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Abstract
Motivation: State-of-the-art tools for classifying metagenomic sequencing reads provide both rapid and accurate options, although the combi-
nation of both in a single tool is a constantly improving area of research. The machine learning-based Naïve Bayes Classifier (NBC) approach pro-
vides a theoretical basis for accurate classification of all reads in a sample.
Results: We developed the multithreaded Minimizer-based Naïve Bayes Classifier (MNBC) tool to improve the NBC approach by applying mini-
mizers, as well as plurality voting for closely related classification scores. A standard reference- and test-sequence framework using simulated 
variable-length reads benchmarked MNBC with six other state-of-the-art tools: MetaMaps, Ganon, Kraken2, KrakenUniq, CLARK, and 
Centrifuge. We also applied MNBC to the “marine” and “strain-madness” short-read metagenomic datasets in the Critical Assessment of 
Metagenome Interpretation (CAMI) II challenge using a corresponding database from the time. MNBC efficiently identified reads from unknown 
microorganisms, and exhibited the highest species- and genus-level precision and recall on short reads, as well as the highest species-level pre-
cision on long reads. It also achieved the highest accuracy on the “strain-madness” dataset.
Availability and implementation: MNBC is freely available at: https://github.com/ComputationalPathogens/MNBC.

1 Introduction
The ability to detect pathogenic microorganisms in animals, 
food, and the environment is critical to ensuring animal and 
human health. Historically, this has been done using standard 
microbiology techniques that rely on the isolation of individ-
ual organisms. While these laboratory-based methods are ef-
fective, they are time- and resource-intensive, often requiring 
days to isolate pure cultures and characterize the agents of in-
terest. By contrast, culture-independent metagenomics ena-
bles the direct capture and sequencing of all nucleic acid 
materials present in a sample (Thomas et al. 2012); however, 
organisms present in low numbers may still be undetectable. 
A single run of the Oxford Nanopore Promethion can 
generate up to 200 gigabases (GB) per run, with read lengths 
averaging about 10 kilobases (kb), but in some cases reaching 
4 megabases (Mb) (https://nanoporetech.com/products/se 
quence/promethion); the Illumina NextSeq 550 can generate 

up to 120 Gb per run at a consistent sequence length of 
2×150 base pairs (bp) (https://www.illumina.com/systems/se 
quencing-platforms.html).

Due to the fact that metagenomes contain genome sequen-
ces of all organisms detected in the sample, the reads from in-
dividual isolates would ideally be able to be separated from 
one another. In reality, this is often not possible, and classifi-
cation of individual reads to the species, or even higher taxo-
nomic level is the best that can be accomplished (Menzel 
et al. 2016). Each read is assigned a taxon, and the reads 
from the same species can be assembled into a metagenome- 
assembled genome (MAG) (Menzel et al. 2016). Two catego-
ries of classification tools exist: sequence alignment-based 
and k-mer composition-based. Some alignment-based tools 
[MetaPhyler (Liu et al. 2011), MetaPhylAn4 (Blanco-M�ıguez 
et al. 2023), mOTUs (Ruscheweyh et al. 2021)] map reads to 
a database of marker genes by using general aligners [BLAST 
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(McGinnis and Madden 2004), BowTie2 (Langmead and 
Salzberg 2012), BWA (Li and Durbin 2009), respectively]. 
The alignment-based Centrifuge (Kim et al. 2016) uses the 
Burrows-Wheeler transform (Burrows and Wheeler 1994) 
and Ferragina-Manzini index (Ferragina and Manzini 2000) 
to index the merged reference genomes to accelerate aligning.

