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Abstract

Background: Histopathological growth patterns are one of the strongest prognostic factors in patients with resected colorectal liver 
metastases. Development of an efficient, objective and ideally automated histopathological growth pattern scoring method can 
substantially help the implementation of histopathological growth pattern assessment in daily practice and research. This study 
aimed to develop and validate a deep-learning algorithm, namely neural image compression, to distinguish desmoplastic from non- 
desmoplastic histopathological growth patterns of colorectal liver metastases based on digital haematoxylin and eosin-stained slides.

Methods: The algorithm was developed using digitalized whole-slide images obtained in a single-centre (Erasmus MC Cancer Institute, 
the Netherlands) cohort of patients who underwent first curative intent resection for colorectal liver metastases between January 2000 
and February 2019. External validation was performed on whole-slide images of patients resected between October 2004 and December 
2017 in another institution (Radboud University Medical Center, the Netherlands). The outcomes of interest were the automated 
classification of dichotomous hepatic growth patterns, distinguishing between desmoplastic hepatic growth pattern and non- 
desmoplatic growth pattern by a deep-learning model; secondary outcome was the correlation of these classifications with overall 
survival in the histopathology manual–assessed histopathological growth pattern and those assessed using neural image compression.

Results: Nine hundred and thirty-two patients, corresponding to 3.641 whole-slide images, were reviewed to develop the algorithm and 
870 whole-slide images were used for external validation. Median follow-up for the development and the validation cohorts was 43 and 
29 months respectively. The neural image compression approach achieved significant discriminatory power to classify 100% 
desmoplastic histopathological growth pattern with an area under the curve of 0.93 in the development cohort and 0.95 upon 
external validation. Both the histopathology manual–scored histopathological growth pattern and neural image compression- 
classified histopathological growth pattern achieved a similar multivariable hazard ratio for desmoplastic versus non-desmoplastic 
growth pattern in the development cohort (histopathology manual score: 0.63 versus neural image compression: 0.64) and in the 
validation cohort (histopathology manual score: 0.40 versus neural image compression: 0.48).

Conclusions: The neural image compression approach is suitable for pathology-based classification tasks of colorectal liver metastases.

Introduction
Colorectal cancer (CRC) is the third most common cancer and 

second cause of cancer mortality worldwide1,2. Approximately 

one-third of these patients are afflicted with metastatic disease, 

with the liver representing the most predominant metastatic 

site3,4. The presence of CRC distant metastases itself does not 

preclude potentially curative treatment5–12. Although half of all 

patients with colorectal liver metastases (CRLM) may now be 

eligible for local treatment13, the results are still unsatisfactory, 

with only a quarter of patients achieving a long-term cure14,15. 
This has garnered a longstanding interest in the prediction of 
prognosis and treatment effect, with the ultimate goal of 
guiding patient selection and improving outcome16.

In the search for new biomarkers, histological evaluation of 
liver metastases has emerged as a promising candidate. Light- 
microscopic evaluation of resected metastases allows for the 
determination of distinct histopathological growth patterns 
(HGPs)17. The most clinically relevant distinction between HGPs 
is desmoplastic versus non-desmoplastic HGP, according to the 
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Rotterdam 50% cut-off. A desmoplastic HGP is recognized with an 
approximate two-fold reduction in mortality and cancer 
recurrence18,19. Beside prognosis, several studies suggest that 
HGP is also predictive for treatment effect2,20,21. Although HGPs 
have been shown to describe the biological properties of the 
tumour relating to therapy response and prognosis, they are not 
routinely scored yet. Expertise is required because there are 
several caveats in scoring22. Moreover, as HGP scoring requires a 
pathologist to score the full interface between the liver and the 
tumour cell by cell, the task is time-consuming. The lack of an 
efficient, objective and ideally automated HGP classification 
method substantially limits the implementation of HGPs in daily 
practice and research.

