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Abstract
Objective.Many psychiatric disorders involve excessive avoidant or defensive behavior, such as
avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders.
Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as
the foundational technology for closed-loop control of such disorders. A significant challenge is
identifying the LFP features that encode these defensive behaviors. Approach.We analyzed LFP
signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock
conditioning and extinction, standard for investigating defensive behaviors. We utilized a
comprehensive set of neuro-markers across spectral, temporal, and connectivity domains,
employing SHapley Additive exPlanations for feature importance evaluation within Light
Gradient-Boosting Machine models. Our goal was to decode three commonly studied
avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry),
examining the impact of different features on decoding performance.Main results. Band power
and band power ratio between channels emerged as optimal features across sessions. High-gamma
(80–150 Hz) power, power ratios, and inter-regional correlations were more informative than
other bands that are more classically linked to defensive behaviors. Focusing on highly informative
features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an
average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of
0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most
informative features revealed differential encoding between accelerometry and bar press rate, with
the former primarily through local spectral power and the latter via inter-regional connectivity.
Our methodology demonstrated remarkably low training/inference time and memory usage,
requiring<310 ms for training,<0.051 ms for inference, and 16.6 kB of memory, using a single
core of AMD Ryzen Threadripper PRO 5995WX CPU. Significance. Our results demonstrate the
feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features
from neural circuits strongly linked to these behaviors. This methodology holds promise for
real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.

1. Introduction

Fear and anxiety serve as adaptive defensive responses
to threats, a phenomenon observed across a variety of
species [1]. These responses are evolutionary mech-
anisms designed to enhance survival by preparing an

organism to confront or flee from immediate danger
[2, 3]. However, the same reactions, when excessive
or misplaced, can significantly disrupt an individual’s
overall quality of life [4, 5]. Anxiety disorders, char-
acterized by disproportionate and persistent fear and
anxiety, are among the most prevalent psychiatric
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conditions [6, 7]. Fear and anxiety contribute to the
manifestation of a wide array of psychiatric disorders,
underscoring their critical role inmental health [8, 9].

Fear and anxiety are often studied through the
lens of defensive behaviors, a set of responses or
patterns elicited in the face of perceived threats
[10]. Rodents exhibit various defensive behaviors in
response to actual or potential threats [11, 12]. These
behaviors are often used to model human illnesses,
because anxiety can also be viewed as an excess-
ive response to potential or actual threats [11, 13].
Therefore, exposure to a threatening stimulus evokes
defensive responses that resemble emotional states
related to fear and anxiety [12]. Recent studies indic-
ate that the defensive patterns observed in normal
human subjects show notable similarities to those of
laboratory rodents. This parallel supports the hypo-
thesis that rodent defensive behaviors may be reas-
onable models of similar behaviors in human anxiety
disorders [14, 15]. The subjective human experience
of fear is not the same as innate defensive behaviors in
lower vertebrates, but those defensive behaviors are
the closest available model [16]. Furthermore, both
human fear/anxiety and rodent defensive behavior
load onto the same frontal-amygdala circuits [17–19].
Hence, animal defensive behaviors offer a valuable
model for understanding negative-valence processes
in humans [20–22]. As a result, the excessive or con-
textually inappropriate exhibition of these behaviors
can serve as amodel for certain aspects of human psy-
chiatric disorders [23, 24].

The long-term goal of modeling defensive and
anxious behavior is to develop new treatments. Direct
electrical stimulation of the brain is a particularly
promising approach to that translation. Brain stim-
ulation specifically improves the symptoms of mul-
tiple fear/anxiety disorders [25–28]. The approach
involves the precise targeting of specific brain areas
to modulate dysfunctional neural circuits associated
with these conditions, which allows direct target-
ing of mechanisms discovered through animal mod-
els. Within the field of psychiatric brain stimulation,
there is a strong drive towards closed-loop therapies
[29–32]. The symptoms of psychiatric disorders, and
of fear/anxiety disorders in particular, vary over time,
and only some of those symptom states require neur-
ostimulation. A closed-loop brain-machine interface
(BMI) system that uses real-time neural activity from
the subject to guide stimulation could help develop
effective, precisely tailored therapies that stimulate
only when it will be beneficial [29, 33–36].

