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�
 ABSTRACT 

Ribosome biogenesis is a highly regulated cellular process requiring a 
large cohort of accessory factors to ensure the accurate production of 
ribosomes. Dysregulation of ribosome biogenesis is associated with the 
development of various human diseases, including cancer. The Las1L– 
Nol9 endonuclease–kinase complex is essential for the cleavage of the 
rRNA internal transcribed spacer 2 (ITS2), the phosphorylation of the 50- 
hydroxyl end of the resulting precursor, and, thus, the maturation of the 
60S ribosome. However, how the Las1L–Nol9 complex is regulated in 
cells is unclear. In this study, we report that the nucleolar ubiquitin- 
specific protease USP36 is a novel regulator of the Las1L–Nol9 complex. 
USP36 interacts with both Las1L and Nol9 and regulates their stability 
via deubiquitination. Intriguingly, USP36 also mediates the SUMOyla-
tion of Las1L, mainly at lysine (K) 565. Mutating K565 to arginine (R) 

does not affect the levels of Las1L and the formation of the Las1L– 
Nol9 complex, but abolishes its function in ITS2 processing, as unlike 
wild-type Las1L, the K565R mutant failed to rescue the defects in the 
ITS2 processing induced by the knockdown of endogenous Las1L. These 
results suggest that USP36-mediated Las1L SUMOylation is critical for 
ITS2 processing and that USP36 plays a critical role in ribosome bio-
genesis by regulating the Las1L–Nol9 complex. 

Significance: This study identifies USP36 as a deubiquitinating and small 
ubiquitin-like modifier ligase dual-function enzyme to mediate Las1L 
deubiquitination and SUMOylation. Las1L SUMOylation at K565 plays a 
critical role in pre-rRNA ITS2 processing. Thus, our study reveals a novel 
downstream pathway for USP36-regulated ribosome biogenesis. 

Introduction 
Eukaryotic ribosome biogenesis is a multistep and highly orchestrated cel-
lular process of making ribosomes. It starts with the transcription of 47S pre- 
rRNA by RNA polymerase I from rDNA genes in the nucleolus. Co- 
transcriptional assembly of ribosomal proteins and accessory factors into the 
nascent pre-rRNAs forms the 90S pre-ribosome particles, which undergo an 
endonucleolytic pre-rRNA cleavage to generate pre-40S and pre-60S ribo-
some particles (1–3). Both particles are then subjected to further maturation 
processes involving rRNA cleavage, modification, and folding in the nucle-
olus and nucleoplasm and are exported to the cytoplasm to form functional 
ribosomes (1–3). During the stepwise maturation of the pre-ribosome sub-
units, several hundreds of accessory factors, including proteins and small 
nucleolar RNAs, are critically involved (1–3). Among these factors, the 
Las1L–Nol9 endonuclease–kinase complex (Las1–Grc3 complex in yeast) is 
required for the rRNA internal transcribed spacer 2 (ITS2) processing (4–9). 
The endonuclease Las1L cleaves the 32S rRNA at the ITS2 (5, 6, 9). The 

resulting 12S rRNA product with 20,30-cyclic phosphate is further processed 
by the RNA exosome to generate 5.8S rRNA (10–12), whereas the 
50-hydroxyl end of the ITS2 is phosphorylated by Nol9 (7, 8, 13) to mark 
ITS2 degradation by the 50 to 30-exonuclease XRN2 (Rat1 in yeast; 
refs. 14–16) and the maturation of 28S rRNA. Thus, the Las1L– 
Nol9 endonuclease–kinase complex is essential for the 60S ribosomal sub-
unit biogenesis. Nonetheless, how the Las1L–Nol9 complex is regulated 
during ribosome biogenesis is less understood. 

