1 for emoid fMRI, 17 and 1 for nback fMRI, 33 and 1 for rest fMRI. As a result, 

each subject get a dFC matrix D ∈ ℝK × C264
2

 in different paradigms, where C264
2 = 34716 and 

K = 197 for emoid fMRI, K = 215 for nback fMRI, K = 92 for rest fMRI. To reduce the 

computational complexity, we implement the random sampling way in Qiao, Yang, et al. 

(2021). However, compared with the rest fMRI, the task fMRI not only has more time points 

but also has more complex temporal information. Considering both the temporal information 

in multi-paradigm and the computational complexity, we finally select 20 rows from each 

subject in different paradigms, based on the experimental results that the time series in each 

paradigm with random 20 sliding windows can still keep a good discriminative ability. In 

other words, 20 samples are obtained from a subject. For all subjects, we get 2460 samples 

for children and 2920 samples for young adults, thus there totally are 5380 samples. 80% 

samples are randomly selected from the two groups respectively as the training data to select 

the significant differences of dFC between the two groups, and the rest 20% samples are 

used as test data to test the validity of the selected dFC.

3.2. Data reconstruction and dFC selection

In this section, we implement MF-EDSAE to search for the dFC that show significant 

differences during brain development. The architecture of MF-EDSAE contains 6 hidden 

layers with 12 000, 6000, 3000, 3000, 6000, 12 000 units respectively. Both the input 

layer and the output layer of MF-EDSAE have 34716 units. To determine hyperparameters, 

the training data is further divided, where 70% of the training data is used to train the 

model, and 30% of the training data is used to evaluate the hyperparameters. Additionally, 

the grid search method is used to select hyperparameters, because it can simply make a 

complete search over a given hyperparameters space and easily be parallelized to find more 

stable optimal hyperparameters (Fayed & Atiya, 2019; Saud, Jamil, Upadhyay, & Irshad, 

2020). Specifically, each of the hyperparameters is selected by the grid search method, 

when other hyperparameters are fixed. By repeating the above process, all hyperparameters 

are thus selected. After grid search, the sparsity parameter, penalty coefficients of KL, and 

L2 regularization are all set to 0.01, the global learning rate, gradient decay factor, and 

squared gradient decay factor for Adam update are 1 × 10−3, 0.95, and 0.95 respectively 

in the training stage with single-paradigm data. In the multi-paradigm training stage, the 

parameters of KL, log sum regularization, hypergraph regularization are selected to be 

1 × 10−3, 5 × 10−7 and 5 × 10−6. The sparsity parameter, the penalty coefficients of 

multi-paradigm hypergraph regularization for inter-paradigm and intra-paradigm are chosen 

to be 1 × 10−3, 5 × 10−6, 5 × 10−7. The global learning rate, gradient decay factor and 

squared gradient decay factor for Adam update are 1 × 10−4, 0.95 and 0.95, respectively. 

In MF-EDSAE, the sigmoid function is selected as the activation function f and the Adam 

updating with mini-batch strategy is used to update the model parameters. In order to 

verify that the proposed model can more effectively identify the dFCs with significant 

differences during brain development than other reconstruction methods, the support vector 

machines (SVMs) are used to distinguish between children and adults based on the data 

reconstructed by different methods. Specifically, reconstruction methods include the single 

paradigm DSAE, the proposed MF-EDSAE with and without a feature selection (FS) layer, 
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where MF-EDSAE with FS refers to adding a feature selection layer after the output layer, 

and MF-EDSAE without FS refers to not adding a feature selection layer. The classification 

accuracy of SVM on the test data is used to evaluate the discriminative ability of the 

reconstructed data with each reconstruction method. For the fairness of comparison, we 

use the same network architecture and parameters for all networks. For the testing data, 

the classification accuracy of traditional DSAE on emoid fMRI, nback fMRI, and rest 

fMRI are 88.10 ± 2.37%, 88.57 ± 4.09% and 94.33 ± 1.32% respectively, the classification 

accuracy of MF-EDSAE without FS on emoid fMRI, nback fMRI and rest fMRI are 94.14 

± 2.47%, 96.28 ± 0.96% and 99.26 ± 0.26% respectively, and the classification accuracy of 

MF-EDSAE with FS on emoid fMRI, nback fMRI and rest fMRI are 94.33 ± 1.98%, 96.38 

± 0.93% and 99.91 ± 0.16% respectively.