There exists a main challenge for developing such
closed-loop BMIs: we need a neural decoder that
is capable of estimating the disorder symptom or
behavior in real-time [37–39]. The development of
highly accurate, fast, and memory efficient decoders
is essential for optimizing the therapeutic outcomes,
ensuring that stimulation protocols are dynamically

adjusted to the fluctuating patterns of neural dys-
regulation associated with psychiatric disorders [40].
Consequently, advancements in BMI technology and
decoding algorithms hold the promise of revolution-
izing the treatment landscape for patients with psy-
chiatric conditions, offering hope for more personal-
ized and effective interventions.

Decoding plays a pivotal role in neural engin-
eering and the analysis of neural data [41–43]. It
leverages activity recorded from the brain to forecast
behaviors or symptoms [44–47]. These predictions,
derived from decoding, can be utilized to manip-
ulate devices or to enhance our understanding of
the brain’s involvement in disorders [48–50]. This
is achieved by assessing the extent of information
that neural activity conveys about a symptom or
behavior and examining how this information varies
across different brain areas, experimental conditions,
and states of disorder [51–53]. Decoding psychiat-
ric states poses unique modeling challenges due to
the complex andwidespread network of brain regions
involved in neural processes linked to neuropsychiat-
ric states and behaviors, particularly in disorders such
as chronic pain, addiction, or post-traumatic stress
disorder (PTSD) [30, 38, 54–57]. It is also import-
ant to emphasize decoding from local field poten-
tials (LFP) as opposed to single-neuron recordings.
Single-neuron activities can be highly informative
and were the foundation of early successful human
motor decoding examples [41, 43, 58]. Single unit
signals also underpinned a recent study demonstrat-
ing decoding of anxiety/threat-related behaviors [59].
These signals, however, are unstable over long peri-
ods of time (i.e. the decades that a clinical BMI
might need to function) and require sampling at rates
above 10 kHz, dramatically increasing system power
requirements. LFPs, in contrast, carry rich behavi-
orally relevant signals [60–62] and can be stable
for years [63]. They may specifically carry defensive
information, and therefore they can also be used to
decode defensive behaviors. For instance, one study
showed that freezing states could be partially classi-
fied using 4 Hz LFP power [64].

In essence, neural decoding represents a regres-
sion or classification challenge that links neural sig-
nals to specific variables [65]. Machine learning (ML)
has emerged as a pivotal technique for elucidating the
intricate patterns of neural activity, as well as the indi-
vidual variations in brain function correlated with
symptoms and behaviors [66]. Its utility is particu-
larly pronounced when the primary research object-
ive is to enhance predictive accuracy, a goal partly
attributed to ML’s proven efficacy in addressing non-
linear challenges [67, 68]. Despite recent advances in
ML techniques, the decoding of neural activity fre-
quently employs traditional approaches such as linear
regression (LR) and support vector machine (SVM)
[69–71]. The adoption of contemporary ML tools
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for neural decoding might yield not only a substan-
tial performance improvement but also the possib-
ility of gaining more profound insights into neural
functionality, as shown in recent studies. Encoding-
decoding frameworks, based on linear state-space
models, have decoded mood and cognitive state
fluctuations from multi-site intracranial electrocor-
ticogram (ECoG) or stereo-electroencephalography
(sEEG) signals [38, 69]. A multi-layer perceptron
(MLP) has been utilized to forecast depressive states
in human patients from local field potential (LFP)
signals [72]. A decoder leveraging random forest
(RF) models has been developed for the predic-
tion of multi-class affective behaviors via intracranial
electroencephalography (iEEG) recordings from the
human mesolimbic network [73]. A discriminative
cross-spectral factor analysis model was utilized for
identifying a brain-wide oscillatory pattern for pre-
dicting resilient versus susceptible mice to stress [74].
Episodes of mental fatigue and changes in vigilance
were precisely decoded from ECoG signals in non-
human primates (NHPs), using a gradient boosting
classifier [75, 76].

