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ABSTRACT Cervical cancer is a severe threat to women’s health. The majority of cervical cancer cases occur in developing countries. The 
WHO has proposed screening 70% of women with high-performance tests between 35 and 45 years of age by 2030 to accelerate the 
elimination of cervical cancer. Due to an inadequate health infrastructure and organized screening strategy, most low- and middle-
income countries are still far from achieving this goal. As part of the efforts to increase performance of cervical cancer screening, 
it is necessary to investigate the most accurate, efficient, and effective methods and strategies. Artificial intelligence (AI) is rapidly 
expanding its application in cancer screening and diagnosis and deep learning algorithms have offered human-like interpretation 
capabilities on various medical images. AI will soon have a more significant role in improving the implementation of cervical cancer 
screening, management, and follow-up. This review aims to report the state of AI with respect to cervical cancer screening. We 
discuss the primary AI applications and development of AI technology for image recognition applied to detection of abnormal 
cytology and cervical neoplastic diseases, as well as the challenges that we anticipate in the future.
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Introduction

Cervical cancer remains a major cause of mortality among 
women with > 662,000 new cases diagnosed and approxi-
mately 349,000 deaths reported globally in 20221. The long 
premalignant phase of cervical cancer and the natural pro-
gression of the disease make cervical cancer the only cancer 
that is currently preventable through primary and second-
ary prevention2. The World Health Organization (WHO) 
has launched a global strategy to eliminate cervical cancer 
by the end of the millennium that includes vaccination 
against human papillomavirus (HPV), screening of women 

using high-performance testing, early diagnosis, and timely 
treatment of high-grade cervical intraepithelial neoplasia 
(CIN 2/3) and cancer. Cervical cytology has been widely 
used for cervical cancer screening but global implementa-
tion poses several challenges and suboptimal sensitivity of 
the test necessitates frequent screening. The WHO has rec-
ommended HPV detection-based tests for primary screening 
due to the higher sensitivity and objective nature of the test. 
While cytology triage of HPV-positive women to colposcopy 
before confirmation of abnormal cervical cytology serves 
as an effective primary approach in high-income countries, 
deploying this strategy requires a well-organized infrastruc-
ture and the expertise of professionals, including patholo-
gists, cytopathologists, laboratory scientists, and experienced 
colposcopists3. The WHO also recommends visual inspec-
tion with acetic acid (VIA) for triaging HPV-positive women 
because VIA is a cost-effective approach suitable for lim-
ited resourced settings. However, VIA has strong diagnos-
tic subjectivity and may lack precision, potentially resulting 
in pre-cancerous lesions going undetected for an extended 
period of time4. Colposcopy, as a diagnostic tool, also has 
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the limitations of a subjective test requiring high level of 
competency.

Recent developments in artificial intelligence (AI) offer 
considerable prospects for an automated, objective, and unbi-
ased detection of cervical cancer and precancerous conditions. 
The idea of computers simulating human behavior, cognition, 
and actual thinking was proposed by Alan Turing as early as 
1950. The term, “artificial intelligence” was officially coined by 
John McCarthy at an academic conference in 19565. AI began 
with the following major directions: perceptrons; Bayesian 
networks; pattern recognition; human-computer interaction; 
knowledge representation; and computer vision. As AI entered 
the “golden” era, there was a surge in interest and the perfor-
mance of AI gradually evolved into complex algorithms that 
resemble the logic of human beings. With the development of 
machine learning as a core technology of AI, computers can 
learn from data analysis, derive standards from the data, and 
use these standards to predict and classify unknown objects. 
Computers have the capability of finding features and learn-
ing and distinguishing new text, images, signals, and other 
data automatically. From the development of artificial neu-
ral networks, the concept of deep learning emerged and is 
now widely used in the fields of medical diagnosis, medical 
image recognition, natural language processing, and health 
management applications. In recent years, AI has demon-
strated significant advantages in several aspects of detecting 
cervical cancer, including the segmentation and classification 
of cytology6,7,  colposcopy8, and the early detection of cervi-
cal cancer lymph node metastasis (LNM) on magnetic reso-
nance imaging (MRI)9. A significant proportion of current 
research focuses on developing deep learning algorithms for 
automatic processing, recognition, feature extraction, and 
classification of cervical images, which enables AI to analyze 
images, identify patterns, and interpret cancer characteristics. 
The WHO has noted that AI can enhance screening tests and 
techniques that involve visual evaluation of digital images10. It 
is anticipated that AI-assisted screening will have a major role 
in low-resource areas, addressing the shortage of competent 
healthcare personnel. Additionally, the internet and mobile 
data, cloud computing, and mobile devices have improved 
access to healthcare services in remote areas, thereby reduc-
ing healthcare costs, while remote digital education platforms 
can enhance the professionalism of local physicians and alle-
viate the global shortage of specialists11,12. Despite the posi-
tive developments in AI for cervical cancer screening, further 
exploration and validation are needed to prove its effectiveness 

at the population level. It is essential that AI should align with 
the standards required for adjunctive use in routine clinical 
settings. The precision of AI in screening tasks, particularly 
regarding misdiagnoses and misdiagnosed cases, is a critical 
issue in future enhancements. Also, the willingness and trust 
of clinicians to embrace AI reflects the hurdles that this novel 
technology must overcome to be fully applied to cervical can-
cer screening solutions. In this review we reviewed the current 
state of research and the application of AI in cervical cancer 
screening, analyzed the ongoing challenges related to tech-
nological advancement, and advocate for the promotion and 
acceleration of widespread use of AI to screen and diagnose 
cervical cancer.