Recent studies including our work have revealed that SUMOylation, a 
posttranslational modification of proteins by small ubiquitin-like modifiers 
(SUMO), plays a critical role in ribosome biogenesis (17, 18). A number of 
ribosome biogenesis accessory factors are regulated by SUMOylation, in-
cluding Las1L (4, 19), Pelp1 (20), NPM (21, 22), nucleolin (23), and small 
nucleolar ribonucleoprotein (snoRNP) complex components Nop58, Nop56, 
Nhp2, and DKC1 (24–26). Proteomic studies also found that ribosome 
biogenesis–related proteins are one of the major groups of SUMOylated 
proteins (27–31). On the other hand, deSUMOylation is also important for 
ribosome biogenesis. DeSUMOylation of NPM by the SUMO-specific pro-
tease SENP3 is critical for 28S rRNA maturation and the subsequent nu-
cleolar export of the 60S pre-ribosomal subunit (32). Transient 
SUMOylation of Pelp1 facilitates the recruitment of MDN1 to remodel pre- 
60S ribosome subunits and their translocation from the nucleolus to nu-
cleoplasm, whereas the subsequent deSUMOylation of Pelp1 by SENP3 leads 
to the release of the MDN1–Pelp1 complex from pre-60S ribosome subunits 
and their recycling back to the nucleolus (20). Similarly, SUMOylation also 
promotes the translocation of Las1L from the nucleolus to nucleoplasm, and 
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SENP3 depletion results in the accumulation of Las1L in the nucleoplasm 
(4, 19). However, how Las1L is SUMOylated in cells is not clear. 

In this study, we identified the nucleolar ubiquitin-specific protease 
USP36 as a novel regulator for the Las1L–Nol9 endonuclease–kinase com-
plex. We show that USP36 interacts with and deubiquitinates both Las1L and 
Nol9 and regulates their stability. Interestingly, USP36 also acts as a SUMO 
ligase to promote Las1L SUMOylation, mainly at K565. Wild-type (WT) 
Las1L, but not its SUMO-defective K565R mutant, rescued the defects of the 
ITS2 processing caused by the knockdown of endogenous Las1L. Thus, 
SUMOylation at K565 is critical for Las1L’s function in the ribosome 
biogenesis. 

Materials and Methods 
Cell culture and transfection 
Human H1299, HeLa, and HEK293 cells were cultured in DMEM supple-
mented with 10% FBS, 50 U/mL penicillin, and 0.1 mg/mL streptomycin at 
37°C in a 5% CO2 humidified atmosphere. These cell lines were obtained 
from ATCC. Cell lines were passaged fewer than 30 times for a maximum of 
2 months and routinely monitored for Mycoplasma contamination. Manu-
facturers performed authentication through short tandem repeat profiling. 
Plasmid transfection was conducted using Lipofectamine 2000 (Life Tech-
nologies) for HEK293 cells and TransIT-LT1 reagents (Mirus Bio) for HeLa 
and H1299 cells following the manufacturers’ protocols. 

Plasmids, antibodies, and reagents 
Flag-tagged USP36 and its deletion mutants as well as V5-tagged USP36 and 
its catalytically inactive C131A mutant were described previously (25, 33, 
34). The Flag-tagged Las1L plasmid (pFlag-CMV-Las1L) was kindly pro-
vided by Dr. Catherine Denicourt (The University of Texas Health Science 
Center; ref. 4). Flag-Las1L deletion mutants were constructed by PCR 
cloning. The PCR products were digested with BglII and EcoRI and inserted 
into the pcDNA3-2Flag vector at BamHI/EcoRI sites. Nol9 cDNA amplified 
from HeLa cells was inserted into the pcDNA3-2Flag vector at EcoRI/XbaI 
sites to generate the Flag-Nol9 plasmid. All Flag-tagged Nol9 deletion mu-
tants were also constructed by inserting PCR products into the pcDNA3-2Flag 
vector at EcoRI/XbaI sites. The GFP-Nol9 plasmid was a gift from Dr. Robin E. 
Stanley (National Institute of Environmental Health Sciences, NIH; ref. 7). 
Flag-Las1LK565R, Flag-Las1LK226R, Flag-Las1LK241R, Flag-Las1LK565R;K569R, and 
Flag-Las1LK565R;K241R mutants were generated by site-directed mutagenesis 
using the QuikChange Kit (Agilent Technologies). All primers for PCR cloning 
and site-directed mutagenesis are listed in Supplementary Table S1. His- 
SUMO1, His-SUMO2, and His-ubiquitin (Ub) plasmids were described pre-
viously (25, 35, 36). The Flag-Las1L cDNAs were also subcloned into the 
pcDNA4-TO vector (Life Technologies) to generate pcDNA4-TO-Flag-Las1L 
and pcDNA4-TO-Flag-Las1LK565R plasmids. These plasmids were then used to 
construct the Las1L_siRNA_res plasmids by mutagenesis to generate siRNA- 
resistant Las1L (WT and the K565R mutant), in which the Las1L siRNA 
targeting the sequence 50-CACCAAGACTGGACGGAAT-30 was mutated to 
50-TACGAAAACAGGTAGAAAC-30. 