In the aforementioned studies, beyond the decod-
ing model utilized for prediction, the neuro-markers
derived from neural data were crucial for decoding
efficacy. The majority of previous efforts to detect
psychiatric symptoms and behaviors in humans have
focused on classical spectral power features [38, 69,
73, 77, 78]. It is not clear that spectral power is
the best feature for decoding complex cognitive-
emotional phenomena such as fear/defensive behavi-
ors. For instance, spectral power features were out-
performed by cross-region connectivitymetrics when
attempting to decode cognitive task engagement [70,
79]. Spectral (wavelet entropy), temporal (Hjorth
parameters), and connectivity features (partial dir-
ected coherence and phase locking index) have all
been identified as significant markers for detecting
mental fatigue [75]. In contrast, shifts in depressive
states were more influenced by variations in spec-
tral power features within the subcallosal cingulate
than by coherence and phase-amplitude coupling
[72]. Consequently, the importance of spectral power
vs. other neuro-markers for modeling and decoding
defensive behaviors and fear expression requires fur-
ther investigation.

Here, we studied the decoding of defensive beha-
viors from the prefrontal cortex (PFC) and amyg-
dala, which together comprise a circuit believed to
regulate the expression of threat/defense versus safety
behaviors [24, 80–82]. In prior rodent work, the
balance between defensive and safety behaviors was
associated with theta band (5–8 Hz) LFP synchrony
between the infralimbic cortex (IL) and basolateral
amygdala (BLA) [60, 64, 83]. Therefore, IL-BLA LFP
connectivity and power features are promising tar-
gets for the development and testing of decoding

algorithms that could be used in closed-loop psychi-
atric BMIs. At the same time, prior work focused on
simple categorical analyses (t-tests between groups)
and did not consider the more clinically relevant
question of how to decode imminent behavior at the
timescale of milliseconds to seconds. Rapid decoding
would be crucial for a closed-loop BMI aimed at mit-
igating anxious or avoidance behavior in humans. It
is not clear that the same LFP features that broadly
discriminate two groups will be able to predict
moment-to-moment behavior. Similarly, past studies
that employed decoding methods used them primar-
ily to identify when and where specific information
was encoded [59], or to identify behavior at longer
timescales [64].

We thus developed a behavioral decoder based
on IL-BLA LFP signals from rats undergoing a
tone-shock conditioning and extinction protocol [84,
85]. Beyond conventional band power features, we
explored and exploited a broad array of neuro-
markers derived from the LFPs, across spectral, tem-
poral, and connectivity domains. We considered
three defensive behaviors: freezing, bar press sup-
pression (bar press rate), and accelerometry, specific-
ally the jerk (first derivative) calculated from a 3-
axis head-mounted accelerometer. Freezing and bar
press suppression are canonical defensive behaviors
that have been studied for decades [20–22, 86–88].
Accelerometry jerk is a newer metric we have pro-
posed and shown to correlate with, but not fully
overlap the two other measures [89]. We developed
a decoding framework based on Light Gradient-
BoostingMachine (LightGBM), which outperformed
other state-of-the-art ML-based decoders in both
accuracy and latency. Our approach included ameth-
odology to assess feature importance and a fea-
ture selection strategy utilizing the SHapley Additive
exPlanations (SHAP), effectively reducing the dimen-
sionality of the feature space. Band power and band
power ratio between channels emerged as critical
for decoding defensive behaviors, with the high-
gamma band being particularly predictive compared
to other frequency bands. By prioritizing highly-
ranked neuro-markers, we enhanced decoding per-
formance beyond that with solely band power fea-
tures. Consequently, this study underscores the effect-
iveness of our proposed ML framework in the pre-
cise and rapid decoding of defensive behaviors within
a closed-loop psychiatric Brain-Machine Interface
(BMI) system.