Machine learning in cervical cancer 
risk prediction

Cervical cancer screening typically involves a series of pro-
cedures, including HPV testing, visual examinations, cytol-
ogy, colposcopy, and biopsies. Each method requires skill 
and experience and/or substantial resources and time. In 
resource-limited areas, the implementation of comprehensive 
and high-quality screening programs presents considerable 
challenges. Leveraging existing clinical data for efficient and 
intelligent screening or prediction is of substantial value to 
overcome the challenges. The results of HPV testing and HPV 
genotyping combined with other clinical information, such as 
age, menstrual status, and behavior, can be utilized to predict 
the progression of positive high-risk (hr)HPV cases and the 
risk of cervical cancer13,14. Moreover, prediction of cervical 
cancer risk by integrating HPV test results with cytologic find-
ings and biomarkers has been shown to improve upon con-
ventional screening methods, thereby reducing the referral 
rates for colposcopy15,16. A predictive model to identify those 
at high risk of developing cervical cancer has been developed 
based on prior HPV results and historical medical records, 
allowing for individualized risk stratification and manage-
ment17. These predictive models may guide development of 
risk-stratified cervical cancer screening strategies.

Technically, most predictive models are constructed by 
machine learning algorithms, such as support vector machines 
(SVMs) and random forests, which form the foundation of 
deep learning and represent the precursors of AI develop-
ment. Machine learning algorithms are relatively interpretable 
in medical applications and perform well in classification and 
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prediction tasks. However, intelligent analysis of diverse data 
types presents challenges, particularly in the highly abstract 
feature extraction required for unstructured data, which 
requires implementation of neural network architectures. To 
intelligently address various tasks in cervical cancer screening, 
deep learning solutions are more adept at handling different 
types of unstructured data and integration of multimodal 
data. Several studies have combined machine learning and 
deep learning approaches to enhance the robustness of diag-
nostic classification tasks, combining deep neural networks 
for feature engineering and machine learning algorithms for 
classification tasks, which result in more accurate and inter-
pretable classifications18-20. Through the application of these 
technologies, cervical cancer screening can be more efficient 
and accurate, providing essential support for early detection 
and intervention.

AI-guided technologies in cervical 
cancer screening

The tests used for cervical cancer screening include HPV test-
ing, cytology (both conventional and liquid-based  cytology), 
and VIA (by naked eye or enhanced with a magnifying device). 
Lugol’s iodine can also be used in place of acetic acid (VILI), 
although Lugol’s iodine is not widely recommended. Recently, 
cervical cancer screening has become increasingly depend-
ent on the detection of hrHPV, which has a higher sensitiv-
ity and negative predictive value compared to cytology. Most 
programs recommend triaging HPV-positive women with 
a combination of HPV16/18 testing and cytology followed 
by colposcopy. However, cytology tests in low- and middle- 
income countries (LMICs) have highly variable performance 
and low sensitivity due to lack of trained personnel, infrastruc-
ture, and quality assurance. In addition to colposcopy and 
cervical biopsy for diagnostic purposes, a colposcopy-guided 
biopsy is critical for determining whether further treatment is 
necessary. Therefore, colposcopists need comprehensive train-
ing to achieve a requisite level of proficiency to perform diag-
nostics capabilities. Nevertheless, colposcopic equipment and 
expert or well-trained colposcopists are both scarce resources 
for LMICs.

AI is the simulation of human-like cognitive and learning 
capabilities by computer systems. AI refers to the capability 
of machines to sift and discern patterns from representa-
tive examples to assimilate knowledge features and foresee 

unexpected data. Presently, AI in cervical cancer research is 
primarily focused on the automatic detection, feature extrac-
tion, and learning classification of various cervical images. 
Intelligent analysis of cervical images by advanced computer 
vision techniques is becoming an auxiliary or even alternative 
method for detecting cervical cancer at an early stage.

Availability of datasets for AI-guided cervical 
cancer screening

The availability of large and high-quality datasets of cer-
vical clinical data provides a solid foundation for training 
and validating AI algorithms. Several high-quality public 
datasets with annotations are available, including the Cx22 
dataset5 and ISBI Challenge Database6,7 for segmenting 
cytology images and the SIPaKMeD dataset8 and Harlev 
datasets9 for classifying cytology cells based on morphology. 
However, datasets for colposcopy images are relatively lim-
ited. Presently, the largest public dataset, Intel & MobileODT 
Cervical Cancer Screening10, is collected by mobile-level 
colposcopy devices. However, public access to datasets cap-
tured with high-magnification colposcopy equipment is still 
lacking. The International Agency for Research on Cancer 
(IARC) Cervical Cancer Image Bank11 is one such database 
compiled by collaborating colposcopists using standard for-
mats, although the scale is quite modest.

Feature representative of AI model

Representative variables, such as female age, menopausal 
status, parity, medical history, and HPV results, are typi-
cally selected as relevant clinical features for a cervical can-
cer risk prediction model, ensuring a comprehensive and 
robust representation of the data. However, for whole-slide 
and colposcopy images, deep learning algorithms, like con-
volutional neural networks (CNNs), are required to extract 
high-dimensional features from the images. With increasing 
network depth, the selected features become more represent-
ative, ultimately capturing unique patterns and textures that 
can contribute to the diagnosis of cervical cancer. Several pre-
processing steps are performed before the images are fed into 
the neural network, such as normalizing the images, resizing 
the images to a consistent pixel size, and applying augmenta-
tion techniques to enhance the robustness of the model. After 
the features have been extracted, the features are normalized 
and combined to form a feature vector, which is used as input 
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in the AI model. By utilizing imaging data appropriately, the 
multi-faceted nature of the disease can be captured and per-
formance of the AI model can be enhanced.