K-mers, which are sequence fragments of length k, are 
comparable to individual words that combine to form an arti-
cle. They are used as the basic elements for classification in 
many tools. CLARK (Ounit et al. 2015) makes separate clas-
sifications at each taxonomic level by using only discrimina-
tive k-mers. Phymm (Brady and Salzberg 2009) uses 
Interpolated Markov Models trained with variable-length k- 
mers to construct nucleotide probability distributions of ref-
erence genomes. Mash (Ondov et al. 2016) produces 
MinHash (Broder 1997) bottom sketches from canonical k- 
mers and computes Jaccard index-based distances. 
Minimizers (Roberts et al. 2004), which are representative k- 
mers, are often used to reduce storage and speed up sequence 
comparison. Kraken (Wood and Salzberg 2014) builds a 
minimizer-indexed reference database mapping each k-mer to 
the lowest common ancestor (LCA) taxon of all genomes 
containing it, then the taxa associated with k-mers in a query 
read form a pruned subtree whose root is the prediction. 
KrakenUniq (Breitwieser et al. 2018) additionally counts 
unique k-mers for each taxon using a probabilistic cardinality 
estimator HyperLogLog (Flajolet et al. 2007, Heule et al. 
2013) to reduce false positives. Kraken2 (Wood et al. 2019) 
further adopts a probabilistic, compact hash table directly 
mapping minimizers to LCAs to compress the database and 
run faster. Ganon (Piro et al. 2020) uses Interleaved Bloom 
Filters (Dadi et al. 2018) as the database to store minimizers 
and the q-gram lemma (Jokinen and Ukkonen 1991, Reinert 
et al. 2015) to classify reads. Long reads-oriented MetaMaps 
(Dilthey et al. 2019) uses a minimizer-based approximate 
mapping strategy to produce a list of candidate locations and 
an expectation–maximization (EM) algorithm (Dempster 
et al. 1977) to disambiguate.

K-mers were also used as features in machine learning- 
based tools. The single-threaded Naïve Bayes Classifier 
(NBC) (Rosen et al. 2008) applies Bayes’ Theorem that 
assumes independence of k-mers. The proof-of-concept 
NBCþþ (Zhao et al. 2020) adds multithreading capability 
and optimizes memory and the number of cores via a smart 
loading scheme. MetaVW (Vervier et al. 2018) uses the 
squared loss function in the Vowpal Wabbit library 
(Langford et al. 2007, Agarwal et al. 2014) to train a separate 
classifier with random sequence fragments at each taxonomic 
level. MT-MAG (Li et al. 2023) builds a quadratic Support 
Vector Machine (QSVM) model (Cortes and Vapnik 1995) at 
each node of the taxonomy tree and classifies hierarchically 
from top to bottom, outperforming the deep learning-based 
DeepMicrobes (Liang et al. 2020) at the species level.

In this study, we developed a multithreaded Minimizer- 
based Naïve Bayes Classifier (MNBC) for improved metage-
nomic sequence classification, which includes four specific 
improvements to NBC: (i) the use of unique minimizers 
rather than all k-mers; (ii) binary presence/absence of a mini-
mizer rather than its frequency; (iii) the use of a minimum 
cutoff for the ratio of shared read & genome minimizers to 
all read minimizers; and (iv) the use of the plurality rule in 
selecting read classification. To assess its performance, 
MNBC was benchmarked against six other state-of-the-art 

metagenomics read classification tools. It efficiently identified 
unknown reads with reasonable runtime and memory 
requirements, and outperformed other tools, with the excep-
tion of MetaMaps with regard to recall on long reads, in 
terms of species-level precision and recall across both short 
and long reads.

2 Materials and methods
2.1 Implementation of the NBC tool
The NBC tool (Rosen et al. 2008) uses the classic Naïve 
Bayes classifier to assign sequencing reads to categories as fol-
lows. Suppose that the reference database consists of S 
genomes fG1, G2,…, GSg. The query read sequence R ¼
[m1, m01, m2, m02,…, mN, m0N] contains 2N k-mers; i.e. mj 

and m0j are the two complement k-mers in the two strands at 
the position j 1≤ j≤Nð Þ. P GijRð Þ is the posterior probability 
of R originating from Gi (1≤ i≤S), and the Naïve Bayes clas-
sifier predicts R to originate from the genome Gη with the 
greatest posterior probability where 

η ¼ arg max
i

P GijRð Þ; 1≤ i≤ S (1) 

where P GijRð Þ is calculated based on Bayes’ Theorem as 

P GijRð Þ ¼
P RjGið ÞP Gið Þ

P Rð Þ
(2) 