The above results show that the classification accuracy of MF-EDSAE (both with and 

without FS) are significantly improved compared to DSAE. It shows that MF-EDSAE can 

accurately pick out the dFC with significant differences between children and adults, by 

using multi-paradigm information and high-order relationships in the data. The classification 

accuracy of MF-DSAE with FS is improved on emoid fMRI and nback fMRI compared 

to MF-DSAE without FS. It indicates that the feature selection layer can further remove 

redundant features, resulting in better classification. Among the total 34716 dFC, the 

number of activating dFC in emoid fMRI, nback fMRI, rest fMRI are 10 130, 12 801, 

11 998 respectively after sparse reconstruction. After the feature selection layer, we finally 

retain 2400 dFC in emoid fMRI, 7400 dFC in nback fMRI, and 2600 dFC in rest fMRI. 

These dFC with the most significant difference during brain development are used for 

subsequent analysis.

3.3. The group differences in the FNs

In order to better understand the relationship between ROIs, the 264 ROIs are divided into 

13 functional regions called functional networks (FN) according to Power et al. (2011). They 

are sensory/somatomotor network (SSN), cingulo-opercular task control network (COTCN), 

auditory network (AN), default mode network (DMN), memory retrieval network (MRN), 

visual network (VN), frontoparietal task control network (FPTCN), salience network (SN), 

subcortical network (SCN), ventral attention network (VAN), dorsal attention network 

(DAN), cerebellar network (CN) and uncertain network (UN). The first 12 FNs are mainly 

related to brain functions such as movement, memory, language, vision, and cognition. The 

UN contains 29 ROIs that are not strongly associated with other FNs. For the dFC selected 

from emoid fMRI, nback fMRI, and rest fMRI, the hypothesis testing methods in Qiao, Hu, 

et al. (2021) are used to test whether the changes found in dFC are significant. After the 

hypothesis testing, 134, 318, 345 significantly enhanced dFC with age and 2260, 7083, 2255 

significantly weakened dFC with age are found in emoid fMRI, nback fMRI, and rest fMRI, 

respectively. The details of the hypothesis test methods can be found in Appendix B.

Fig. 2 shows the distribution of the selected dFC among ROIs and FNs. It indicates that 

the distribution of the selected dFC is still roughly the same in all three paradigms and 

the number of enhanced dFC is far less than the weakened ones during brain development. 

Fig. 2(a) illustrates the distribution of dFC in different ROIs under the three paradigms, and 
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the purple lines represent the enhanced dFC, the yellow lines represent the weakened ones 

during development. Fig. 2(b) shows that compared with children, adults have enhanced 

dFC between SSN and DMN, SSN and AN, SSN and FPTCN, SN and UN in all three 

fMRIs, and there are also many enhanced dFC within SN. Unlike emoid fMRI, adults 

have obviously enhanced dFC between SCN and SN, DMN and VN in nback fMRI and 

rest fMRI. Moreover, in the emoid fMRI, there is enhanced dFC between SCN and VN 

during development. Fig. 2(c) shows the weakened dFC are mainly distributed between 

DMN, SSN, VN, FPTCN, SN, and there are also many weakened dFC within DMN in all 

three fMRI data during brain development. In emoid fMRI and nback fMRI, adults have 

weakened dFC between VN and FPTCN, SN and VN during brain development, which is 

not observed in rest fMRI.

3.4. Analysis of dynamic functional connectivity states

To study the time-vary patterns of dFC differing between children and adults, k-means is 

used to identify the brain states. The elbow criterion defined in Eq. (7) is used to calculate 

the optimal number of states, where K is the number of clusters, Ci is the ith cluster, and ci is 

the cluster center of Ci.

SSE = ∑
i = 1

K
∑

x ∈ Ci

x − ci
2

(7)

According to the elbow criterion, the optimal number of states for emoid fMRI, nback fMRI 

and rest fMRI are 4, 4, 3 respectively. For the emoid fMRI, the proportions in the four dFC 

states for the children are 17.16%, 23.82%, 27.76%, 31.26% and the proportions in four 

dFC states for the adults are 15.00%, 10.99%, 43.02%, 30.99%. For the nback fMRI, the 

proportions in the four dFC states for the children are 18.25%, 24.76%, 29.35%, 27.64% 

and the proportions in four dFC states for the adults are 15.68%, 33.73%, 43.43%, 7.16%. 