AI algorithms for cervical cancer detection 
and diagnosis

With deep learning, various features in images, such as color, 
texture, and relative objects, are systematically captured by neu-
ral networks. The CNN, a leading deep learning architecture, 
extracts high-level features, such as edges and textures, from 
cervical cell images through multiple layers of convolution and 
pooling operations. The CNN is widely utilized for cell detec-
tion, segmentation, classification, and extraction of regions of 
interest (ROIs) in cytologic images. Moreover, advanced deep 
learning methods, such as graph neural networks (GCNs), 
perform convolution operations on graph-structured data, 
capturing the relationships between nodes and the structural 
information of the graph. By leveraging the node relation-
ships and information propagation within the graph struc-
ture, GCNs enhance the ability to process complex structured 
data. GCNs are increasingly used to interpret high- resolution 
colposcopic images. Annotating and interpreting medical 
images requires well-trained cytologists, pathologists, and 
specialists with at least 5–10 years of experience, making the 
process both time-consuming and resource-intensive. At pres-
ent, deep learning algorithm exploration is primarily aimed at 
alleviating this issue. A semi- or weakly-supervised learning 
method, for example, can analyze and learn features from par-
tially or minimally annotated images, applying pseudo- labels 
to  unannotated images for classification and object detection 
tasks. With self- and un-supervised learning methods, which 
do not require manually annotated category labels, feature 
learning can be achieved through a vast collection of unan-
notated image samples. For example, generative adversarial 
networks (GANs) generate high-quality synthetic images, 
enhancing the diversity of datasets. GANs consist of a genera-
tor and discriminator that work through an adversarial training 
process to produce high-quality images. The generator creates 
realistic images to deceive the discriminator, while the discrim-
inator distinguishes between real and generated images. The 
generator progressively improves the quality of the generated 
images in this adversarial process, making it increasingly dif-
ficult for a discriminator to differentiate the generated images 
from real images. The training method does not require labeled 
data and ensures the robustness of the model as well. Cervical 

cancer screening includes a variety of tests, including HPV 
testing as the primary screening, cytology triage, or HPV and 
cytology co-testing. Colposcopy is used as a preliminary diag-
nostic and the screening results are also required for reference. 
Transformer neural network (Transformer) captures depend-
encies between different positions in sequence data through 
self-attention mechanisms, while multi-head attention mech-
anisms allow the model to focus on different parts of the input 
sequence simultaneously. This enables Transformers to effec-
tively handle long-range dependencies, making Transformers 
highly effective in natural language and image processing tasks. 
Specifically, Transformers can integrate different modalities of 
data, such as HPV testing results, cytology, and cervical images, 
showcasing the strong capabilities of Transformers in multi-
modal data processing and complex sequence  modeling12,13. 
As a result of evaluating multiple performance metrics com-
prehensively, models enable automatic image classification and 
abnormal detection and assist physicians in diagnostic deci-
sion-making by integrating multimodal data. Thus, the rate 
of misdiagnosis and missed diagnoses is significantly reduced, 
resulting in improved screening efficiency.

Finally, multiple performance metrics were used to evaluate 
the AI model to ensure that the effectiveness was assessed in a 
comprehensive manner. Model performance was assessed with 
respect to sensitivity and specificity, accuracy, precision, recall, 
F1-score, and the area under the receiver operating character-
istic curve (AUC-ROC) as primary metrics. Intersection over 
union (IoU), dice coefficient, and mean average precision 
(mAP) are typically used to evaluate segmentation accuracy. 
Average precision (AP) was calculated for each class and the 
mAP was computed to provide an overall performance meas-
ure across all classes. Additionally, evaluation metrics can be 
used to evaluate the performance of classification algorithms. 
Metrics, such as diagnostic accuracy, which encompasses the 
overall accuracy of the AI diagnostic outputs, and positive pre-
dictive values (PPVs) and negative predictive values (NPVs), 
indicating the likelihood of true positives and true negatives, 
respectively, were also used to evaluate the AI model as a diag-
nostic tool. These metrics are essential for assessing the prac-
tical applicability of the AI model in clinical settings and the 
potential impact on screening outcomes. The performance of 
AI technology in the early screening and detection of cervical 
cancer has been validated by several studies and has demon-
strated good diagnostic accuracy14-16.

AI model workflows require rigorous data quality and 
model selection to avoid biases and noise that can cause 
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under- or over-fitting, which affects the generalization abil-
ity of the model. A model is then selected and fine-tuned to 
achieve an optimal model based on performance. The high 
sensitivity and specificity are typically expected by clinical 
decision applications, but clinically acceptable results may 
vary depending on the application. Thus, internal and external 
validation is crucial to ensuring that the model is stable and 
generalizable. In general, AI is an evolving process that will 
require regular updates on datasets used to train the model as 
well as optimization for clinical use.

AI-guided methods in enhancing 
cervical cytology

An AI-assisted system analyzes cytologic images, develop 
mathematical models based on deep learning or other AI tech-
niques, and screen digital smear images to identify normal and 
abnormal cells and facilitate cervical cancer screening. The 
initial attempt to automate cervical smear screening system 
began in 1992 with approval of the PAPNET Testing System 
for rescreening of conventional cervical smears that were man-
ually screened17. The liquid-based cytology technique was an 
important innovation to the traditional Pap smear for improv-
ing the quality of cervical cytology. The cervical samples are 
collected in liquid media (ThinPrep18 or SurePath19). After 
preparation and staining of smears, the smears are scanned 
with a microscope slide scanner to produce digital images. 
The US Food and Drug Administration (FDA) approved two 
computer-aided imaging systems for automated detection of 
abnormal cells in 2010 (BD FocalPoint GS Imaging System and 
the ThinPrep Imaging System20,21). Although suspicious cells 
are detected on a slide by computer-aided systems, the entire 
slide must be manually screened and interpreted by a cyto-
pathologist. Although this system has improved with respect 
to sensitivity and efficiency21-23, extensive manual screening 
is required and the final diagnosis is fully dependent upon 
the final cytopathologist manual screening process. BestCyte, 
a whole slide image (WSI)-based scanning technology, was 
introduced in 201424. A powerful method is applied to catego-
rize and systematically display images of clinically significant 
cells in galleries based on the cytomorphologic characteristics 
within fields of view (FOVs). BestCyte supports the anno-
tation of images at the cell level (40× magnification) could 
potentially standardize objectivity among  cytologists, lead-
ing to fewer discrepancies in final diagnoses25. In   addition, 

BestCyte also incorporates cell annotation and WSI review 
through a remote operation platform for peer review by cyto-
pathologists. These automated screening systems, however, 
are not actually AI-assisted screening technologies, but rather 
forms of computer-aided imaging techniques.