Anti-Las1L (A304-438A, Bethyl Laboratories, RRID: AB_2620632), anti- 
Nol9 (16083-1-AP, Proteintech, RRID: AB_11124314), anti-USP36 (14783- 
1-AP, Proteintech, RRID: AB_2213357), anti-PELP1 (A300-180A, Bethyl 
Laboratories, RRID: AB_242526), anti-WDR18 (A15875, ABclonal, RRID: 

AB_2763304), anti-TEX10 (17372-1-AP, Proteintech, RRID: AB_2201871), 
anti-SENP3 (5591, Cell Signaling Technology, RRID: AB_10694546), anti- 
RPL30 (s-98106, Santa Cruz Biotechnology, RRID: AB_2181770), anti- 
Nop58 (A302-719A, Bethyl Laboratories, RRID: AB_10755121), anti-Flag 
(M2, F3165, Sigma, RRID: AB_259529), anti-V5 (R960-25, Life Technolo-
gies, RRID: AB_2556564), anti-SP1 (07-645, EMD Millipore), anti– 
digoxigenin-AP (11093274910, Roche), and anti-tubulin (66240-1-Ig, Pro-
teintech, RRID: AB_2881629) were purchased. Rabbit anti-USP36 serum was 
provided by Dr. Masayuki Komada (Tokyo Institute of Technology, Japan; 
refs. 33, 37). Rabbit polyclonal anti-SUMO1 and anti-SUMO2/3 antibodies 
were provided by Dr Yoshiaki Azuma (University of Kansas). Anti-RPL5, 
anti-RPL11, and anti-RPS27a were generated as previously described 
(38–40). RNase A and RNase T1 (Thermo Fisher Scientific) were purchased. 

Immunoblot and co-immunoprecipitation analyses 
Cells were lysed in lysis buffer consisting of 50 mmol/L Tris-HCl (pH 8.0), 
0.5% Nonidet P-40, 1 mmol/L EDTA, 150 mmol/L NaCl, 1 mmol/L phe-
nylmethylsulfonyl fluoride (PMSF), 1 mmol/L dithiothreitol, 1 μg/mL pep-
statin A, and 1 mmol/L leupeptin with brief sonication. Equal amounts of 
protein were used for immunoblot (IB) analysis. Co-immunoprecipitation 
(Co-IP) was conducted by incubating equal amounts of cell lysates with anti- 
Flag (M2) antibody agarose gel (Sigma) at 4°C for 4 hours. The bound 
proteins were detected by IB analysis. 

RNAi 
RNAi-mediated gene knockdown was performed essentially as previously 
described (34, 41). All the 21-nucleotide siRNA duplexes with a 30-dTdT 
overhang were synthesized by Dharmacon, Inc. The target sequences are 
50-CACCAAGACTGGACGGAAT-30 (Las1L si-1, used for all experiments, 
except where indicated), 50-CAGAAACGCAGAAAGCACA-30 (Las1L si-2), 
50-GGCCTTCAGTTAACTGAGA-30 (Nol9), 50-TGTCCTGAGTGGAGA 
GAAT-30 (USP36 si-1, used for all experiments, except where indicated), 
50-GGAAGAGTCTCCAAGGAAA-30 (USP36 si-2), and 50-ACTCCGTAC 
CAAGGGTTAT-30 (SENP3). The control scramble RNA was described 
previously (35). These siRNA duplexes (100 nmol/L) were introduced into 
cells using Lipofectamine 2000 (Invitrogen) following the manufacturer’s 
protocol. Cells were harvested 48 hours after transfection for IB. 

In vivo ubiquitination and SUMOylation assays 
In vivo ubiquitination and SUMOylation assays under denaturing conditions 
were conducted using an Ni2+-NTA pulldown (PD) method as previously 
described (35, 36, 39). Briefly, the cells were transfected with His-Ub, His- 
SUMO1, or His-SUMO2 together with plasmids indicated in various ex-
periments and treated with 20 μmol/L MG132 for 6 hours before harvesting. 
A total of 20% of the cells were used for direct IB, and the rest of the cells 
were subjected to Ni2+-NTA PD under denaturing conditions using lysis 
buffer consisting of 6 mol/L guanidinium-HCl; 0.1 mol/L Na2HPO4/NaH2 

PO4; 10 mmol/L Tris-HCl, pH 8.0; and 10 mmol/L β-mecaptoethanol. After 
washing, the bound proteins were eluted and analyzed using IB. 