P Rð Þ (i.e. the unconditional probability of observing R) is 
constant across all genomes so that it can be omitted. P Gið Þ

(i.e. the prior probability of observing Gi) depends on the 
composition of a specific sample; without such prior knowl-
edge all genomes can be assumed to be equally likely so that 
it can also be omitted. Since the Naïve Bayes classifier 
assumes that the features (i.e. k-mers in this case) are inde-
pendent of one another, the conditional probability P RjGið Þ

can be calculated based on the product rule (Feller 1991) as 

P GijRð Þ / P RjGið Þ ¼
YN

j¼1
P mjjGi
� �

P m0jjGi

� �
(3) 

P mjjGi
� �

is the probability of observing mj in Gi, which is 
calculated as the number of occurrences of mj in Gi [i.e. 
count mj;Gi

� �
] divided by the total number of k-mers in Gi 

[i.e. count Gið Þ]. To prevent precision errors that may be 
caused by multiplication of many small numbers in the case 
of a large N, a logarithm was introduced into Equation (3) to 
compute the score of Gi: 

logP RjGið Þ ¼
XN

j¼1
log

count mj;Gi
� �

count Gið Þ
þ log

count m0j;Gi

� �

count Gið Þ

0

@

1

A

(4) 

Thus NBC predicts R to originate from the genome Gη 
with the greatest score, where 

η ¼ arg max
i

logP RjGið Þ; 1≤ i≤ S (5) 
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2.2 Reference database building in MNBC
As indicated by Equation (4), the NBC tool builds the refer-
ence database by counting the number of occurrences of each 
present k-mer for each genome. To improve the runtime of 
the program, MNBC instead obtains unique minimizers in 
each genome. One minimizer is chosen from each window of 
length 2k-1 (i.e. k consecutive k-mers) as follows. At each 
position, the lexicographically smaller one of the two comple-
ment k-mers on the two strands is used as the canonical 
k-mer, following which the minimizer is the lexicographically 
smallest among all k canonical k-mers in the window. Thus 
the minimizer is a representative k-mer of the window, and 
adjacent windows often have the same minimizer, which 
reduces the size of the NBC database. Additionally, at either 
end of the genome sequence, k-1 minimizers are also chosen 
in the same way from k-1 windows that are anchored to this 
end and respectively consist of 1,2, … ,k-1 consecutive 
k-mers.

MNBC hashes each minimizer z¼ bk − 1 . . .b1b0½ � to a num-
ber as follows to reduce its memory footprint. bi is the nucle-
otide base at the position i 0≤ i≤k − 1ð Þ, which is first 
mapped to a number: 

map bið Þ ¼

0; if bi ¼ A
1; if bi ¼ C
2; if bi ¼ G
3; if bi ¼ T

8
>>>><

>>>>:

(6) 

The hash number of z is computed as: 

hash zð Þ ¼
Xk − 1

i¼0
map bið Þ � 4i (7) 

Consistent with NBC which performed the best using 15- 
mers, k was also set to 15 in this study, which allows storage 
of hash zð Þ in a 4-byte integer type. To allow parallel process-
ing during database building, the MNBC database consists of 
independent index files, each of which stores the total num-
ber of k-mers and hash numbers of unique minimizers in a 
reference genome. This also enables easy plug-in updates to 
the database; i.e. a genome can be included in or excluded 
from the database simply by adding or removing its in-
dex file.

2.3 Query read classification in MNBC
The original NBC tool, due to the sheer size of its database, 
loads all query reads into memory, then sequentially com-
putes the scores of each reference genome [Equation (4)]. 
Thanks to using minimizers instead of all k-mers, MNBC is 
able to keep the entire database in memory and classify multi-
ple reads in parallel.

Given a query read R, MNBC first computes hash numbers 
of its unique minimizers. To identify reads from unknown 
microorganisms, MNBC introduces a minimum cutoff μ on 
the ratio of shared read & genome minimizers to all read 
minimizers. A genome with a ratio smaller than μ will not be 
considered as a match for the read and thus be rejected. In 
the special case of μ¼ 0, a genome sharing no minimizer with 
the read will be rejected. If all genomes in the database are 
rejected, the read will be labeled as unclassified.