Automated smear analysis involves the following pro-
cedures: digital image slide acquisition; identifying ROIs; 
segmenting to isolate relevant features of cells; and classify-
ing images into pre-neoplastic categories for cytopathologist 
review26. AI technology is primarily utilized in the segmen-
tation and classification phases, which helps reduce the daily 
workload of cytopathologists and improves the efficiency of 
screening. Figure 1 illustrates the workflow of deep learning 
networks used in cervical cytology diagnosis. Segmentation 
refers to the isolation of multiple regions of cells to extract pre-
cise information about the ROI for the detection of abnormal 
cells. Generally, cytopathology requires a closer examination 
of characteristics of the cell nucleus, therefore the nucleus and 
cytoplasm must be precisely segmented. Sompawong et  al.27 
developed a Mask-RCNN architecture that used a classifi-
cation branch to distinguish between normal and abnormal 
features based on the nuclear locations and a segmentation 
branch to pinpoint the nuclei locations on a Pap smear slide. 
U-Net is a convolutional network widely used for medical 
segmentation tasks. U-Net was introduced by Ronneberger 
et al.28 as a model that can learn from a few annotated images. 
Several studies in recent years have examined the performance 
of U-net on the segmentation of cervical cells with a dice 
rate > 90% on internal datasets29-31. Zhang et  al.30 validated 
the proposed GC-UNet in an actual cervical cancer diagno-
sis setting, achieving a remarkable precision rate of 99.5%. 
This finding indicates that U-net might be a highly effective 
method for segmenting cervical nuclei, which will serve as an 
important tool for diagnosing and screening cervical cancer. 
Additionally, the method shows significant potential for prac-
tical application, with its rapid processing time of just 0.85 sec-
onds per image. As compared to the U-net, Wang et al.32 pro-
posed a multi-layer deep learning framework for improving 
the accuracy of detection of CIN2+ cells. The method employs 
a coarse-to-fine strategy for quick identification of target ROI 
tissue location through semantic segmentation, followed by 
precise single HSIL cell detection on  specific ROIs. The mul-
ti-layer deep learning framework is also 20 times faster than 
U-net in processing one piece of WSI.

In general, the classification of cervical cells is intended to 
improve detection rates of cervical intraepithelial neoplasia. 
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Current AI-assisted slide recognition and cytologic classi-
fication tasks rely on digital images from whole slide imag-
ing, mainly including scanned conventional Pap smears and 
scanned LBC slides after staining. Recent studies have demon-
strated that deep learning methods, such as CNNs and feature 
attention networks, can achieve an accuracy > 90% in both 
binary and multiple classification tasks for conventional smear 
images33-37. It is worth mentioning that Wang et al.33 contrib-
uted a transfer-learned CNN, which is used for classification by 
a limited number of Pap smear images with coarse image-level 
labels but has achieved remarkable performance. However, 
the liquid-based cytologic smear preparation method has the 
advantage of a smaller scan area and minimizing obscurations 
and cell overlap, which has led to the development of efficient 
AI cytology applications14,38-40. Bao et al.41 developed a super-
vised deep learning algorithm based on 188,542 digital LBC 
images and evaluated the capability of detecting CIN2+ and 
CIN3+ lesions. The accuracy of the algorithm was comparable 
to that of experienced cytologists. The exploratory develop-
ment of deep learning classifiers also covers specially stained 
cytology slides, such as p16/Ki-67 dual-stained (DS) and 
H&E-stained slides. Wentzensen et  al.42 applied two neural 
networks (CNN4 and Inception-v3) to develop a new image 

analysis platform based on deep learning and validated the 
platform in a large sample population. Compared with manual 
screening, the performance of AI classifier has similar sensi-
tivity and higher specificity42. The simultaneous presence of 
p16 and Ki-67 in the same cell provides a valuable triage strat-
egy, thus this AI classifier reduces the workload of cytologists 
and saves unnecessary resources. Considering the variety of 
types of cytologic images, Cheng et al.43 enhanced abnormal 
cell detection in cervical smears by integrating CNN with a 
recurrent neural network (RNN), providing an adaptable 
algorithm that could be used with different slide preparations, 
staining, and imaging methods. The most recent research on 
AI systems for cytology is shown in Table 1.