2. Methods

2.1. Animals and behavior paradigm
We utilized 16 adult Long Evans rats, with weights
ranging from 250 to 350 grams. Initially, rats were
pair-housed in plastic cages for at least 7 days to facil-
itate acclimation to the research facility. Subsequent
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to this acclimation period, the rats underwent daily
handling for 5 days to mitigate handling-related
stress, after which they were individually housed in
plastic cages. To prepare for experimental proced-
ures, food intake was restricted to 10 grams per day
until each rat achieved 85%–95% of its initial body
weight. Thereafter, the animals were allocated 15–20
grams of food daily to maintain their weight within
this specified range throughout the behavioral exper-
iments. During the first three days of food restriction,
sucrose pelletswere introduced into the home cages to
acquaint the rats with the reward, thereby facilitating
the learning of bar-pressing behavior.

The behavioral training and experiments were
conducted in the Coulbourn conditioning cham-
bers, with dimensions of 30.5× 24.1× 21 cm. These
chambers were equipped with a grid floor, consist-
ing of rods spaced 1.6 cm apart and with a dia-
meter of 4.8 mm, to facilitate the delivery of foot
shocks. An aluminum wall of the chamber incorpor-
ated a retractable bar and a food trough for mon-
itoring reward-seeking behaviors, while a speaker
mounted on the opposite wall emitted sound stimuli.
Additionally, a camera with an attached wide-angle
lens was positioned outside the conditioning cham-
ber, above the speaker unit, to record video footage
through the chamber’s plexiglass top.

Initially, rats were trained to execute bar presses to
obtain sucrose pellets. They subsequently underwent
electrode implantation and participated in a post-
surgical behavioral paradigm. To provoke defensive
behaviors, the rats were exposed to a tone-shock con-
ditioning protocol, which comprised three phases:
habituation/conditioning, extinction, and extinction
recall, as shown in figure 1(a). Electrophysiological
and video recordings were systematically carried out
during each experimental session. During the habitu-
ation phase on day 1, rats encountered 5 trials of
the conditioned stimulus (CS: a 30-s, 82 dB tone).
This was followed by the conditioning phase, where
they experienced 7 instances of the CS paired with
the unconditioned stimulus (US: a 0.6 mA, 0.5-s foot
shock) immediately after the CS. On day 2, the extinc-
tion phase consisted of 20 presentations of the CS
alone, without the US, in the same chamber. On day
3, to evaluate extinction memory (recall), the CS was
presented 6 times without the US.

Reward-seeking behavior, indicated by bar
presses, functioned as a dynamic measure for defens-
ive behavior, with a decrease in pressing activity inter-
preted as an elevated threat response. Bar press events
were captured in the electrophysiology event data
using a Data Acquisition System (DAQ) (USB 6343-
BNC or PCIe-6353, National Instruments, Woburn,
MA, USA). These event data were subsequently pro-
cessed to isolate bar press incidents and their associ-
ated timestamps. Assessment of freezing behavior was
conducted through offline video analysis, employ-
ing a Logitech HD Pro Webcam C910 equipped

with a Neewer Digital High Definition 0.45× Super
Wide-angle Lens. The footage, captured at a rate of
24 frames per second with Debut Professional soft-
ware, was analyzed usingANY-maze, which utilizes its
integrated freezing detection functionality to assign
a ‘freezing score’ to each frame. This score increased
with more significant changes in pixels between con-
secutive frames. Meanwhile, accelerometry data were
collected continuously at a 30 kHz sampling rate via
the RHD 2132 electrophysiology headstage, which
includes a built-in 3-axis accelerometer. These data
were logged using the Open Ephys acquisition sys-
tem, a widely used open-source platform for in-vivo
electrophysiology research [90]. The synchronization
of accelerometry records with video data was accom-
plished by aligning the ‘tone on’ events observed in
both datasets. There were sparse bar press events for
a few rats during the conditioning phase due to the
bar press suppression resulting from foot shocks. We
chose 10 rats with no less than 5 bar presses in the
conditioning phase to ensure the threat responses
were well-encoded in the following neural decoding
study. All 16 rats were used for the analysis in habitu-
ation, extinction, and recall sessions.

