Skip to main content
. 2024 Aug 20;39(11):1553–1573. doi: 10.1093/jbmr/zjae131

Table 4.

General characteristics, methodological details, main results, and overall quality score for risk prediction studies.

Reference Country (population) Task (prediction time) Modality Data amount (% cases) Data amount external validation (% cases) Inputs (no.) Model CV train / validation / test K-fold cross validation Evaluation metrics Best result Quality score (max 12)
Cary et al.72 USA HF Mortality (30 d, 1 yr) Database 17 140 (15%) 15 Logreg, MLP 10-fold CV 10-fold Accuracy, AUC, precision, slope AUC: 0.76 8
Chen et al.73 China VF (5 yr) Database 1603 (8%) 147 Logreg, SVM, DT, KNN, RF, ERT, GBDT, AdaBoost, CatBoost, XGB, MLP, hybrid 80% train, 20% test NR Accuracy, precision, recall, F1-score, AUC Accuracy: 0.90 9
Chen et al.74 China MOF (6 yr) Database 487 (NA) 22 RF, MLP, SVM, XGB, DT 70% train, 30% test 10-fold AUC, DCA, CIC AUC: 0.87 9
Cheng et al.75 Taiwan BMD Loss (6 yr) Database 23 497 (14%) 17 Logreg, XGB, RF, SVM 80% train, 20% test 10-fold Sensitivity, specificity, AUC, accuracy, precision, f1-score AUC: 0.75 7
Coco Martín et al.76 Spain MOF (> 1 yr) Database 993 (28%) 25 Logreg, MLP 70% train, 30% test Accuracy Accuracy: 0.96 7
De Vries et al.77 Netherlands MOF (3 yr, 5 yr) Database 7578 (11%) 46 Coxreg, RSF, MLP 10-fold CV 10-fold C-index C-Index: 0.70 11
DeBaun et al.78 USA HF Mortality (30 d) Database 19 835 (1051) 43 MLP, naive Bayes, Logreg 80% train, 20% test AUC AUC: 0.92 4
Du et al.79 China HF Database 120 (NA) 13 R2U-Net and SVM, RF, GBDT, AdaBoost, MLP, XGB 80% train, 20% test Accuracy, specificity, recall, precision Accuracy: 0.96 5
Forssten et al.80 Sweden HF Mortality (1 yr) Database 124 707 (17%) 25 Logref, SVM, RF, NB 80%train, 20% test 5-fold Accuracy, sensitivity, specificity, AUC AUC: 0.74 11
Galassi et al.81 Spain HF Database 137 (65%) 38 Logreg, SVM, DT, RF 70% train, 30% test Sensitivity, specificity, accuracy Accuracy: 0.87 6
Harris et al.82 USA HF Mortality (30 d) Database 82 168 (5%) 46 LASSO 10-fold 10-fold Accuracy, C-Index Accuracy: 0.76 8
Kitcharanant et al.83 Thailand HF Mortality (1 yr) Database 492 (13%) 15 GB, RF, MLP, Logreg, NB, SVM, KNN 70% train, 30% test Accuracy, sensitivity, specificity, AUC, PPV, NPV AUC: 0.99 10
Klemt et al.84 USA HF Revision Surgery (> 2 yr) Database 350 (5.2%) NR MLP, RF, KNN, PLR 80% train, 20% test 5-fold AUC, intercept, calibration, Brier score AUC: 0.81 6
Kong et al.85 South Korea VF Database, X-ray 1595 (7.5%) IMG patches (+7) HRNet + ResNet and DeepSurv, Coxreg 89% train, 11% test 5-fold AUC, sensitivity, specificity, PPV, NPV, C-Index C-Index: 0.61 11
Lei et al.86 China HF Mortality Database 391 (13.8%) 165 (10.9%) 27 RF, GBM, DT, XGB 67% train, 33% test 10-fold AUC, accuracy, sensitivity, specificity, Youden Index, intercept, calibration slope AUC: 0.71 7
Lu et al.87 UK MOF Database 345 (28%) 359 Logreg, RF 80% train, 20% test 5-fold AUC, sensitivity, specificity AUC: 0.90 7
Ma et al.88 China VF Database 529 (10.6%) 27 DT, RF, SVM, GBM, MLP, RDA, Logreg 75% train, 25% test 10-fold AUC, Kappa, sensitivity, specificity AUC: 0.94 9
Oosterhoff et al.89 Netherlands HF Mortality (90 d, 2 yr) Database 2478 (9.1% and 23.5%) 14 SGB, RF, SVM, MLP, PLR 80% train, 20% test 10-fold AUC, intercept, calibration, Brier score AUC: 0.74 (90 d), AUC: 0.70 (2 yr) 9
Poullain et al.90 France VF Database 60 (50%) 16 RF, CART k-fold k-fold Sensitivity, specificity, AUC AUC: 0.92 5
Shimizu et al.91 Japan HF, FF (> 2 yr) Database 6590 (4.4%) 10 LightGBM, ANN 75% train, 25% test AUC AUC: 0.75 4
Shtar et al.92 Israel HF Rehabilitation (8 yr) Database 1896 (14%) 18 Linreg, Logreg, AdaBoost, CatBoost, ExtraTrees, KNN, RF, SVM, XGB, ensemble NR 10-fold AUC, R2 AUC: 0.86 10
Takahashi et al.93 Japan VF (Nonunion) Database 153 (17%) 17 Logreg, DT, XGB, RF 70% train, 30% test 5-fold AUC, accuracy AUC: 0.86 9
Ulivieri et al.94 Italy VF (9 yr) Database 174 (69) 9 MLP 70% train, 30% test Sensitivity, specificity, AUC, accuracy AUC: 0.82 5
Ulivieri et al.95 Italy VF (3 yr) Database 172 (54%) 26 MLP NR Sensitivity, specificity, accuracy, AUC Accuracy: 0.79 6

Abbreviations: VF, vertebral fracture; HF, hip fracture; FF, forearm fracture; MOF, major osteoporotic fracture; BMD, bone mineral density; NA, non assessable; MLP, multilayer perceptron; Logreg, logistic regression; GB, gradient boosting; RF, random forests; NB, Naïve Bayes; SVM, support vector machines; KNN, k-nearest neighbors; SGB, stochastic gradient boosting; PLR, Elastic-Net Penalized Logistic Regression; DT, decision tree; Linreg, linear regression; XGB, extreme gradient boosting; Coxreg, Cox regression; RSF, random survival forests; ERT, extremely randomized trees; GBDT, gradient boosted decision trees; GBM, gradient boosting machines; RDA, regularized discriminant analysis; CART, classification and regression tree; LASSO, least absolute shrinkage and selection operator; AUC, area under the curve of the receiver operating characteristic; PPV, positive predictive value; NPV, negative predictive value; C-Index, concordance index; R2, coefficient of determination; DCA, decision curve analysis; CIC, clinical impact curve. If several models were evaluated for a given task, the best performing is highlighted in bold.