Aside from AI research on cervical cytology images, 
AI-based digital microscopes have also been developed, pro-
viding new opportunities to address the challenges of cervical 
cancer screening in LMICs. Tang et al.48 utilized the augmented 
reality (AR) technique with an AI microscope to provide 
real-time assistance for cervical cytology diagnosis. The AR 
technique significantly improved the sensitivity of LSIL and 
HSIL, and also enhanced the consistency of various atypical 
squamous cells48. In addition, a digital diagnostic system for 
Papanicolaou smears was developed by Holmstrom  et  al.49 
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Figure 1 Schematic representation of AI-assisted cervical cytology image analysis. (A) Whole slide image (WSI) level: Digitalization of cervical 
liquid-based preparation samples; (B) Patch level: WSIs are divided into smaller patches to create feature maps, focusing on significant cellular 
structures and detects regions of interest (ROIs); (C) Cell segmentation: Segmentation isolates nuclei from each cell, emphasizing morphologic 
features; (D) Cell classification: The extracted features classify cells into categories, such as LSIL, HSIL, ASC-H, and ASCUS; (E) WSI diagnosis: 
The classification results are aggregated to provide an overall diagnosis at the WSI level.
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using a portable whole-slide microscope scanner and a deep 
convolutional network trained on commercially available 
image-analysis platforms for the detection of cervical carci-
noma cells4. The Holmstrom et al. study49 found that using the 
system for identifying squamous cell atypia is viable, resulting 

in high sensitivity, especially for detecting high-grade atypia 
slides, which might help reduce the workload for micros-
copists and cytopathologists in low-resource settings. The 
findings of all the research studies validate the potential and 
benefits of using AI to aid in cytologic diagnosis, as well as 

Table 1 AI system advances in cytology for cervical cancer

Author and Ref.   Aim of study   Number of subjects   AI system performance   Key study outcomes

Du H44   Feasibility and efficiency of 
cytology slide interpretation

  5,000 high-confidence 
slides
(private dataset)

  Accuracy of NILM, HSIL, ASU, 
and LSIL prediction on single 
cells is 81.4%, 90%, 42.54%, 
and 68.23%, respectively

  The interpretation time for 
each slide was reduced from 
3 min to 30 seconds

Bai X45   Identification and 
interpretation on CINII and 
above cervical smear pap

  32,451 cases
(private dataset)

  Sensitivity of CIN2+ smear 
pap is 99.3% and specificity 
9.87% by AI alone

  The average reading time of 
pathologists with AI system 
was 22.23 seconds per case 
compared to a manual 
reading time of 180 seconds

Xue P15   The performance of an 
AI-enabled liquid-based 
cytology as a screening 
triage approach

  489 cases
(private dataset)

  The sensitivity of AI system at 
detecting CIN2+ is 86.49%, 
and the specificity is 51.33%

  Compared to HPV16/18 
typing the AI system 
sensitivity is substantially 
higher and specificity 
is lower. The AI system 
reduced referrals 
to colposcopy by 
approximately 10%

Xue P46   The efficiency of abnormal 
cervical squamous cell 
detection in cervical cancer 
screening

  8,000 digitalized whole 
slide images
(private dataset)

  The sensitivity of AI alone is 
89.4% and the specificity is 
66.4%

  Reduced the cytology 
workload by more than 
one-third. The AI system 
had superior sensitivity and 
specificity compared to 
junior cytologists

Bao H14   AI-assisted cytology system 
at different CIN levels of 
detection

  703,103 cases
(private dataset)

  The sensitivity of the AI 
system on CIN1+, CIN2+, and 
CIN3+ is 88.9%, 90.1%, and 
90.9%, respectively; specificity 
on CIN1+, CIN2+, and CIN3+ 
is > 90%

  The agreement rate 
between AI and manual 
reading was 94.7%, which 
was a 5.8% increase in 
sensitivity compared to 
manual reading

Zhu X47   Classified cervical liquid-
based thin-layer cell smears 
on 5 classes

  34,403 smear samples
(private dataset)

  The sensitivity of 
intraepithelial lesions is 92% 
and the specificity is 84.39%

  Achieving a speed < 180s/
slide with high sensitivity; 
the sensitivity of senior 
cytologists detection is 
lower than the AI system

Wentzensen N42   Detection on dual-stain+ 
cells and performance of AI 
cytology in cervical cancer 
screening

  Based on 3 epidemiologic 
studies, > 4,000 cases
(private dataset)

  The sensitivity of CIN3+ cells 
on AI DS-cytology (single 
cell) is 91.8%

  The AI system was 
developed using P16/
Ki-67 dual-staining 
slides; AI-based cytology 
interpretation is more 
sensitive than manual; AI 
results reduced colposcopy 
referrals by one-third

HSIL, high-grade squamous intraepithelial lesion; LSIL, low-grade squamous intraepithelial lesion; NILM, negative for intraepithelial lesion or 
malignancy; ASU, atypical squamous cells of undetermined significance; CIN, cervical intraepithelial neoplasia; AI, artificial intelligence.
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the potential to assist in screening efforts in areas with lim-
ited resources. Moreover, Tang et  al.48 discussed the poten-
tial utilization of AI technology, such as AI microscopes, to 
enhance the professional training of newly trained cytopathol-
ogists in low-resource settings. Hologic, Inc. announced the 
launch of the first FDA-approved digital cytology system in 
February 2024 (Genius™ Digital Diagnostics System equipped 
with Genius™ Cervical AI algorithm and volumetric imaging 
technology). This diagnostics system consists of image acqui-
sition, analysis of images by the AI algorithm, image storage, 
and remote peer review50. The Genius™ Digital Diagnostics 
System demonstrates that AI technology has a bright future 
in cervical cytology and is projected to have a significant 
impact on cervical cancer screening during the coming years. 
AI-assisted liquid-based cytology testing may facilitate the 
rapid expansion of cervical cancer screening, while also being 
more cost-effective51.