2.2. Electrodes and surgery
Each electrode bundle was comprised of 8 nickel-
chromium recording microwires, each measuring
12.5 µm in diameter, accompanied by one reference
wire of the same diameter as the recording wires, and
a platinum-iridium stimulating channel with a dia-
meter of 127 µm [91]. The stimulation channel was
used for another set of experiments not reported here,
and no stimulation occurred during any of the data
reported in this paper. These recording and stimu-
lating components were collectively bundled within
a 27-gauge stainless steel cannula, which also served
as a pathway for the return current during stimula-
tion. The recording wires were bonded to the indi-
vidual pins of an Omnetics connector using silver
paint, while the stimulating wire was soldered to a
mill-max connector, enabling concurrent recording
and stimulation at the same site. A ground wire was
affixed to the connector, and the entire bundle was
safeguarded with epoxy. Prior to surgery, the elec-
trodes were sterilized using Ethylene Oxide (EtO).

The electrode arrays were surgically implanted
into the left infralimbic cortex (IL) (+3mm anterior-
posterior (AP), +0.5 mm medial-lateral, and
−3.95 mm dorsal-ventral (DV) from the brain sur-
face) and the basolateral amygdala (BLA) (−2.28mm
AP, +5 mm medial-lateral, and −7.5 mm DV from
the brain surface). Dental cement was utilized to
secure the electrodes and to construct a protect-
ive head cap for the animals. The ground wire was
securely wrapped around a skull screw prior to the
implant fixation. A minimum recovery period of
seven days was allowed for the animals before start-
ing physiological experiments.
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Figure 1. Experimental paradigm and proposed ML framework for decoding defensive behaviors. (a) The three-day tone-shock
conditioning protocol. The experiment consisted of three phases: habituation/conditioning, extinction, and extinction recall, with
electrophysiological and behavioral data recorded during each phase. (CS: Conditioned stimulus. US: Unconditioned stimulus)
(b) The proposed ML framework contained modules including neural data preprocessing, feature extraction in three
representation domains, data partitioning into training, validation and testing sets as shown in (c), decoding model training as
shown in (d), and model evaluation. (c) Data partitioning process in each recording session for each subject. A held-out testing
set was taken at the end of the session, and the beginning of the session was split in a sliding window 5-fold cross-validation
paradigm. (d) The procedure of training the decoding model. SHAP values were measured using the first trained LightGBM
model with all features, and the second LightGBM was then trained using the high-rank features in the order of their SHAP values
and subsequently used for final model evaluation.

2.3. Electrophysiology and data processing
The electrophysiological signals, specifically local
field potentials (LFPs), were recorded at a sampling
rate of 30 kHz using an Open Ephys acquisi-
tion system throughout all experimental sessions.
The recording headstage was interfaced with two

mill-max male-male connectors, each comprising
eight channels, through an adaptor.

Quantification of defensive behavior adhered to
the methodology established in a prior study [89].
We calculated and attempted to decode three separ-
ate types of defensive behavior: freezing, bar press
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rate/suppression, and accelerometry rate of change
(jerk). Freezing is the most common assay of defens-
ive behavior in rodents, particularly in tone-shock
conditioning paradigms as used in this study. It there-
fore places our results in context in the broader lit-
erature. Bar press rate is used less frequently because
it requires extensive operant pre-training, but as we
showed in [89], bar pressing is only partially cor-
related with freezing. That is, it captures a different
aspect of defensive behavior that may be differen-
tially encoded in IL-BLA activity. The same is true
for accelerometry jerk: it correlates partially with the
other two metrics, and can be used to compute an
extinction/recall analysis, but does not measure pre-
cisely the same type of defensive reaction [89]. Jerk
can be thought of as capturing the vigor or rapidity
of response, and may be able to capture more active
forms of defense such as darting [92].