For the rest fMRI, the proportions in the three dFC states for children are 28.58%, 35.04%, 

36.38% and the proportions in the three dFC states for adults are 21.30%, 40.72%, 37.98%.

Fig. 3 shows the changes in each state during brain development for different paradigms. 

Fig. 3(a) shows that in emoid fMRI, there are more weakened dFC than enhanced ones in 

all four states. The distributions of weakened dFC in different states are roughly the same, 

but the distributions of enhanced dFC are different. For example, compared with children, 

adults have weakened dFC within DMN and between DMN and other FNs such as SSN, SN, 

SCN, etc., and between VN and FPTCN, VN and SN in all four states. Fig. 3(a) also shows 

there exists enhanced dFC between SSN and other FNs such as DMN, VN, FPTCN, UN 

in all four states. The enhanced dFC within VN and between AN and DMN, AN and UN 

and DMN, VN and FPTCN are observed in state 1. Meanwhile, there exists enhanced dFC 

between DMN and other FNs such as VN, SN, SCN, between VN and FPTCN, SCN, VAN 

in state 3 and state 4, and the enhanced dFC between MRN and VN, FPTCN, SN, SCN are 

found.
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Fig. 3(b) shows that, in nback fMRI, except for state 4, the weakened dFC is far more 

than the enhanced dFC, and the weakened dFC distributions in state 1, state 2, state 3 are 

very similar, and they are the same as the distributions of enhanced dFC in state 4. In 

Fig. 3(b), we find that the weakened dFC exists within DMN and between DMN and such 

as SSN, FPTCN, SN, SCN, etc., between VN and FPTCN, SN, which is consistent with 

the weakened dFC distributions in emoid fMRI. However, the weakened dFC of state 4 is 

mainly concentrated within VN and between VN and DMN, MRN, FPTCN, SN, SCN, VAN 

and UN. And there is enhanced dFC between DMN and SSN. For state 1, the enhanced dFC 

between UN and SN, DMN, SSN, between SN and SCN and within SN are observed. For 

state 2, the enhanced dFC between SSN and COTCN, AN, between DMN and VN, between 

SN and SCN are observed. For state 4, we can also find the enhanced dFC between SSN 

and VN, between DMN and VN, FPTCN, SN, and SCN, between VN and VAN, SN, and 

FPTCN.

Fig. 3(c) shows in rest fMRI, there are more weakened dFC than enhanced dFC in all 

three states, and the distributions of weakened dFC under different states are roughly the 

same, and the same is true for enhanced dFC. In Fig. 3(c), we observe that the weakened 

dFC are mainly concentrated within DMN and between DMN and other FNs such as SSN, 

FPTCN, SN, SCN, etc., and between VN and FPTCN, SN, and the enhanced dFC are 

mainly concentrated in between SSN and DMN, AN, VN, FPTCN, between DMN and VN 

in three states. Otherwise, the enhanced dFC between SN and UN is also observed in state 1.

To further investigate the time occupied divergence of each state, we estimate both the dwell 

time (DT) and the fraction of time (FT) for children and adults from the state transition 

vector (Cai et al., 2017). For the 123 children and 146 adults, the values of DT and FT 

are calculated. At the same time, the mean dwell time (MDT) and the mean fraction time 

(MFT) of each state are also calculated. The results of DT, FT, MDT, and MFT for children 

and adults are shown in Fig. 4, and the curve in this figure is the mean curve obtained by 

connecting mean values in different states. Compared with children, adults spend more time 

in state 3 and state 4, based on emoid fMRI. In nback fMRI, adults mainly stay in state 2 

and state 3 longer than children, and children stay in state 1 for much longer than adults. In 

rest fMRI, the difference in stay time between children and adults in different states is not as 

obvious as in the task fMRI (nback, emoid). Compared with children, adults stay longer in 

state 2 and state 3 than children, and children spend more time in state 1, in rest fMRI.