Cell fractionation and Co-IP of nucleolar lysates 
Nucleolar fractionation was performed as described previously (33). Briefly, 
the freshly harvested cells were washed with PBS, resuspended in hypotonic 
buffer A (10 mmol/L HEPES, pH7.8; 10 mmol/L KCl; 1.5 mmol/L MgCl2; 

2836 Cancer Res Commun; 4(10) October 2024 https://doi.org/10.1158/2767-9764.CRC-24-0312 | CANCER RESEARCH COMMUNICATIONS 

Li et al. 

https://dx.doi.org/10.1158/2767-9764.CRC-24-0312


and 0.5 mmol/L dithiothreitol) in the presence of PMSF, and incubated for 
10 minutes on ice. The cells were homogenized using a B pestle douncer 
followed by spinning down at 3,000 rpm for 5 minutes at 4°C. The super-
natant (cytoplasmic fraction) was then supplemented with one tenth volume 
of buffer B (0.3 mol/L Tris-HCl, pH 7.8; 1.4 mol/L KCl; and 30 mmol/L 
MgCl2). The nuclear pellets were washed with buffer A and then resus-
pended in buffer S1 (0.25 mol/L sucrose and 10 mmol/L MgCl2), layered 
over buffer S2 (0.35 mol/L sucrose and 0.5 mmol/L MgCl2), and centrifuged 
at 1,430 � g for 10 minutes at 4°C. The pelleted nuclei were resuspended in 
buffer S2 with PMSF and sonicated using a microtip probe at a power setting 
of 50%. The sonicated nuclei were then layered over buffer S3 containing 
0.88 mol/L sucrose and 0.5 mmol/L MgCl2 and centrifuged at 3,000 � g for 
10 minutes at 4°C. The pellet contained the purified nucleoli, and the su-
pernatant represented the nucleoplasm. The nucleoli were then lysed in 
high-salt RIPA buffer containing 50 mmol/L Tris, pH 7.5; 500 mmol/L NaCl; 
1% Nonidet P-40; 0.5% deoxycholate, and protease inhibitors in the presence 
of 80 U/mL DNase I on ice for 15 to 30 minutes. The lysates were then mixed 
with 2� volume of RIPA buffer without salt and left on ice for an additional 
10 minutes, followed by centrifugation at a maximal speed for 15 minutes. 
The supernatant was then collected as a soluble nucleolar fraction for IP 
analysis (33). 

Immunofluorescence staining 
Cells were fixed with 4% paraformaldehyde for 15 minutes with or without 
pretreating with 0.1% Triton X-100 for 1 minute. Then the cells were per-
meabilized with 0.25% Triton X-100 and blocked with 8% BSA. The cells were 
then stained with anti-Flag, anti-Las1L, or anti-SENP3 antibodies followed by 
Alexa Fluor 546 (red) goat anti-mouse antibody and Alexa Fluor 647 (far red) 
goat anti-rabbit antibody or Alexa Fluor 488 (green) goat anti-mouse antibody 
and Alexa Fluor 546 (red) goat anti-rabbit antibody (Life technologies) as well 
as 40,6-diamidino-2-phenylindole to stain the DNA. The stained cells were 
analyzed under a Leica inverted fluorescence microscope. 

Northern blot 
Nonradioactive Northern blot for rRNA processing was conducted as pre-
viously described (25, 34). Briefly, 4 μg of the total RNA was loaded onto 
agarose denaturing gels (6% formaldehyde/1.2% agarose in HEPES–EDTA 
buffer) and electrophoresed for 4 hours at 75 V. After washing, the gels were 
transferred to nylon membranes by capillarity overnight in 10� saline– 
sodium citrate. The membranes were UV cross-linked (120 mJ/cm2), fol-
lowed by prehybridization in 50% formamide, 5� saline–sodium phosphate– 
EDTA, 5� Denhardt’s solution, 1% w/v SDS, and 200 μg/mL fish sperm 
DNA solution (Sigma) for 1 hour at 65°C. The digoxigenin-labeled oligo-
nucleotide probe hybridizing to ITS2 (50-CTGCGAGGGAACCCCCAG- 
CCGCGCA-30) was added and incubated for 1 hour at 65°C and then 
overnight at 37°C. After washing with 2� saline–sodium citrate, the mem-
branes were blocked in 1� blocking buffer (Roche) for 30 minutes at room 
temperature and incubated with anti-digoxigenin antibody (Roche, 1:10,000 
dilution) for 30 minutes at room temperature, followed by washing twice, 
each 15 minutes, with washing buffer [0.1 mol/L maleic acid, 0.15 mol/L 
NaCl at pH 7.5, and 0.3% Tween 20 (v/v)]. After equilibration in detection 
buffer (0.1 mol/L Tris and 0.1 mol/L NaCl at pH 9.5), the membranes were 
incubated with chemiluminescent substrate CDP-Star (Roche, 1:200 dilu-
tion) at room temperature for 10 minutes and then exposed to films. 