To improve the classification speed of NBC, MNBC sim-
plifies Equation (4) by ignoring the exact numbers of 

occurrences of the read minimizers in the reference genome; i. 
e. for each present minimizer, MNBC uses 1 as its number of 
occurrence. If a read minimizer is absent in the genome, the 
logarithm in Equation (4) will approach negative infinity; to 
account for this, MNBC uses a penalty parameter φ to re-
place the logarithm. Assuming that R contains U unique min-
imizers fz1; z2; . . . ; zUg, MNBC uses the simplified Equation 
(8) to compute the score of the genome Gi: 

logP RjGið Þ ¼
XU

j¼1

log
1

count Gið Þ
; if zj is present in Gi

φ; if zj is absent in Gi

8
><

>:

(8) 

To improve on the performance of the original NBC algo-
rithm, which classifies a read into the category with the great-
est score [Equation (5)], despite occasions when the scores of 
many categories differ only slightly, MNBC considers multi-
ple top scores, by applying a maximum threshold θ on the 
difference between adjacent scores. When the scores of refer-
ence genomes are sorted in descending order, MNBC sequen-
tially computes the difference between each score and the 
previous one; if it is not >θ, the genomes with the score are 
added as candidates. This process stops when the first differ-
ence between sorted scores exceeds θ. Thus these candidate 
reference genomes with top scores are the best matches for R. 
Based on likelihood maximization, MNBC predicts R to orig-
inate from the species with the most candidate genomes, and 
randomly chooses one if multiple such species are present. 
Other more complex approaches to disambiguate multiple 
candidate species were also tested, such as choosing the one 
with the greatest score or average score, but they underper-
formed random choice besides slowing down classification 
speed. Taking into account only the highest score in NBC is a 
special case where θ is set to 0.

2.4 Assessment of the performance and practicality 
of MNBC
To assess the performance of MNBC, we developed a stan-
dard framework to benchmark it against six other state-of- 
the-art tools (MetaMaps v0.1, Ganon v1.8.0, Kraken2 
v2.1.2, CLARK v1.2.6.1, Centrifuge v1.0.4, KrakenUniq 
v0.5.7) using simulated sequencing reads (Fig. 1). First we 
downloaded all prokaryotic complete genomes as of 22 
December 2022 and viral complete genomes as of 1 February 
2023 with OK taxonomy check status from the NCBI RefSeq 
collection. The prokaryotic genomes were filtered by remov-
ing plasmids and sequences shorter than 300 kb. For each 
species with T strains (T≥2), 0:2�Td e strains were randomly 
chosen into a test set. The remaining training genomes were 
used by every tool to build a custom reference database. To 
simulate “positive” reads from known microorganisms pro-
duced by different sequencing platforms (NextSeq, MiSeq 
and Nanopore), the test genomes were used to respectively 
generate 6 562 565 random sequence fragments of 150bp 
length, 3 282 728 fragments of 300bp length and 181912 
fragments of normally distributed 1–10 kb lengths based on 
0.05 coverage. To simulate “negative” reads from unknown 
microorganisms that do not exist in the database, 
Chromosome 1 (NC_003070.9) of the RefSeq reference ge-
nome of the Arabidopsis thaliana plant was used to generate 
10143, 5072, and 277 random sequence fragments of 
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corresponding lengths based on 0.05 coverage. Thus the 
framework produced a uniform database, three metagenomic 
sets of positive reads and three negative read sets used by all 
tools. Comparison fairness was also ensured by running all 
tools using 100 cores of the same computer with an AMD 
Ryzen Threadripper 3990X CPU and 256 gigabytes 
(GB) memory.