The jerk is defined as the rate of change in total
(3-axis) acceleration, calculated as:

j(t) =

∣∣∣∣∣d
√

V2
X (t)+V2

Y (t)+V2
Z (t)

dt

∣∣∣∣∣ (1)

where j(t) is the accelerometry jerk as a function of
time t, and V2

X(t), V
2
Y(t), and V2

Z(t) are the voltages
of the accelerometer in X, Y, and Z axes, respect-
ively. The accelerometry jerk was downsampled from
its original sampling rate of 30 k samples/second to
1k samples/second, and was then smoothed with a
Gaussian filter using a 200-sample window to remove
non-biological noise transients. Bar press events and
their corresponding timestamps were extracted from
the electrophysiological recordings, with timestamps
being resampled to 1k samples/second. The counts
of presses was binned into each 1-ms time inter-
val, and then these counts were smoothed using a
Gaussian filter with a 1k-sample window. This pro-
cess transformed the data from a discrete count of
events into an approximation of a continuous press
rate, hereby referred to as the bar press rate. The res-
ampling process utilized the downsample() function
in Matlab, while Gaussian smoothing was executed
with the smoothdata() function in Matlab.

A total of 8 recording channels were obtained
from bipolar-referenced LFP signals, with 4 chan-
nels from each of the IL and BLA regions. These
bipolar-subtracted channels were subsequently band-
pass filtered within the range of 1–150 Hz using
a 3rd-order zero-phase infinite impulse response
(IIR) Butterworth filter. Subsequently, line noise was
removed by applying a notch filter at 60 Hz and
its harmonics. The LFP data was then demeaned
across the time series for each channel. For each
subject and recording session, we visually inspec-
ted the neural data and excluded time epochs
that exhibited clear non-neural artifacts, such as
significant sharp voltage transients. For extracting

features in various frequency bands, the neural
data were processed using 3rd-order zero-phase IIR
Butterworth band-pass filters across 7 frequency
bands: 1–4 Hz (delta), 4–8 Hz (theta), 8–13 Hz
(alpha), 13–30 Hz (beta), 30–50 Hz (low-gamma),
50–80 Hz (gamma), and 80–150 Hz (high-gamma).
Phase and amplitude were extracted from the band-
pass filtered signal via Hilbert transform. Cross-
spectral density was estimated on the neural sig-
nals before band-pass filtering using the Multitaper
method in the MNE package. The other prepro-
cessing steps were implemented using the SciPy
package.

Both behavioral data and the neuro-markers were
computed in overlapping 1 s sliding windows with a
0.2 s step size. Behavioral measurements were quanti-
fied by averaging the measures of accelerometry jerk,
bar press rate, and freezing score within each window.

2.4. Neuro-marker extraction
To investigate the neural representations in various
aspects and enhance the accuracy of decoding defens-
ive behaviors in our model, we extracted 17 types
of neuro-markers across 3 representation domains
as neural features for each window, as detailed in
table 1. We chose these features based on existing
evidence that, in general, local power and cross-
region connectivity between IL and BLA have been
linked to defensive behaviors in past research [83,
93]. Additionally, we computed time domain features
that are pivotal in identifying patterns of neural activ-
ity associated with specific behaviors or pathological
states, owing to their simplicity and the direct inter-
pretation of neural dynamics [94–96].

In the spectral domain, band power (BP) was
quantified across 7 frequency bands [38, 97, 98].
Relative band power (RBP) refers to the power in
a specific frequency band relative to the total signal
power [94, 99, 100]. Band power ratio between bands
(BPRB) facilitates the pairwise comparison of power
levels across different bands within a single channel
[99–101].

Regarding temporal features, line length (LL) cal-
culates the absolute differences between successive
time points [94, 97, 102]. Hjorth parameters (HP)
reflect statistical attributes including variance, mean
frequency, and frequency variation [94, 103–105].
Maximum (Max) and minimum (Min) represent the
extreme values within the window [94]. Nonlinear
energy (NE) gives an estimate of the energy con-
tent of the neural signal [106]. Skewness evaluates
the asymmetry of the distribution of instances within
the window [107]. Approximate entropy (ApEn) and
sample entropy (SampEn) assess the existence of pat-
terns within a sequence of instances [108, 109].