Data availability 
The data generated in this study are available within the article and its 
supplementary data file. Raw data generated in this study are available upon 
request from the corresponding author. 

Results 
USP36 interacts with the Las1L–Nol9 complex in the 
nucleolus 
USP36 has been shown to play a vital role in ribosome biogenesis (25, 34, 37, 
42). To understand the underlying mechanism of USP36 regulation of ri-
bosome biogenesis, we previously purified USP36-associated protein com-
plexes (34) that contained both Las1L and Nol9 (Fig. 1A). The 60S ribosome 
biogenesis requires the cleavage of the 32S rRNA ITS2 by endonuclease 
Las1L and the phosphorylation of the 50-hydroxyl group of the resulting 
precursor rRNA by Nol9 (4–9), which is essential for its further processing 
by XRN2 (14–16). Therefore, we sought to examine whether USP36 played a 
role in regulating the activity of the Las1L–Nol9 endonuclease–kinase 
complex. We first confirmed the interaction of Flag-USP36 with both Las1L 
and Nol9 in HEK293 and HeLa cells by Co-IP assays (Fig. 1B). Flag-Las1L 
(Fig. 1C) and Flag-Nol9 (Fig. 1D) also co-immunoprecipitated with 
USP36 in the cells. The interaction between USP36 and the Las1L– 
Nol9 complex was not abolished by the RNase treatment, indicating that this 
interaction is RNA independent (Fig. 1E). We also confirmed that endoge-
nous USP36 interacts with endogenous Las1L (Fig. 1F). USP36 mainly lo-
calizes to the nucleolus (25, 33, 37, 43). Immunofluorescence staining 
showed that USP36 co-localizes with Las1L and Nol9 in the nucleolus 
(Fig. 1G). Cell fractionation assays also confirmed that the majority of the 
endogenous Las1L and Nol9 are present in the nucleolar fraction together 
with Flag-USP36 (Fig. 1H). Co-IP assay using the lysates from the isolated 
nucleolar fraction further confirmed that USP36 interacts with Las1L and 
Nol9 in the nucleolus (Fig. 1I). Together, these results suggest that 
USP36 interacts with the Las1L–Nol9 complex in the nucleolus. 

USP36 forms a complex with Las1L and Nol9 
To characterize the interaction between USP36 and the Las1L– 
Nol9 complex, we sought to map which regions of USP36 bind to Las1L and 
Nol9. Using Co-IP–IB assays, we showed that both Las1L and Nol9 interact 
with the full-length and C-terminal nucleolar localization signal (NoLS)– 
containing regions, but not the N-terminal ubiquitin-specific protease do-
main and the central region, of USP36 (Fig. 2A). Thus, the Las1L– 
Nol9 complex binds to the C-terminus of USP36 (amino acids 801–1121; 
Fig. 2B), which is localized into the nucleolus (Supplementary Fig. S1) as 
previously reported (43). We also mapped where USP36 binds at Las1L and 
Nol9. Cells co-transfected with V5-USP36 and Flag-Las1L (Fig. 2C and D) or 
Flag-Nol9 (Fig. 2E and F) and their different deletion mutants were analyzed 
by Co-IP. As summarized in Fig. 2D and F, USP36 interacts with the middle 
coiled-coil domain of Las1L (amino acids 189–613) and the N-terminal 
domain (amino acids 1–300) of Nol9. Las1L and Nol9 form a higher-order 
complex containing at least two copies of Las1L and two copies of Nol9 (7, 
13). Nol9 binds to the C-terminal tail domain of Las1L (amino acids 
613–734) via its C-terminal domain (amino acids 479–702; ref. 7). To ex-
amine whether USP36 can interact with Las1L and Nol9 independently, we 
took advantage of the Flag-Las1L1–613 mutant, which lacks the Nol9-binding 
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domain and thus does not bind to Nol9 and the Flag-Nol91–479 mutant, 
which lacks the Las1L-binding domain and does not bind to Las1L. As 
shown in Fig. 2G and H, both mutants still interact with USP36. These 
results suggest that USP36 may form a complex with the Las1L– 
Nol9 complex by interacting with both proteins. 