On negative reads, accuracy was defined as the percentage 
of reads that were left unclassified. On positive reads, preci-
sion at each taxonomic level ¼

# reads classified correctly to this level
# reads classified 

and recall (or accuracy) 

¼
# reads classified correctly to this level

# reads
.

To further assess the practicality of MNBC on real-world 
metagenomic sequencing runs, we applied it to the strain- 
madness and marine datasets (Fritz et al. 2020) in the CAMI 
II challenge (Meyer et al. 2022). The CAMI II challenge, 
which was open from 16 January 2019 to 25 October 2019, 
benchmarked taxonomic classification tools on realistic and 
complex metagenomic datasets with computationally gener-
ated long- and short-read sequences. Since the majority of the 
participating tools only analyzed short reads, we also used 
MNBC to classify the same sequences. The strain-madness 
dataset has very high strain diversity, and each of its 100 
samples contains 2 GB of short (150 bp) paired-end reads. 
The ten samples in the marine dataset were created from a 
deep-sea environment, each containing 5 GB of short paired- 
end Illumina reads. To ensure that the results of MNBC were 
comparable to the other participating tools, we used the 
RefSeq database as of 15 October 2019, containing all 
16 864 prokaryotic and viral complete genomes and chromo-
somes with OK and inconclusive taxonomy check statuses.

3 Results
3.1 MNBC performance on the simulated test reads
To determine an optimal value of the μ parameter, we experi-
mented on the MiSeq test reads to examine its effects on the 
classification behavior of MNBC. A larger μ value is related 

to a higher accuracy on the negative reads and a lower 
species-level recall on the positive reads (Fig. 2). A threshold 
of 0.35 was subsequently used to achieve a good balance, 
meaning that a genome is rejected if it contains <35% of the 
read minimizers.

The results of benchmarking MNBC with six other state- 
of-the-art tools on the NextSeq, MiSeq and Nanopore test 
reads are respectively shown in Tables 1–3. We adjusted the 
parameters of these tools in an attempt to obtain the highest 
possible performances.

On the NextSeq and MiSeq negative reads, four tools 
(Ganon, Kraken2, KrakenUniq and Centrifuge) correctly rec-
ognized over 99% of them, followed by MNBC and 
Centrifuge (Tables 1 and 2). MetaMaps could not recognize 
any (Tables 1 and 2). On the positive reads, at the expense of 
runtime and memory MNBC exhibited the highest precision 

Figure 1. The standard framework to benchmark read classifiers. Prokaryotic and viral complete genomes with OK taxonomy check status were 
downloaded from the NCBI RefSeq collection. Plasmids and short sequences were removed from prokaryotic genomes as a filtering step. For each 
species with at least two strains, 20% of its strains were randomly picked into a test set. All remaining genomes were put into a training set. Every tool 
built a custom reference database from the training set. Genomes in the test set were used to respectively generate three sets of random sequence 
fragments of 150 bp, 300 bp and normally distributed 1–10 kb lengths as simulated positive reads. On the other hand, Chromosome 1 of the RefSeq 
reference genome of the Arabidopsis thaliana plant was used to respectively generate three sets of random sequence fragments of corresponding 
lengths as simulated negative reads. All tools classified these test reads based on the uniform database using the same hardware, then their 
performances were compared.

Figure 2. Effect of µ on the classification behavior of MNBC. Each blue 
point represents an experiment on the MiSeq test reads using a different 
µ value indicated by the adjacent number. The raw numbers are provided 
in Supplementary Table S1.
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and recall at the species and genus levels, exceeded by Ganon 
at higher levels (Tables 1 and 2). Centrifuge, Kraken2, 
KrakenUniq and CLARK exhibited similar species-level 
results, except a higher precision of Centrifuge due to more 
unclassified reads (Tables 1 and 2). At higher levels, all tools 
exhibited almost perfect results, except a lower recall of 
Centrifuge (Tables 1 and 2). Kraken2 was the fastest tool 
(Tables 1 and 2).