Developments in the application of artificial intelligence, and 
specifically deep learning, to high-resolution digitalized 
whole-slide images (WSI) has led to a rapidly growing research 
field at the interface of medical and computer sciences23,24. 
Several deep-learning models are already approaching or even 
surpassing dedicated pathologists in histology-based marker 
determination tasks25–32. Moreover, deep-learning models can 
predict prognosis by learning directly from the histology slides, 
effectively creating novel AI-based computational biomarkers32.

This study aims to assess whether a novel state-of-the-art 
deep-learning approach can be employed for the automated 
classification of the desmoplastic HGP in resected CRLM.

Methods
The current study adheres to the REporting recommendations for 
tumour MARKer prognostic studies (REMARK)33. Institutional 
ethical review was obtained from both the medical ethics 
committee of the Erasmus Medical Centre (MEC-2018-1743), 
which granted a waiver for (renewed) informed consent, and the 
Ethical Committee of the Radboud University Medical Centre 
(MEC 2015–1637).

Patient cohorts and sample preparation
The patient cohort used for development consisted of patients 
undergoing surgical treatment of CRLM at the Erasmus MC 
Cancer Institute, Rotterdam, the Netherlands, between January 
2000 and February 2019. For external validation purposes 
patients treated in a similar time frame (October 2004 to 
December 2017) at a different centre, the Radboud University 
Medical Centre, Nijmegen, the Netherlands, were selected. All 
available haematoxylin and eosin–stained slides of all resection 
specimens were requested from the respective pathology 
departments and subsequently digitalized. Patients were 
included only if they underwent first curative intent CRLM 
resection (that is, resection specimens for recurrent disease were 
excluded, and patients had to have had curative intent local 
treatment of all known cancerous disease at time of first liver 
surgery). Follow-up was obtained through the electronic patient 
record as patients are scheduled for regular follow-up after 
resection.

Histopathological growth patterns determination
All slides were scanned at the pathology department of the 
Radboud UMC using a 3DHistech P1000 scanner at a spatial 
resolution of 0.25 µm/pixel. Digital assessment of all WSI was 
performed by a trained observer (DJH) to confirm slide content 
and assess WSI quality.

The HGP was previously determined in accordance with 
international consensus guidelines within the context of 

retrospective cohort studies18,19,34. The HGPs represent distinct 
histomorphological tumour–liver interface phenotypes of 
resected liver metastasis (Fig. S1), and can be grossly divided into 
two classes. The desmoplastic HGP is characterized by a broad 
band of desmoplastic stroma barring tumour–liver cell contact, 
and often displays a dense lymphocytic infiltrate peripherally to 
this desmoplastic stroma. The non-desmoplastic types most 
often exhibit cell-to-cell contact between tumour and liver cells, 
with the replacement of hepatocytes by tumour cells retaining 
the liver-cell plate architecture, that is the ‘replacement’ HGP. 
Although HGPs can appear in conjunction, we performed 
classification of the dichotomous presence of any 
non-desmoplastic HGP (Fig. S1) rather than relative abundance 
for the development and validation of the model, as this best 
distinguishes prognosis and is therefore clinically most 
relevant17–19.

Neural image compression algorithm with 
multitask learning and attention pooling
For the classification of WSI we developed a neural image 
compression (NIC) algorithm with a supervised multitask-learning 
encoder framework (Fig. 1), building upon previous work35. The 
multitask NIC pipeline consists of two steps.

First, subregions of the entire gigapixel WSI are compressed into 
low-dimensional embedding vectors using a convolutional neural 
network (CNN), the encoder. These vectors are subsequently 
organized to form a compressed representation of the WSI, 
maintaining the spatial arrangement of the original WSI. The 
encoder model is responsible for gleaning high-level discriminatory 
information contained in the WSI for a variety of downstream 
tasks, while simultaneously suppressing image noise and spurious 
correlations35,36. To improve the extraction of high-level 
discriminatory factors that are transferable between a variety of 
tasks, we initially developed a supervised multitask learning 
architecture and trained an encoder on four histopathological 
tasks35. This approach demonstrated increased performance when 
compared to an unsupervised single-task framework. 
Independently, another author developed a similar multitask 
encoder, trained on 22 classification tasks and with validated 
performance increase compared to non-histopathological 
pretrained encoders37. In this work, we therefore use the new 
multitask encoder37, which compresses a tile of size 256 × 256 × 3 
into a vector of size 2048. As input, we use here tiles at resolution 
5 ×  (2 µm/px).