AI applications in colposcopic 
diagnosis and assistance in biopsies

The AI-assisted colposcopy diagnostic system combines 
high-definition colposcopic imaging to identify cervical 

lesions from annotated colposcopic images with assessment 
of suspicious lesion areas using image recognition algo-
rithms. Due to the subjectivity of colposcopic diagnosis, 
AI technology is critical in helping primary care colposco-
pists in low-resource healthcare areas correctly differentiate 
between normal and abnormal cervical findings, grading, 
and categorizing cervical lesions efficiently. Few studies 
have evaluated the effectiveness of AI-based diagnosis with 
smartphone-obtained colposcope images, and these studies 
have shown promising results that are systematically supe-
rior to t medical experts52-55. AI technology is increasingly 
being used to assist experienced colposcopists in enhancing 
their diagnostic performance, classifying lesions more effec-
tively, identifying the transformation zone (TZ), and guiding 
colposcopists in determining biopsy sites (Figure  2). The 
most recent AI-colposcope research has concentrated on 
the development of deep learning-based classifiers for cer-
vical neoplasia on magnified cervix images obtained with 
special equipment, which increases the consistency with 
histopathologic findings56-63. Considering the heterogeneity 
of colposcopic imaging equipment and the prevalent lack of 
standardized annotations of colposcopic images, the appli-
cation of semi-supervised learning algorithms for inferring 
cervical dysplasia categorization from limited high-quality 

Figure 2 Illustrative example of an AI-assisted colposcopy-guided biopsies for a case diagnosed as HSIL/CIN2.
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colposcopy images represents a current research trajectory 
within the field of AI-assisted colposcopy64,65. Based on the 
ASCCP colposcopy standards, one of the most critical fac-
tors for grading colposcopic findings is the type of cervical 
TZ and whether it is fully or partially visible66. Referencing 
the Colposcopy Terminology published by the International 
Federation for Cervical Pathology and Colposcopy (IFCPC), 
a cervical TZ is typically defined as a region where squamous 
metaplasia has developed and is known to be a predispos-
ing site for cervical cancer development47. Thus, few studies 
have been conducted on the implementation of deep learn-
ing algorithms to improve the segmentation of the acetow-
hite lesion and determine its TZs67,68. The results of these 
studies reveal that precise segmentation of the TZ can effec-
tively enhance the discriminative representation capacity of 
the deep learning-based CIN classifier60,63. In clinical colpos-
copy practice, a critical objective of cervical cancer screen-
ing is differentiating CIN grades. When lesions are detected, 
biopsies of 2–4 sites are obtained to ascertain the most severe 
lesion. For lesions diagnosed as CIN 2/3, treatments, such as 
conization or LEEP, might be required. To improve the accu-
racy and appropriateness of biopsy sites, some AI-assisted 
colposcopes provide guidance regarding cervical biopsies 
and predict the location of the biopsy site57,69,70. The most 
current advanced AI models for application on colposcopy 
are summarized in Table 2.

The development of AI models for the classification of cer-
vical lesions has resulted in impressive results, even achieving 
diagnostic capabilities comparable to colposcopists in some 
studies69,74-76. However, the independent interpretability of 
AI models still lacks clinical credibility. Moreover, very few of 
these developed AI models have been validated for applicabil-
ity to real clinical use. Kim et al.72 evaluated the feasibility of 
the Cerviray AI system® on 234 patients and reporterrd supe-
rior sensitivity and similar specificity over two colposcopists 
for detecting high-grade lesions. However, the sensitivity sig-
nificantly improved when an AI system worked in conjunction 
with at least one colposcopist. Wu et al.71 conducted a retro-
spective hospital-based study evaluating the colposcopic AI 
diagnostic system, CAIADS. CAIADS guided fewer biopsy sites 
and had the greatest biopsy sensitivity for high-grade lesions 
compared to subspecialists71. With the assistance of CAIADS, 
the sensitivity achieved by junior colposcopists on CIN grades 
and biopsy was significantly improved. These studies demon-
strated the clinical applicability of the AI-assisted colposcopy 
diagnostic system, which can assist novice colposcopists in 

developing diagnostic abilities to the level of experienced prac-
titioners and guide novice colposcopists in performing effi-
cient biopsy procedures. Given these findings, an AI-assisted 
colposcopy diagnostic system will have a valuable support role 
in cervical cancer screening in areas with limited resources. AI 
colposcopy systems, like CAIADS and Cerviray AI, are also 
equipped with remote access functionality. Thus, the further 
development of cloud-based AI colposcopy platforms might 
narrow the gap in colposcopic examinations between LMICs. 
In addition, mobile-based and other portable hardware col-
poscopy devices that incorporate AI technology in a more 
accessible and user-friendly format, such as MobileODT77 
and Cervicare AI78, have also shown promising performance 
in validation studies and have been successfully commercial-
ized. However, there is currently no FDA approved AI-based 
colposcopy tool for cervical cancer detection. Currently, AI in 
colposcopy aims to address the shortage of experienced col-
poscopists, reduce misdiagnosis rates, and enhance the diag-
nostic efficiency of traditional colposcopy. In fact, AI holds 
significant potential for providing effective education in col-
poscopy. The IARC offers training resources for colposcopy 
in several languages, providing comprehensive and accessible 
educational materials to a global audience79. A recent study by 
Chen et al.80 developed an online digital education tool with 
numerous real-world colposcopy images for colposcopy train-
ing, which provided short-term improvements in colposcopist 
competency and confidence. In addition to the acquisition 
of standard terminology as well as a greater understanding 
of colposcopy, digital training platforms facilitate interactive 
educational exchanges with colposcopists. This platform ena-
bles learners to customize their enrichment of knowledge by 
addressing specific educational needs (Figure 3). Based on this 
inspiration, AI interpretability on colposcopic images might 
also be a potential training benefit for novice colposcopists.