In the connectivity domain and cross-region rep-
resentations, band power ratio between channels
(BPRC) enables pairwise power level comparison
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Table 1. Neuro-markers extracted in the spectral, temporal, and connectivity domains.

Spectral domain

Band powera,b BPj =
1
T

∑T
t=1 y

2
j (t)

Relative band powera,b RBPj =
BPj

1
T

∑
T
t=1 y

2(t)

Band power ratio between bandsa,b BPRBjk =
BPj
BPk

Temporal domain

Line lengtha LL=
∑T−1

t=1 |y(t+ 1)− y(t)|
Hjorth parametersa,c Act= σ2(y(t)), Mob=

√
σ2( dy(t)dt )/σ2(y(t)),

Com=Mob( dy(t)dt )/Mob(y(t))
Maximuma Max=maxTt=1 y(t)

Minimuma Min=minTt=1 y(t)

Nonlinear energya NE= 1
T−2

∑T−2
t=1 y2(t+ 1)− y(t)y(t+ 2)

Skewnessa,c,d Skewness=
∑T

t=1(y(t)−ȳ)3

(T−1)σ3

Approximate entropya,e ApEn= 1
T−1

∑T−1
t=1 logC2

u − 1
T−2

∑T−2
t=1 logC3

u

Sample entropya,e SampEn=− log(A2/B2)

Connectivity domain

Band power ratio between channelsa,b,f BPRCjmn =
BPjm
BPjn

Coherencea,f,g Cohmn =
∑

f
|Gmn( f )|2

Gmm( f )Gnn( f )

Phase amplitude couplinga,f,h,i PACmn = | 1T
∑T

t=1 am(t)e
iθn(t)|

Phase locking valuea,f,i PLVmn = | 1T
∑T

t=1 e
i(θm(t)−θn(t))|

Pearson correlationa,c,d,f Corrmn =
1

Nσmσn

∑T
t=1(ym(t)− ȳm)(yn(t)− ȳn)

Band Pearson correlationa,b,c,d,f BCorrjmn =
1

Nσjmσjn

∑T
t=1(yjm(t)− ȳjm)(yjn(t)− ȳjn)

a y(t) is the time-series neural signal within a window of length T, where t ∈ {1,2, . . .T}.
b j,k are the ith and jth bands of the neural representations.
c σ is the standard deviation of y(t), and σ2 is the variance.
d ȳ is the mean of y(t).
e Cr

p =
1

(T−r+1)
[number of q such that q ⩽ T− r+ 1 and d[lr(p), lr(q)] ⩽ 1],

A2 = 1
(T−3)(T−2)

∑T−2
p=1

∑T−2
q=1,q̸=p[number of times that d[|l3(q)− l3(p)|< 1]],

B2 = 1
(T−3)(T−2)

∑T−2
p=1

∑T−2
q=1,q̸=p[number of times that d[|l2(q)− l2(p)|< 1]], where

lr(p) = {y(p),y(p+ 1), . . .,y(p+ r− 1)}, and
d[lr(p), lr(q)] = maxv=1,2,...,r(|y(p+ v− 1)− y(q+ v− 1)|).
f m,n are themth and nth channels of the neural representations.
g Gmn( f ) is the cross-spectral density between ym(t) and yn(t) at frequency f, and Gmm( f ) is the auto-spectral

density of ym(t) at frequency f.
h a(t) is the amplitude of y(t).
i θ(t) is the phase of y(t).

across channels from two distinct brain regions [99].
Coherence (Coh) quantifies the similarities of neural
oscillation between channels [110]. Phase-amplitude
coupling (PAC) captures the linkage between the
phase of a low-frequency band and the amplitude of
a high-frequency band between channels [95, 111,
112]. Phase locking value (PLV) describes the phase
relationship consistency between signals from differ-
ent channels [64, 113]. Pearson correlation (Corr)
and band Pearson correlation (BCorr) quantify func-
tional connectivity between channels, across the
full band and within individual frequency bands,
respectively [79].