USP36 deubiquitinates Las1L and Nol9 and regulates 
their levels 
Given that USP36 is a deubiquitinating (DUB) enzyme, we asked whether it 
deubiquitinates Las1L and Nol9 and regulates their levels. We observed that 

the knockdown of USP36 by siRNA markedly reduced the levels of both 
Las1L and Nol9 in HEK293 (Fig. 3A) and HeLa (Fig. 3B) cells. Similar to a 
previous observation that the stability of Las1 and Grc3 in budding yeast 
Saccharomyces cerevisiae depends on each other (5), we also observed that 
the knockdown of Las1L reduced Nol9 levels and vice versa in both 
HEK293 and HeLa cells (Fig. 3C). We then examined whether 
USP36 deubiquitinates Las1L and Nol9. In vivo ubiquitination assays using 
the Ni2+-NTA beads His purification method showed that overexpression of 
WT USP36, but not the catalytically inactive C131A mutant, deubiquitinates 
Las1L (Fig. 3D). Consistently, the knockdown of endogenous USP36 by 
siRNA increased the ubiquitinated species of Las1L (Fig. 3E). Also, 
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overexpression of WT USP36, but not the C131A mutant, deubiquitinates 
Nol9 (Fig. 3F). Thus, USP36 acts as a DUB enzyme for the Las1L– 
Nol9 complex and is critical for maintaining their proper levels in cells. 

USP36 promotes Las1L SUMOylation 
We previously discovered that USP36 also functions as a SUMO ligase 
to promote SUMOylation of nucleolar proteins. Las1L has been shown 
to be SUMOylated in cells (4, 19). We therefore examined whether 
USP36 promotes Las1L SUMOylation. As shown in Fig. 4A, Las1L can be 
SUMOylated by both SUMO1 and SUMO2, albeit SUMO2 modification is 
stronger. Thus, we will focus on SUMO2 in this study. Co-expression of 
USP36 markedly increased the SUMOylated species of Las1L (Fig. 4B) and 
the knockdown of endogenous USP36 reduced the SUMOylation of Las1L 
(Fig. 4C), suggesting that USP36 acts as a SUMO ligase to SUMOylate 
Las1L. Several putative SUMOylation sites of Las1L, including two con-
sensus Lys residues (K565 and K241) and two putative nonconsensus Lys 

residues (K226 and K569), are predicted using GPS-SUMO (44). Using 
Las1L deletion mutants, we indeed observed that SUMOylation occurs at 
the central coiled-coil domain of Las1L (amino acids 189–613) but not at 
its N-terminus (1–188; Supplementary Fig. S2A). To identify the SUMO 
acceptor lysine(s) in Las1L, we mutated individual Lys residues and per-
formed in vivo SUMOylation assays under denaturing conditions. As 
shown in Fig. 4D and summarized in Fig. 4E, mutating K565, but not 
K241 and K226, to arginine (R) markedly abolished Las1L SUMOylation. 
Mutating K569 did not further reduce the SUMOylation of the Las1LK565R 

mutant (Supplementary Fig. S2B). Thus, K565 is the major acceptor resi-
due for Las1L SUMOylation. 

SUMOylation regulates Las1L nucleolar export and its 
association with pre-60S ribosome 
To understand the function of Las1L SUMOylation at K565, we first tested 
whether abolishing Las1L SUMOylation could affect the level of Las1L and 
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the formation of the Las1L–Nol9 complex. As shown in Fig. 5A, mutating 
K565 does not affect the levels of Las1L or its interaction with Nol9. The 
half-life of the Las1LK565R mutant is comparable with that of WT Las1L 
(Fig. 5B and C). Furthermore, mutating K565 did not significantly alter the 
ubiquitination of Las1L (Fig. 5D). Thus, Las1L SUMOylation at K565 does 
not affect Las1L ubiquitination and levels. Las1L SUMOylation has been 
shown to promote the translocation of Las1L to the nucleoplasm (4, 19). 
Consistently, we observed that the knockdown of SENP3 redistributes WT 
Las1L, but not the Las1LK565R mutant, into the nucleoplasm (Fig. 5E; 
Supplementary Fig. S3). Our results further support that SUMOylation 
regulates the nucleolar export of Las1L. Las1L and Nol9 are components of 
the rixosome, a multiprotein complex critical for the remodeling and 
maturation of the pre-60S ribosome (4, 19, 20, 45, 46). To test whether 
USP36 interacts with the rixosome complex, we performed Co-IP exper-
iments. Indeed, USP36 interacts with the rixosome components Pelp1, 
TEX10, WDR18, and SENP3 (Supplementary Fig. S4), suggesting that 
USP36 interacts with the rixosome to regulate 60S ribosome biogenesis. 
We previously showed that USP36 associates with the pre-60S ribosome 