AI-assisted Cervical Cancer 
Screening Challenges and 
Suggestions

AI will have significant implications for cervical cancer screen-
ing, especially with AI-based methods for cytology screening 
that have achieved considerable technical proficiency. This 
has been attributed to the development of AI algorithms in 
cervical cytology over the past few years. The precision of 
segmentation models29,31,32,81,82 and accuracy of classification 
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 models33-35,37 have demonstrated impressive evaluation results, 
with both exceeding 90% in precision and accuracy. From the 
perspective of learning strategy, there has been a shift from 
ensemble learning83,84 to transfer learning33,35. Advances in AI 
algorithms for cytology have been enhanced by several public 
datasets, including the Herlev9, ISBI Challenge6,7, Sipakmed8, 
and Cx22 databases5. Various types of Pap smear, single-cell, 
and overlapping cervical cell images are provided in these 

datasets to train different segmentation and classification tasks. 
Additionally, the development of AI-based colposcopy diag-
nostic models still requires further enhancement to ensure pre-
cise cervical lesion classification, including increasing the spec-
ificity of early cervical lesions and accurately subdividing more 
subtypes of cervical lesions (e.g., adenocarcinoma in situ and 
cervical adenocarcinoma). In general, AI algorithm models are 
accurate to approximately 85% in the classification of cervical 

Table 2 Application of AI model in colposcopy to detect cervical cancer

Author and Ref.   Aim of study   Study type   Number of subjects   Key study outcomes

Yuan C60   Detection on LSIL+ 
colposcopy

  Model development 
and validation study

  22,330 cases for AI model 
training and evaluation; 
5384 cases for validation
(private dataset)

  The AI model was able to segment and 
classify LSIL and HSIL cervical lesions. The 
accuracy of the AI model on LSIL is 84.1% 
and the sensitivity of the AI model on HSIL is 
88.47%. In the validation study, 84.67% HSIL 
cases were detected, which was better than 
the colposcopist

Yan L61   Detection on LSIL/HSIL 
colposcopy

  Model development 
study

  7,530 patients, 
15,276 images
(private dataset)

  Significant 95% accuracy on normal/LSIL 
classification, and 90% accuracy on HSIL-and 
HSIL+; a stronger diagnostic performance 
than the junior colposcopist in 300 samples 
from the test set

Xue P69   Detection on LSIL/HSIL 
colposcopy

  Model development 
and validation study

  Total 19,435 patients and 
101,267 images
(private dataset)

  Accuracy of AI model on LSIL/HSIL 
classification is 80.7% compared to the 
colposcopist interpretation on the validation 
dataset. The AI model showed slightly higher 
sensitivity: 65.8% vs. 60.4%

Wu A71   Performance of 
CAIADS69 on CIN2+/
CIN3+ detection

  Hospital-based 
retrospective study 
(AI model external 
study)

  1,146 patients
(private dataset)

  The average sensitivity of CAIADS on 
CIN2+/CIN3+ is 80%, which was not lower 
than a senior colposcopist. The sensitivity 
of the junior colposcopist with CAIADS is 
significantly improved. Number of biopsies 
recommended by CAIADS per case was less 
than the colposcopist

Kim S72   Evaluation on the 
feasibility of interpreting 
colposcopy images with 
the AI-assist

  Observation 
study (AI system 
application study)

  234 patients
(private dataset)

  The final diagnostic accuracy of Physician 
1 with AI-assist on colposcopy images 
increased from 76% to 80%, and the accuracy 
of Physician 2 increased from 71% to 77%

Fu L13   Improved colposcopy 
DL-base model with 
HPV test result and 
cytology test result

  Model developmet 
and validation study

  2,160 cases
(private dataset)

  The diagnostic performance with AUC 
was improved to 0.921 as a multimodal 
integrated model from AUC 0.84 as a 
colposcopy-based DL model

Mukku J73   CIN detection on 
colposcopy images with 
clinical outcomes by 
multimodal strategy

  Model development 
study

  900 images from IARC 
image bank11

  Impressive 89.32% sensitivity and 91.6% 
specificity on diagnosing CIN with fusion 
strategy on various clinical findings 
(including age, HPV test, biopsy result, and 
transformation zone)

HSIL, high-grade squamous intraepithelial lesion; LSIL, low-grade squamous intraepithelial lesion; CAIADS, colposcopic artificial intelligence 
auxiliary diagnostic system; CIN, cervical intraepithelial neoplasia; AI, artificial intelligence; DL, deep learning.
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lesions on colposcopy images. It is interesting to note that light-
weight neural networks, such as MobileNet, EfficientNet, and 
SqueezeNet, have increasingly been adopted as backbone net-
works in both cytology and colposcopy62,67,85. Given this trend, 
equally efficient models can likely be deployed on mobile 
devices or portable computers, making the models more suit-
able for environments that are limited in resources. However, 
there are very few publicly available colposcopy image data-
sets, with the IARC Cervical Cancer Image Bank11 being one 
of the few that meet expert qualification standards for collec-
tion procedures and image quality. Most colposcopy images 
used in AI algorithm development are not publicly available. 
Thus, establishing a standardized and regulated data platform 
for systematic management and quality control is essential for 
further advances. With the emergence of large language models 

(LLMs), the revolution in artificial intelligence has officially 
begun. Recently, Meta’s FAIR lab Segment Anything Model 
(SAM), a giant AI image segmentation model aiming to revolu-
tionize machine learning for versatile and accurate image seg-
mentation, was released86. This state-of-the-art model will not 
be restricted by image types and domains. Wang et al.87 devel-
oped a foundational model based on whole-slide pathologic 
images, demonstrating that the latest generative AI technolo-
gies are already being applied in the medical field to address the 
modeling challenges of such large-scale medical images. This 
general model can also be applied to other types of image data, 
such as CT, MRI, or X-rays. Therefore, for the development of 
advanced AI algorithm models, processing colposcopy images 
from different devices of varying qualities by one foundation 
AI model will be a future direction.

Learning Progress

30%

Beginner Goal

Chapter 6 A systematic approach to colposcopic
examination

From   COLPOSCOPY AND TREATMENT OF CERVICAL
PRECANCER
Page 1/Total 7 Continue learning

Consolidation Practice

Basic Knowledge of Colposcopy

10 cases/estimated 60 mins Continue

Recommended Learning Self-assessment

Most viewed Ectropion/eversion of columnar epithelium

Recommended for “Beginner Goal”

How to determine the TZ types?