Second, a second CNN is trained on the entire compressed WSI 
as input to predict an outcome of interest, for example the HGP. 
For the CNN classifier, we adapted the attention-based 
architecture introduced in previous works (Fig. 1)38,39. In the 
context of neural networks, the term ‘attention’ refers to the 
capability of a network to learn to focus, that is to attend to 
specific regions of the input image. Using attention allows 
neural networks to make efficient use of training data as well as 
provide visually interpretable outputs via so-called ‘attention 
maps’. In one of the authors’ previous works, they demonstrated 
the performance advantage of attention on a task for lung 
cancer subtyping compared to a convolutional architecture 
without attention.40 After a single layer, an attention block is 
applied, resulting in a score for each compressed tile. It follows 
a matrix multiplication of the attention map with the output of 
the first layer (‘attention pooling’), resulting in a single vector 
which is then fed to the final classification layer. In the 
attention block, a dropout rate of 0.25 was used. The attention 
maps were used to visualize what is relevant for the network’s 
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prediction and thus contributes to the interpretability of the 
model.

Experimental setup
Following the compression of the slides using the encoder model, we 
trained the CNN with cross-entropy loss minimization to predict the 
image label of interest (that is the HGP). Development was 
performed using a five-fold cross-validation (three folds for 
training, one for validation, one for testing). The training was done 
with balanced sampling, batch size of one, and early stopping 
with 25 epoch patience using the validation ROC-AUC (receiver 
operating characteristic area under the curve) as stopping criteria. 
External validation was performed on previously unseen slides of 
the Nijmegen cohort by averaging the predictions of the five 
models. A patient-level score was subsequently obtained by 
averaging the scores of all slides belonging to a single patient.

Outcomes of interest
The primary outcome of interest was the classification of 
dichotomous hepatic growth patterns, distinguishing between 
desmoplastic hepatic growth pattern and non-desmoplastic 
growth pattern by a deep-learning model. The secondary 
outcome was the correlation of these classifications with overall 
survival, irrespective of the underlying cause of death.

Statistical analysis
All statistical analyses were performed using the R project for 
statistical computing (https://www.r-project.org/). A complete 
case analysis was performed because of a low percentage of 
missing data (<5%) and large sample size. Categorical variables 
are reported as absolute numbers with corresponding percentages 

and non-parametric ordinal or numerical variables as medians 
with corresponding interquartile ranges, and were compared 
using the chi2 or Kruskall Wallis tests respectively. Assessment of 
HGP classifier performance was done through ROC curve analysis 
with the slide-level ensemble score and observer-based HGP as the 
predictor and label respectively and the AUC with corresponding 
95% c.i. as the performance metric. Given the class imbalance 
(roughly 80% of patients have a non-desmoplastic HGP), the 
optimality criteria were modified according to the prevalence of 
desmoplastic samples in the development cohort as proposed by 
others41. This threshold was subsequently applied in the external 
validation cohort to the patient-level ensemble scores, using the 
balanced accuracy as a performance metric42. Kaplan–Meier and 
Cox proportional regression survival analyses were performed to 
assess the prognostic value of the histopathology observer–based 
HGP and NIC-classified HGP. Multivariable models were corrected 
for age, sex, pT-stage, pN-stage, right-sided colorectal cancer, 
disease-free interval, number of liver metastasis, diameter of 
largest liver metastasis, preoperative carcinoembryonic antigen 
level and extrahepatic disease.