(34). Thus, we next examined whether USP36 regulates Las1L association 
with the pre-60S ribosome. As shown in Fig. 5F, mutating K565 reduced 
the interaction of Las1L with the 60S ribosome subunits RPL5, RPL11, and 
RPL30, but not RPS27a—a subunit from the 40S ribosome that does not 
interact with Las1L. Together, these results suggest that USP36-mediated 
SUMOylation plays an important role in regulating the Las1L association 
with pre-60S ribosome and export. 

Las1L SUMOylation at K565 is critical for its function in 
ITS2 processing 
The Las1L–Nol9 endonuclease–kinase complex is essential for the pro-
cessing of rRNA ITS2. Using Northern blot analysis with a probe hy-
bridizing to ITS2, we confirmed that the knockdown of either Las1L or 
Nol9 by siRNAs markedly impaired ITS2 rRNA processing, leading to the 
accumulation of 47S and 32S precursors and reduction of 12S rRNA 
precursors in both HEK293 and HeLa cells (Fig. 6A and B). Consistent 
with its role in regulating Las1L, the knockdown of USP36 also leads to the 
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accumulation of 47S and 32S precursors as well as the reduction of 12S 
rRNA products (Fig. 6C and D). These effects are less likely off-target 
effects, as the knockdown of Las1L or USP36 using different siRNAs also 
led to the accumulation of 47S and 32S precursors (Supplementary Fig. 
S5A and S5B). 

To further understand the role of Las1L SUMOylation in ribosome bio-
genesis, we performed the Las1L knockdown and rescue experiments. Al-
though re-expression of siRNA-resistant WT Las1L largely rescued the 32S 
rRNA accumulation caused by the knockdown of endogenous Las1L, the 
siRNA-resistant Las1LK565R mutant failed to do so in both HEK293 (Fig. 7A 
and B) and HeLa (Fig. 7C and D) cells. Therefore, our results suggest that 

SUMOylation of Las1L by USP36 promotes Las1L function in pre-rRNA 
ITS2 processing and thus ribosome biogenesis. 

Discussion 
USP36 was initially identified as a nucleolar DUB enzyme implicated in 
nucleolar structure and function in ribosomal biogenesis by deubiquiti-
nating and stabilizing several ribosome biogenesis factors, such as 
B23 and fibrillarin (37, 43); the RNA helicase DHX33 (42); and the largest 
subunit of RNA Pol I Rpa190 (47). USP36 also deubiquitinates and sta-
bilizes c-Myc (33, 48), a master regulator of ribosome biogenesis pro-
moting transcription by all three classes of RNA polymerases (47), thus 
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coordinating ribosome biogenesis with cell-cycle progression. Intrigu-
ingly, we recently revealed that USP36 also acts as a SUMO ligase pro-
moting the SUMOylation of several nucleolar proteins, including the 
snoRNP components Nop58, Nop56, Nhp2, and DKC1 (25); the RNA 
exosome component EXOSC10 (34); and the microprocessor complex 
component DGCR8 (41). Thus, USP36 is emerging as a key ribosome 
biogenesis regulator. 

In this study, we identified USP36 as a novel regulator of the Las1L– 
Nol9 endonuclease–kinase complex. USP36 interacts with both Las1L 
and Nol9 independent of RNA and acts as a SUMO ligase to promote 
Las1L SUMOylation. We further showed that Las1L SUMOylation at 
K565 is critical for its function in processing rRNA ITS2, as WT Las1L, 
but not the Las1LK565R mutant, rescued the ITS2 processing defects in 
cells with knockdown of endogenous Las1L. Las1L lacks an NoLS region, 
and its nucleolar localization requires interaction with Nol9, which 
contains an NoLS region in its N-terminus (7). Las1L SUMOylation has 
been shown to promote its nucleoplasmic translocation (4, 19). We also 
observed that increasing Las1L SUMOylation by knocking down 