On the Nanopore negative reads, three tools (MNBC, 
Ganon and MetaMaps) correctly recognized all of them, fol-
lowed by Kraken2, KrakenUniq and CLARK (Table 3). 
Centrifuge only recognized over a quarter (Table 3). On the 
positive reads, at the species level, MNBC and MetaMaps, re-
spectively, exhibited the highest precision and recall 
(Table 3). Similarly, MNBC had a higher precision and recall 
than Ganon at the expense of runtime and memory, exceeded 
by Ganon at higher levels (Table 3). Kraken2 visibly exceeded 
Centrifuge, KrakenUniq and CLARK (Table 3). At higher 
levels, all tools also exhibited almost perfect results, except a 
lower recall of Centrifuge due to more unclassified reads 
(Table 3). Kraken2 and MetaMaps were, respectively, the 
fastest and slowest tools (Table 3).

3.2 Misclassified reads
To further understand the classification behavior of the vari-
ous tools, we examined the specific test reads misclassified at 
the species level by MNBC, Kraken2, Ganon and MetaMaps. 
Every tool had its unique correctly classified and misclassified 
reads; i.e. for each tool there existed some reads which only it 
could correctly classify or only it misclassified (Fig. 3). For in-
stance, all tools misclassified 2.42% of the Nanopore positive 
reads, while MNBC correctly classified 0.2% misclassified by 
all three other tools, and misclassified 0.2% correctly classi-
fied by all others (Fig. 3C).

3.3 MNBC performance on the CAMI II datasets
To evaluate the practicality of MNBC in realistic metage-
nomic sequencing, we simulated participation in the CAMI II 
challenge by classifying the short reads of the strain-madness 
and marine datasets, based on a RefSeq database that existed 
while the challenge was open.

On the strain-madness dataset, which had high strain di-
versity, MNBC exhibited the highest accuracies at the species 
and genus levels, considerably outperforming the runner-up 
Kraken2 by about 38% and 26%, respectively (Fig. 4A).

On the marine dataset, the species-level top performers in-
clude Kraken2, Kraken, MNBC and Ganon (Fig. 4B). At 
higher levels, MNBC had lower accuracies than the other 
three tools. This is because MNBC had more unclassified 
reads on which the others instead gave incorrect species-level 
classifications, like on the simulated test reads.

4 Discussion
In this study, we took the NBC algorithm, and improved it 
by applying minimizers, a genome-rejection cutoff and the 
plurality rule, to create MNBC. The simplification of using 
minimizers reduces the size of the NBC reference database so 
that it can be held entirely in memory, which allows for much 
faster parallel read classification. The MNBC database is also 
fully customizable through the inclusion of any genomic 

sequence, and easily updatable through incremental additions 
that do not require the complete rebuilding of the database, 
as is the case with the six benchmarked tools. The minimum 
cutoff on the percentage of common read & genome mini-
mizers allows rejection of dissimilar genomes and recognition 
of unknown reads. Plurality voting of candidate reference 
genomes from closely related top scores was found to also im-
prove the accuracy of NBC.

The benchmarking results of the seven tools on the simu-
lated reads indicated that at the species level, MNBC has the 
highest precision across short and long reads and the highest 
recall on short reads, while effectively recognizing unknown 
reads (Tables 1–3). MetaMaps and Centrifuge failed to rec-
ognize most unknown short and long reads, respectively 
(Tables 1–3). The longer the reads, the better the ability of 
MNBC and Ganon to recognize unknown reads, whereas the 
opposite is true for Kraken2, KrakenUniq and CLARK 
(Tables 1–3). No tool universally achieved both the highest 
classification power and fastest speed, and tool choice 
depends on the needs of the specific user. MNBC produced 
highly accurate classifications on the simulated read sets, 
while Kraken2 was extremely fast at the sacrifice of some ac-
curacy. Ganon demonstrated a well-balanced approach, and 
MetaMaps works well on long reads despite being slow. The 
fact that every tool has its unique correctly classified and mis-
classified reads besides many common misclassifications sug-
gests that every algorithm has its own advantages and no one 
is superior to all others in all cases.

The performance of MNBC is affected by the values of the μ, 
φ, and θ parameters. The range [0.3–0.45] of μ seems well- 
balanced between known and unknown reads (Fig. 2). φ must 

be smaller than log 1
count GLð Þ

� �
in Equation (8) to distinguish pre-

sent from absent read minimizers, where GL is the reference ge-
nome with the most k-mers (i.e. the longest genome). A smaller 
value of φ results in a larger score difference between two 
genomes with different numbers of read minimizers, thus θ 
should be set to a greater value to compensate for this. We 
found that higher absolute values of φ and θ gave better results 
on the simulated reads, arriving at defaults of −2000 and 1500, 
respectively.