4. Discussion

In this study, we propose an MF-EDSAE model and apply it to investigate the differences 

in dFC between children and adults in emoid fMRI, nback fMRI, and rest fMRI. The 

dFC with significant differences between children and adults are mainly distributed within 

or between DMN, VN, FPTCN, SN, SSN, AN, and SCN, which are closely related to 

information processing, attention, alertness, cognition, and working memory. DMN is a 

brain system, including the posterior cingulate gyrus, medial frontal lobe, hippocampus, and 

lateral temporal lobe, and is mainly related to mental activities such as memory (Raichle 

et al., 2001). VN includes the middle occipital gyrus and inferior gyrus, tongue gyrus, 

cuneiform lobe, and other brain regions, which are mainly responsible for visual information 
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processing. FPTCN contains brain regions such as the upper parietal lobe and frontal lobe, 

which are related to attention processing (Sheffield et al., 2015). SN includes the paracentral 

lobules, superior marginal gyrus, insula, cingulate gyrus, and other brain regions. It is 

responsible for judging the salience of the stimulus through the physical characteristics 

and the relevant information of the task and regulating the attention (Seeley, 2019). SSN 

mainly includes the precuneus, central anterior and posterior gyrus, cingulate gyrus, and 

superior frontal gyrus, which are related to cognitive activities (Londei et al., 2010). AN 

contains the superior temporal gyrus and insula, central anterior gyrus, and posterior gyrus, 

which are innervated by autonomic nerves and are responsible for activities related to sound 

information, including collection, conduction, and processing (Smith et al., 2009). SCN 

includes the thalamus, extranuclear and lentiform. It plays an important role in memory, 

attention, perception, and consciousness (Kang, Pae, & Park, 2017).

Our results show that, as brain develops, the weakened dFC is far more than the enhanced 

dFC, and they are mainly concentrated within the DMN and between DMN and other FNs, 

in all three paradigms. This is consistent with the conclusions of previous studies (Anderson, 

Ferguson, Lopez Larson, & Yurgelun Todd, 2011; Cai et al., 2017). This finding shows 

that adults have better intra-network connectivity, while children have stronger inter-network 

connectivity (Zhang et al., 2019). In addition, it can explain that the FNs of children are 

not effective enough (Jolles, van Buchem, Crone, & Rombouts, 2011). In particular, we find 

there are weakened dFC between DMN and SSN, SN, VN, AN, showing the FNs of children 

are not effective in processing information (Cai et al., 2018). The weakened dFC between 

DMN and FPTCN is observed which is considered to be related to higher reading abilities 

during development in Jolles et al. (2020). In a prior study, the enhanced connectivity 

between DMN and SN is associated with the more defensive brain organization of the 

allostatic-interoceptive brain system (Kozlowska et al., 2018). The dFC between DMN and 

SN in children is stronger than in adults in the three paradigms, indicating children show 

more defensive brain organization than adults. It has been observed that the weakening of 

the dFC intensity between DMN and AN is due to the existence of some causal interacting 

circuits between DMN and AN, and through the asynchronous interregional interactions, the 

decline of auditory cortex response will lead to the declining ability of AN to inhibit DMN 

(Xu et al., 2017). In addition, the enhanced dFC between SCN and SN, between SCN and 

VN are observed in emoid fMRI and nback fMRI respectively, indicating that adults are 

more capable of dealing with specific tasks than children.

By comparing the distribution of weakened dFC in different paradigms, we can find that 

the connectivities between VN and FPTCN, SN of adults in the task fMRI (emoid, nback) 

are weaker than in children, which cannot be found in the rest fMRI. Previous research has 

shown that weakened dFC between the FPTCN and VN support cognitive flexibility (Qiao 

et al., 2020). In addition, compared with weakened dFC, the distributions of enhanced dFC 

under different paradigms are more distinct. The enhanced dFC between SSN and other 

FNs are observed in three different paradigms, which can be explained by the significantly 

enhanced interaction of SSN with other FNs to receive information after mid-adolescence 