05:49

Come and test yourself

Provide customized learning program
Go to test >

Assessment Records

Stage Exercise

Beginner
Practice

Intermediate
Practice

Advanced
Practice

Knowledge Plaza

Guidelines Official
Textbook Terminology

A

B

C

Ectropion or eversion refers to the displacement of columnar
epithelium from within the cervical canal to the exterior of
the ectocervix.

»
«

Figure 3 Sample interface of an AI-guided colposcopy training platform. The platform offers a structured learning, using AI to tailor content 
and enhance colposcopy training. (A) Displays the user learning progress and access to textbook chapters and consolidation practice exer-
cises. (B) Provides personalized learning materials based on self-assessment results through a recommendation system. (C) Provides exercises 
for beginner, intermediate, and advanced levels. Includes access to guidelines, official textbooks, and terminology resources.
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As discussed in this review, validation studies that evaluate 
AI models may show heterogeneity due to factors, such as the 
diversity of populations, variations in slide preparation, and 
various evaluation metrics. Therefore, it is difficult to provide 
a direct comparison of AI algorithms. Most evaluation results 
indicate that AI models used in clinical validation for cytology 
have difficulty achieving a 0.9 sensitivity14,15,46, although the 
speed of slide reading has significantly improved45,47. When 
compared to cytologists, AI-based systems for CIN detection 
are generally in line with the proficiency of junior cytologists, 
with some exceeding senior cytologists in performance14,47. 
Additionally, the specificity of different AI models varies con-
siderably, most likely due to the varying case sample distribu-
tions included in the studies. Despite the relatively advanced 
application of AI image analysis in cytology4, increasing 
clinical validation studies and standardizing the method of 
reporting the results of these studies should be prioritized. 
Furthermore, large-scale studies are lacking for the clinical 
validation of AI image analysis in colposcopy. Currently, only 
Yuan et  al.60 and Xue et  al.69 have included sufficient num-
bers of cases to evaluate the performance of AI systems in 
clinical settings. However, despite the improved sensitivity of 
AI systems compared to junior colposcopists in these valida-
tion studies61,71,72, some differences remain. An advantage of 
AI-assisted colposcopy is that it facilitates guided biopsies and 
enables women to detect lesions more effectively with fewer 
biopsy samples, thereby causing less cervical damage. Yuan 
et al.60 showed that the number of biopsies performed using 
the AI system was slightly higher than the number performed 
by the colposcopist in each case. However, Wu et al.71 reported 
that the AI system performed fewer biopsies than colposco-
pists. The significant variability in colposcopy image capture 
and collection results in AI system performance differences, 
emphasizing the importance of standardized protocols in 
colposcopy image collection. Additionally, there will be an 
emphasis on assessing the extent to which AI models can be 
applied to large real-world populations based on prospective 
clinical studies to improve the effectiveness of cervical cancer 
screening, further incorporating screening strategies.

Finally, despite the potential benefits and cost-effectiveness 
of AI in cervical cancer screening, clinicians are concerned 
that the lack of clear interpretability of diagnostic decisions 
raises substantial concerns regarding safety, resilience, and 
ethical considerations. If AI technology is integrated into 
cervical cancer screening strategies, especially by using 
AI-assisted cytology to replace traditional cytology screening 

every 5 y, the cost-effectiveness could be comparable to HPV 
testing51. AI systems can significantly reduce diagnostic time 
and cost. However, pathologists and colposcopists using these 
systems to assist with diagnostic purposes must navigate the 
allocation of responsibility for clinical outcomes, as well as 
the privacy and security of patient data, which require further 
definition. Hence, AI applications can only assist physicians 
in diagnosing rather than replace physicians in clinical deci-
sion-making. Healthcare professionals should understand the 
advantages and limitations of AI when using AI-based prod-
ucts. Furthermore, AI must be used in a manner that respects 
the autonomy of patients. To ensure ethical compliance with 
AI, it is imperative that clear guidelines and regulations be 
established as well. Digital health innovation is a focus of 
the US FDA Digital Health Innovation Action Plan88, which 
is intended to regulate and monitor digital health devices. 
Similarly, the European Union Medical Device Regulation 
emphasizes stringent requirements for the clinical evalua-
tion and post-market surveillance of AI-powered medical 
devices89. The National Medical Products Administration 
in China is strengthening its regulatory processes to accom-
modate rapid advances in AI technology. The International 
Telecommunication Union is working on international stand-
ards to facilitate global harmonization90. Global efforts are 
being made towards establishing robust governance for AI in 
healthcare, ensuring patient safety, and promoting innovation. 
This technology must be approached with caution and strict 
regulations in place to protect patient privacy, informed con-
sent, and ethical considerations to prevent misuse.

Conclusions

In this paper we have described the current development, 
application, challenges, and future directions of AI in cervical 
cancer screening. Cervical cancer screening methods with AI 
technology have the potential to significantly transform the 
prevention and control of cervical cancer. Further applications 
of AI to cervical cancer screening could deliver high-quality 
clinical performance, provide diagnostic rationale of expla-
nation and interpretability on standardized platforms, and 
archive extensive real-world cervical images for education 
purposes. This might enable the gap between tertiary and pri-
mary care hospitals to be narrowed, in turn maximizing health 
care for a broader segment of the population. A further appli-
cation of AI will be in the prevention and control of cervical 
cancer, reducing the workload of medical personnel while 
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increasing diagnostic accuracy and efficiency. It is hoped that 
current research on AI is expected to translate into clinical 
practice, which will expedite the global goal of eliminating 
cervical cancer.
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