Results
Of 1254 patients treated at the development institution, 965 met 
the inclusion criteria and 932 were eligible for analysis. On the 
other hand, of 305 patients treated at the validation centre, 294 
were eligible for analysis. A timeline of patients’ enrolment over 
the years at the development and the validation centres is 
presented respectively in Fig. S2 and Fig. S3.

Patient and treatment characteristics of the original and 
validation cohort are provided in Table S1. The development 
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cohort comprised a total of 3.641 WSI from 932 patients (median 
follow-up time 43 months) undergoing first curative intent 
surgical treatment for CRLM. For external validation, a total of 
870 WSI from 294 patients were available (median follow-up 
time 29 months). Fifty-five per cent of the patients in the 
development cohort received neo-adjuvant chemotherapy and 
72.1% in the validation cohort. pT-stage did not differ 
significantly between the two cohorts (P = 0.94); however, a 
higher proportion of pN0-stage primary tumour was observed 
in the development cohort (P = 0.02). No statistically significant 
difference in HGP proportions was observed between the two 
cohorts.

Automated HGP classification
Using a five-fold cross-validation the NIC classifier achieved an 
AUC of 0.93 (95% c.i. 0.93 to 0.94) in the original cohort to 
classify the slide-level HGP (Fig. 2). Applying the optimal 
threshold for the ensemble score (0.69) based on the ROC curve/ 
Youden’s J statistic (Fig. 2) resulted in a patient-level sensitivity 
of 82%, a specificity of 93% and a balanced accuracy of 88% 
(Fig. 2, Table 1). Upon external validation in the 870 previously 
unseen WSI of the validation cohort the NIC classifier achieved 
a similar AUC of 0.95 (95% c.i. 0.93 to 0.96) to classify the 
slide-level HGP (Fig. 2). Application of the optimal threshold 
from the development cohort achieved a patient-level sensitivity 
of 87%, a specificity of 91% and a balanced accuracy of 89% 
when compared to the observer-based HGP (Fig. 2).

Survivals
Table 2 reports the survival estimates and regression results for 
the observer-based and the NIC-classified HGP in both the 
development and external validation cohort, and Fig. 3 and Fig. 4

display the respective overall survival (OS) curves with 
stratification for chemo-naïve and pretreated. Overall, the 
NIC-classified HGP exhibited similar prognostic impact on OS as 
the histopathology observer–based HGP, also upon external 
validation. For example, the adjusted hazards ratio (95% c.i.) for 
desmoplastic versus non-desmoplastic patients based on the 
NIC-classified HGP was 0.64 (0.51 to 0.79) in the original cohort 
and 0.48 (0.28 to 0.83) upon external validation, compared to 
0.63 (0.50 to 0.79) and 0.40 (0.22 to 0.75) respectively for the 
observer-based HGP (Table 1). Figure S4 shows examples of 
attention maps of four different histological slides of liver tissue 
samples paired with their corresponding attention maps. The 
attention maps are generated using predictive models to 
visualize the areas of importance for classifying the hepatic 
growth pattern, thus providing insights into the model’s 
decision-making process. An initial analysis of the attention 
maps shows that the model is indeed mainly focusing on the 
tumour–stroma border to determine the HGP.

Discussion
In this study the authors developed and validated a deep- 
learning–based pipeline with compression and attention to 
classify HGP on a large data set of digitalized WSI of resected 
CRLM without manual input from a clinician. The developed 
NIC classifier performed similarly across the development 
and previously unseen external validation cohort, achieving 
high levels of classifier performance and demonstrating 
generalizability with a balanced accuracy of ≥ 88%. In addition, 
the NIC-classified HGP demonstrated similar prognostic impact 
in terms of OS when compared to observer-based pathologist 
determination with the added benefit of faster output.
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Fig. 2 ROC curves of the automated histopathological growth pattern (HGP) classification in the original (a) and in the external validation cohort (b)

Table 1 NIC HGP classification performance in the development and validation cohorts

TP TN FP FN Sens. Spec. PPV NPV Bal. Acc.