(Zhang et al., 2020). In addition, we found that compared with weakened dFC, enhanced 

dFC can better reflect the differences of dFC networks in different paradigms.
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Through the analysis of time-varying patterns between children and adults, we find that 

the differences in dFC patterns under three paradigms are easier to identify based on brain 

states. In the rest fMRI, the distributions of enhanced dFC and weakened dFC are almost 

the same in different states. However, in the task fMRI (emoid, nback), the distribution 

of enhanced dFC changes significantly with time. In the nback fMRI, the distribution of 

weakened dFC in state 4 is different from that in other states. Compared with task fMRI, the 

FNs of rest fMRI are more stable. Compared with children, the FNs in the brain of adults 

update more quickly when stimulated by a task, so that functionally specialized networks 

can interact and gain multi-function ability (Jiang et al., 2020). Based on the time-varying 

pattern of FCs, we can find information that cannot be found only based on differences 

between groups. It also shows that the analysis of multi-paradigm fMRIs provides a more 

complete understanding of brain FNs.

To summarize, our results indicate that, in all the three paradigms, most dFC become 

gradually weakened during brain development. It is consistent with the observation that 

the dFC patterns of children are more dispersive but are more focused in adults (Kelly et 

al., 2009). It shows that the function of the brain transits from undifferentiated systems to 

specialized networks during brain development (Jolles et al., 2011). The patterns of dFC 

can change more quickly when stimulated by a task with the development of the brain. In 

addition, adults have stronger connectivities between task-related functional networks for a 

given task compared to children.

5. Conclusion

In this paper, MF-DSAE, a multi-paradigm fusion-based explainable deep sparse 

autoencoder, is proposed to identify the dFC with significant differences during brain 

development. Through nonlinear fusion layer and multi-hypergraph regularization, the MF-

DSAE integrates complementary information from different paradigms of fMRI data to 

identify dFC that is common or specific to each paradigm. We apply the model to PNC 

data and show that MF-EDSAE has improved performance in detecting dFC with significant 

differences than single-paradigm DSAE. Moreover, the experiment results also show the 

following findings. In commonality, the dFC patterns of children are more dispersive than 

those in adults, and the brain function transits from undifferentiated systems to specialized 

networks during development. In specificity, the patterns of the global dFC can change more 

quickly when stimulated by a task as one grows, and adults have stronger connectivities 

between task-related functional networks for a given task compared to children.
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Appendix A.: Gradient derivation in multi-paradigm training

For the loss function

L1 x, W = ∑
i = 1

4
L1i

where

L11 = 1
2 ∑

m = 1

M
∑

p = 1

N
∑

j = 1

n2K + 1
xpj

m − xpj
m 2

L12 = ∑
m = 1

M
∑

k = 2

2K + 1
∑

j = 1

nk
KL ρ ρj

k, m

L13 = ∑
m = 1

M
∑

k = 2

K + 1
Tr Ak, m TLℎyper

m Ak, m

L14 = ∑
k = K + 2

2K + 1
Tr Ak TLmℎyperAk

For the partial derivatives of L11, L12 with respect to wji
k, m, we have a detailed derivation in 

our previous work (Qiao, Hu, et al., 2021). For convenience, let zpj
k + 1, m = ∑i = 1

nk
m

wji
k, mapi

k, m + bj
k, m. 

Here we mainly give the calculation of the partial derivative of L13, L14 with respect to wji
k, m.

For convenience, the superscript m will be omitted in calculation of the partial derivative of 

L13 with respect to wji
k, m. The partial derivate of L13 with respect to wji

K, m is

∂L13

∂wji
K = ∂L13

∂apj
K + 1

∂apj
K + 1

∂zpj
K + 1

∂zpj
K + 1

∂wji
K

= ∂
∂apj

K + 1 ∑
ei ∈ E

∑
ap, aq

1
2ϕi ap

K + 1 − aq
K + 1 2 f′ zpj

K + 1 api
K

= ∑
ei ∈ E

∑
ap, aq

ϕi apj
K + 1 − aqj

K + 1 f′ zpj
K + 1 api

K

= δpj_L13
K + 1 api

K

The partial derivate of L13 with respect to wji
K − 1, m is
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∂L13