SENP3 results in the nucleoplasmic localization of Las1L, whereas the 
K565R mutant remains in the nucleolus upon SENP3 deletion. Thus, it is 
likely that the altered cellular localization of the K565R mutant would 
interfere with its function in processing ITS2. Further supporting this 
notion is the fact that the interaction of Las1L with the 60S pre-ribosome 
is attenuated by the K565R mutation (Fig. 5E). It remains to be tested 
whether SUMOylation could cause Las1L conformational changes, 
leading to increased endonuclease activity of Las1L. Consistent with the 
role of USP36 as the Las1L SUMO ligase, USP36 depletion also impairs 
the processing of ITS2, leading to the accumulation of 32S rRNA and 
downregulation of 12S rRNA, although USP36 has more diverse effects 
on rRNA processing by regulating other accessory factors such as the 
regulation of snoRNP protein group SUMOylation and RNA exosome 
(25, 34). Nevertheless, our finding reveals a novel mechanism of 
USP36 in ribosome biogenesis by regulating Las1L-mediated rRNA 
ITS2 processing. 

Of note, USP36 also deubiquitinates both Las1L and Nol9 and regulates their 
levels. The knockdown of USP36 markedly decreased the levels of both 
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Las1L and Nol9 proteins. This is in contrast with the regulation of other 
nucleolar substrates by USP36, such as snoRNP proteins (25), EXOSC10 
(34), and DGCR8 (41), in which USP36 acts only as a SUMO ligase, but not 
as the DUB enzyme, and thus does not regulate their protein stability. As the 
K565 SUMOylation does not affect Las1L ubiquitination and turnover, our 
data suggest that USP36 regulates Las1L via both deubiquitination and 
SUMOylation, albeit K565 SUMOylation does not cross talk with Las1L 
ubiquitination. 

Las1L has been shown to interact with the human Rix1 complex (Pelp1, 
Tex10, and WDR18), MDN1, and SENP3 to form the rixosome, a multi-
protein complex critical for the remodeling and maturation of the pre-60S 

ribosomal subunits (4, 19, 20, 45). We showed that USP36 interacts with 
the rixosome components and that abrogating Las1L SUMOylation by the 
K565R mutation attenuated Las1L’s interaction with the pre-60S ribosome, 
suggesting that USP36 may regulate Las1L SUMOylation and 60S ribo-
some biogenesis in the context of the rixosome. Interestingly, several 
other rixosome components can also be SUMOylated. For example, 
SUMOylation of Pelp1 recruits the AAA ATPase MDN1 to remodel pre- 
60S ribosome subunits and their translocation from the nucleolus to the 
nucleoplasm, whereas deSUMOylation of Pelp1 by SENP3 leads to the 
release of the MDN1–Pelp1 complex from pre-60S ribosome subunits and 
their recycling back to the nucleolus (20). A recent study also showed that 
TEX10 can be modified by SUMO (49, 50), suggesting that the rixosome 
complex is likely subjected to regulation by group SUMOylation, similar to 
other SUMOylated protein complexes (25, 51, 52). It would also be in-
teresting to test whether USP36 also promotes group SUMOylation of the 
rixosome complex and synergistically regulates their function in pre-60S 
ribosome maturation. 

As USP36 is aberrantly overexpressed in various human cancers and is critical 
for ribosome biogenesis and cell growth (18, 53), it may be a promising 
therapeutic target in cancer. Notably, USP36 possesses DUB enzymatic and 
SUMO ligase dual activities that positively regulate cell growth and prolifer-
ation. Future work should aim to identify novel USP36 inhibitors targeting its 
DUB and SUMO ligase dual-enzyme activities for cancer treatment. 
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FIGURE 6 The Las1L–Nol9 complex and USP36 play a role in rRNA 
ITS2 processing. The HEK293 and HeLa cells transfected with scr, 
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assayed for rRNA processing by Northern blot analysis using probe 
hybridizing to the ITS2 (A and C). The 47S pre-rRNA, 32S rRNA, 12S 
rRNA, and the relative ratios of 32S to 28S rRNA normalized to the 
scr control are shown in the top panels. Ethidium bromide (EB) 
staining of the RNA gels to indicate 28S and 18S rRNAs is shown in 
the bottom panels (A and C). The protein expression is shown by IB 
(B and D). 
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