Development—patient level (n = 932) 180 662 51 39 82% 93% 78% 94% 88%
Validation—patient level (n = 294)* 52 213 21 8 87% 91% 71% 96% 89%

*According to the predefined classification cut-off determined in the development cohort. Bal. Acc., balanced accuracy; FN, false negative; FP, false positive; NIC, 
neural image compression; NPV, negative predictive value; PPV, positive predictive value; Sens., sensitivity; Spec., specificity; TN, true negative; TP, true positive.
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Table 2 Survival analyses on the ground-truth and NIC-classified HGP

Desmoplastic versus non-desmoplastic Non-desmoplastic  
5-year OS (95% c.i.)

Desmoplastic  
5-year OS (95% c.i.)

Desmoplastic versus non-desmoplastic

Univariable HR (95% c.i.) Multivariable HR (95% c.i.)*

Development cohort (n = 932)
Ground-truth HGP 40% (36,44) 63% (57,70) 0.57 (0.47,0.70) 0.63 (0.50,0.79)
NIC-classified HGP 40% (37,44) 60% (54,67) 0.61 (0.50,0.75) 0.64 (0.51,0.79)

Validation cohort (n = 294)
Ground-truth HGP 64% (58,71) 80% (70,91) 0.51 (0.30,0.86) 0.40 (0.22,0.75)
NIC-classified HGP 66% (60,72) 73% (63,84) 0.64 (0.41,1.02) 0.48 (0.28,0.83)

*Corrected for age, sex, primary tumour location, pT-stage, pN-stage, disease-free interval, number of CRLM, diameter of largest CRLM, preoperative CEA, and 
extrahepatic disease. CEA, carcinoembryonic antigen; CRLM, colorectal liver metastasis; HGP, histopathological growth pattern; NIC, neural image compression;  
OS, overall survival.
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Literature shows that HGP is an independent prognostic factor 
for survival and there are studies suggesting HGP as a predictive 
factor for therapeutic effectiveness, making it a clinically highly 
relevant biomarker2,15,21,43. It is of the utmost importance that 
such a biomarker is objective and reproducible, independent of 
the scoring physician. It is known that scoring of HGPs has 
several caveats, so expertise is necessary. The results of this 
study demonstrate high levels of HGP classification performance 
in both the development and validation cohorts (AUC ≥ 0.93), 
suggesting the development of an objective and reproducible 
clinically relevant scoring method that can automatically be 
determined. This will substantially help the implementation of 
HGPs in daily practice and research.

The attention maps illustrate that the NIC model concentrates 
on various regions of the slide. By analysing these maps, we can 

understand which features or regions of the slide are most 
influential in the model’s assessment of the HGP. This can be 
particularly useful for identifying potential areas for improvement 
in the model or for validating that the model is focusing on 
clinically relevant regions or even potentially to discover new 
histopathological biomarkers.

Although promising, these results also suggest the limits of the 
NIC classification pipeline with incorporation of even larger data 
sets and different immunohistochemical staining. This study 
includes only two tertiary university hospitals with very high 
performance both in the development and validation cohorts, 
which could be a sign of model overfitting to these specific data 
sets. Additional development and validation cohorts of different 
centres in multiple countries could improve this model even 
further and alleviate this problem. A recent study has suggested 
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(HGP) in the validation cohort and stratified for pretreatment (c,f) and chemo-naïve (b,e) patients
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that a more granular, non-dichotomous approach could potentially 
offer enhanced prognostic value and stratify patient survival even 
further than the dichotomous classification. Lastly, this study did 
not explore how the deep-learning model could be seamlessly 
integrated into existing clinical workflows. Addressing the 
practical challenges of implementation in daily clinical practice is 
essential for ensuring the model’s effective use in real-world 
settings. Further research is necessary to validate these results44.

In conclusion, these experimental results show that automated 
NIC-based models are promising to objectively classify HGP 
following surgical treatment of CRLM.
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