∂wji
K − 1 = ∑

k = 1

nK + 1 ∂Tr AK + 1 TLℎyperAK + 1

∂apk
K + 1

∂apk
K + 1

∂zpk
K + 1

∂zpk
K + 1

∂apj
K

∂apj
K

∂zpj
K

∂zpj
K

∂wji
K − 1 +

∂Tr AK TLℎyperAK

∂apj
K

∂apj
K

∂zpj
K

∂zpj
K

∂wji
K − 1

= ∑
k = 1

nK + 1

∑
ei ∈ E

∑
aq ∈ ei

ϕi apk
K + 1 − aqk

K + 1 f′ zpk
K + 1 wkj

K f′ zpj
K api

K − 1 + ∑
ei ∈ E

∑
aq ∈ ei

ϕi apk
K − aqk

K f′ zpj
K api

K − 1

= ∑
k = 1

nK + 1

∑
ei ∈ E

∑
aq ∈ ei

ϕi apk
K + 1 − aqk

K + 1 f′ zpk
K + 1 wkj

K + ∑
ei ∈ E

∑
aq ∈ ei

ϕi apk
K − aqk

K f′ zpj
K api

K − 1

= ∑
k = 1

nK + 1
δpj_L13

K + 1 wpj
K + ∑

ei ∈ E
∑

aq ∈ ei

ϕi apk
K − aqk

K f′ zpj
K api

K − 1

= δpj_L13
K api

K − 1

The partial derivate of L13 with respect to wji
K − 2, m is

∂L13

∂wji
K − 2 = ∑

t = 1

nK

∑
k = 1

nK + 1 ∂Tr AK + 1 TLℎyperAK + 1

∂apk
K + 1

∂apk
K + 1

∂zpk
K + 1

∂zpk
K + 1

∂apt
K

∂apt
K

∂zpt
K

∂zpt
K

∂apj
K − 1 × ∂apj

K − 1

∂zpj
K − 1

∂zpj
K − 1

∂wji
K − 2

+ ∑
t = 1

nK ∂Tr AK TLhyperAK

∂apt
K

∂apt
K

∂zpt
K

∂zpt
K

∂apj
K − 1

∂apj
K − 1

∂zpj
K − 1

∂zpj
K − 1

∂wji
K − 2 +

∂Tr AK − 1 TLhyperAK − 1

∂apj
K − 1

∂apj
K − 1

∂zpj
K − 1

∂zpj
K − 1

∂wji
K − 2

= ∑
t = 1

nK
δpj_L13

K wtj
K − 1f′ zpj

K api
K − 2 + ∑

ei

∑
aq ∈ ei

ϕi apj
K − 1 − aqj

K − 1 f′ zpj
K api

K − 2

= ∑
t = 1

nK
δpj_L13

K wtj
K − 1 + ∑

ei

∑
aq ∈ ei

ϕi apj
K − 1 − aqj

K − 1 f′ zpj
K api

K − 2

= δpj_L13
K − 1 api

K − 2

Therefore, for each wji
k, m, we obtain the general gradient formula of J13 is

∂L13

∂wji
k = δpj_L13

k + 1 api
k k = 1, 2, …, K

The derivation method of L14 is consistent with the above. So, we mainly give the partial 

derivatives of L14 with respect to wji
2K, m. The rest of the partial derivatives can be calculated 

similarly.

∂L14

∂wji
2K + 1, m = ∂

∂apj
2K + 1, m

β1
2 ∑

m = 1

M
∑
p, q

N
Spq

m ap
2K + 1, m − aq

2K + 1, m 2 + β2
2 ∑

t ≠ m

M
∑
p, q

M
Spq

m, t ap
2K + 1, m − aq

2K + 1, m 2 ∂apj
2K + 1, m

∂zpj
2K + 1, m

∂zpj
2K + 1, m

∂wji
2K, m

= β1 ∑
q = 1

N
Spq

m apj
2K + 1, m − aqj

2K + 1, m + β2 ∑
t ≠ m

M
∑

q = 1

N
Spq

m, t + Spq
t, m apj

2K + 1, m − aqj
2K + 1, m f′ zpj

2K + 1, m api
2K, m

= δpj_L14
2K + 1, mapi

2K, m

Similar to L13, we can obtain

∂L14

∂wji
k, m = δpj_L14

k + 1, mapi
k, m k = K + 1, …, 2K
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The residual terms of L11, L12 for wji
k, m are denoted as δpj_L11