There have been some previous works to compare read 
classifiers. NBC and Kraken2 were found to respectively ex-
cel at classification power and speed (Bazinet and Cummings 
2012, Wood et al. 2019), and Ganon was a top performer at 
the species level (Seppey et al. 2020), which are consistent 
with our findings. The read-level classification powers of 11 
tools were benchmarked on 35 simulated and biological 
metagenomic datasets (McIntyre et al. 2017), though the use 
of different reference databases complicated the explanation 
of their performance differences. A uniform database was 
used to benchmark species-level abundance profiling of 20 
commonly used classifiers with simulated short reads (Ye 
et al. 2019), but it was in doubt whether the source taxa of 
the simulated reads still remained true, since the artificially 
introduced sequencing errors might make them actually 
closer to other reference genomes.

The marker-based tools (MetaPhyler, MetaPhylAn4, 
mOTUs) were excluded from the benchmarking experiment, 
since they are unable to classify reads originating outside the 
marker genes, and as such have lower performance (Ye et al. 
2019). NBCþþ generated over 1 terabyte (TB) of data before 
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depleting hard drive space when we tried to build the uniform 
database. The single-threaded MetaVW took us over 12 days to 
train a 10-mer genus-level classifier of 1 coverage for the uni-
form database, and it was infeasible to train a 15-mer one due 
to over 1 TB memory usage. The single-threaded NBC and 
Phymm were also very slow taking over a week to finish classi-
fying the test reads, and Mash significantly underperformed the 
benchmarked tools. MT-MAG is only suitable for local classifi-
cation due to the sheer number of models needed to cover the 
entire taxonomy tree and its performance is upper bounded by 
the single top model. Nevertheless, the list of tools benchmarked 
in this study may not be exhaustive and more tools can be easily 
included if they allow custom database building.

In summary, we demonstrated that MNBC is a practical 
short- and long-read classifier for metagenomic sequencing 
with high species-level precision and recall and efficient rec-
ognition of unknown reads. As more reference genomes are 
deposited into the RefSeq collection, it is also expected to be-
come increasingly more accurate due to plurality voting of 
candidate genomes from multiple top scores. Potential future 
work includes exploring further improvements to runtime, 

and applying the framework to other metagenomics classifi-
cation tasks such as the identification of mobile elements.
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Figure 3. Percentages (%) of positive reads misclassified by MNBC, Ganon, MetaMaps, and Kraken2 at the species level. (A) Percentages of NextSeq 
positive reads misclassified by MNBC, Ganon, and Kraken2. (B) Percentages of MiSeq positive reads misclassified by MNBC, Ganon, and Kraken2. 
(C) Percentages of Nanopore positive reads misclassified by the four tools. The area within each ellipse represents all reads misclassified by a tool. The 
intersection between two ellipses represents the reads commonly misclassified by both tools. Each tool correctly classified reads that all other tools 
misclassified; each tool also misclassified reads that all others correctly classified; many reads were misclassified by all tools. The raw numbers are 
provided in Supplementary Fig. S1.

Figure 4. Performances of read classifiers on the short-read strain- 
madness and marine datasets of the CAMI II challenge. (A) Accuracies of 
MNBC and three participating tools on the strain-madness dataset. (B) 
Accuracies of MNBC and six participating tools on the marine dataset. 
MNBC respectively used 0.35, −2000, and 1500 as the values of the μ, φ, 
and θ parameters. The accuracies of all participating tools were directly 
obtained from Meyer et al. (2022), and the accuracies of MNBC were 
computed using the same length-based method. The tool versions 
participating in the challenge include Kraken2 v2.0.8, Kraken v0.10.5, 
Ganon v0.1.4 and DIAMOND v0.9.28, and each tool used its own 
reference database instead of a uniform one. The raw numbers are 
provided in Supplementary Table S5.
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