k + 1, m, δpj_L12
k + 1, m. The partial derivative 

formulas of L1 for the encoder and decoder are

∂L1

∂wji
k, m = δpj_L11

k + 1, m + δpj_L12
k + 1, m + δpj_L13

k + 1, m api
k, m k = 1, …, K

∂L1

∂wji
k, m = δpj_L11

k + 1, m + δpj_L12
k + 1, m + δpj_L14

k + 1, m api
k, m k = K + 1, …, 2K

For the fusion layer, according to the forward propagation formula, the partial derivative 

formula of L1 with respect to wji
F , m is

∂L1

∂wji
F , m = ∑

n = 1

M
∑

t = 1

nL + 2
δpt

K + 2, nwtj
K + 1, n f′ zpj

F api
L + 1, m

Appendix B.: The hypothesis testing of significant changes

For each pair of ROIs, the significant change of dFC is tested based on hypothesis test 

methods. Specifically, the F-test is first used to test whether there is a significant difference 

in variance between children and adults. Then, different t-tests were used to test whether 

there is a significant difference in mean value between the children and adults based on the 

results of the F-test.

If there was significant difference in variance between the two groups, the following t-test 

was used

t = X‾ 1 − X‾ 2

S1
2

n1
+ S2

2

n2

where X‾ 1 and X‾ 2 denote the sample mean value of adults and children, S1
2 and S2

2 denote the 

sample variance of adults and children, and n1 and n2 denote the sample size of adults and 

children respectively.

If there is no significant difference in variance between the two groups, the t-test of the 

following formula was used

t = X‾ 1 − X‾ 2

St
1
n1

+ 1
n2

where St
2 = n1 − 1 S1

2 + n2 − 1 S2
2

n1 + n2 − 2 .
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The significance level is set to 0.01. When the p-value < 0.01, we can determine that there 

exists a significant difference in dFC between the two groups. In other words, we can 

determine that the changes found in dFC are significant when the p-value < 0.01. Moreover, 

if M = X‾ 1 − X‾ 2 > 0, then there exists increased dFC. Similarly, the decreased dFC can be 

defined when M < 0.
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Fig. 1. 
The entire training process of MF-EDSAE: (a) shows the stack-wise sparse training process 

of single-paradigm data to initialize subnetwork weights of MF-EDSAE. The hypergraph 

regularization (HR) is also introduced to consider high-order relationships of samples. (b) 

shows the architecture of MF-EDSAE with encoders, fusion layer, decoders, and feature 

selection layer. The fine-tuning process of MF-EDSAE adapts to the back-propagation 

algorithm with sparse learning, HR, and multi-paradigm hypergraph regularization (MP-

HR), which can improve the model learning ability by maintaining the sparsity of the hidden 

layers and considering high-order relationships within and between paradigms.
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Fig. 2. 
Functional networks: (a) Different distributions of the selected dFC in different paradigms, 

where the purple lines represent the enhanced dFC during brain development and the yellow 

lines represent the weakened dFC. (b) The figure shows the enhanced dFC within and 

among FNs during brain development in different paradigms. (c) The figure shows the 

weakened dFC within and among FNs during brain development in different paradigms.
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Fig. 3. 
Extraction of dFC: (a), (b), (c) respectively, show the changes of dFC between and within 

FNs in different states of emoid fMRI, nback fMRI and rest fMRI during brain development. 

For each subfigure, the part of upper triangle represents the weakened dFC, the part of lower 

triangle represents the enhanced dFC.
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Fig. 4. 
Distribution of DT and FT in different states in three paradigms.
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Table 1

Demographic characteristics of the subjects.

Children Young Adults

Number 123 146

Gender (male/female) 53/70 57/89

Age (Mean ± SD, months) 123.98 ± 11.12 231.23 ± 12.03

Ethnicity

ASIAN 2(1.6%) 0(0%)

AFRICAN 46(37.4%) 55(37.7%)

AMERICAN 0(0%) 0(0%)

OTHER/MIXED 13(10.6%) 13(8.9%)

CAUCASIAN/WHITE 61(49.6%) 78(53.4%)

HAWAIIAN/PACIFIC 1(0. 8%) 0(0%)
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