Here, BP, RBP, BPRC, Coh, PLV, and BCorr
were assessed across the aforementioned 7 frequency
bands. PAC analysis was performed between the
amplitudes of the low-gamma, gamma, and high-
gamma bands and the phases of the theta and alpha
bands, with 6 phase-amplitude combinations. BPRB
comparisons were made between each pair of the
7 bands, with 21 band-band combinations in total.
BP, RBP, BPRB, LL, HP, Max, Min, NE, skewness,
ApEn, and SampEn were calculated for each indi-
vidual channel. BPRC, Coh, PAC, PLV, Corr, and
BCorr were derived only from channel pairs between
IL and BLA, with 16 channel-channel combinations.
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ApEn and SampEn were computed using the MNE-
Features package.

2.5. Dataset partitioning and characteristics
After extracting the neuro-markers and behavioral
data, we partitioned them into three distinct data-
sets for subsequent use in training the decoding
model, selecting high-rank features, and evaluat-
ing the model’s performance. For each subject, we
divided the data from each recording session into
training, validation, and test sets, as depicted in
figure 1(c). The models were further trained and
evaluated on these datasets in a subject-dependent,
session-dependent manner.

A held-out test set, constituting 20% of the entire
recording, was designated from the final 20% of each
behavior session, while the initial 80% served as the
training and validation sets. The separation between
the training and validation sets employed a sliding-
window 5-fold cross-validation paradigm. The time
series data were evenly divided into 9 windows. In
the first fold, the initial 4 windows formed the train-
ing set, and the 5th window served as the validation
set. From the second to fifth folds, we sequentially
shifted the training and validation sets by one win-
dow forward in time, ensuring that validation sets
were different across folds and incorporating valida-
tion sets from preceding folds into the training sets
of subsequent folds. Therefore, the division ratios
for training and validation sets versus test sets, and
training sets versus validation sets, were maintained
at 80%–20%. This method respected the chronolo-
gical sequence of the time series data by consist-
ently organizing the datasets in a training-validation-
testing order. This organization ensured that the
model was always trained on historical data and val-
idated/tested on subsequent data, thereby prevent-
ing data leakage across the temporal dimension. The
size of training, validation, and test sets is shown in
table A1 and appendix A. The test set was utilized for
the final evaluation of the model’s decoding accuracy,
trained using the complete training and validation
sets. Feature selection and hyperparameter optimiza-
tion were conducted based on the model’s validation
set performance, trained on the training set data.

Our dataset covers both neural and behavioral
responses under a structured experimental paradigm.
Its richness and uniqueness lie in its detailed temporal
resolution and the simultaneous recording of mul-
tiple modalities (neural signals and behavioral meas-
ures including accelerometry, reward-seeking, and
freezing). This integration allows for advanced mod-
eling of the neural correlates of behavior, providing
insights into the neural dynamics underlying avoid-
ance behaviors. Additionally, the specific condition-
ing paradigm, featuring sequential phases of habitu-
ation, conditioning, extinction, and recall, enables
a nuanced analysis of conditioned/unconditioned

behavioral responses. Furthermore, the integration of
these diverse neuro-markers across multiple domains
not only improves the accuracy of decoding mod-
els applied to predict behavioral outcomes, but also
enables a deeper understanding of the underlying
neurophysiological processes, therefore making it a
valuable resource for both exploratory and predictive
studies in defensive behaviors.

2.6. Decoding model
A diverse array of machine learning (ML) models
has been employed for neuropsychiatric tasks and
brain-machine interface applications, including LR
[69, 110], SVM [64, 70, 74, 114, 115], RF [116, 117],
and artificial neural network (ANN) [118, 119].
Moreover, gradient-boosted decision trees (GBDT)
have demonstrated promising performance in
previous neurophysiological task studies [97, 98, 104,
114, 120]. In this work, we utilized a GBDT-based
model named Light Gradient-Boosting Machine
(LightGBM), known for its efficiency in reducing
data instances and features through gradient-based
one-side sampling (GOSS) and exclusive feature
bundling (EFB) [121]. GOSS retains data instances
with gradients above a certain threshold while ran-
domly discarding instances with smaller gradients,
thereby maintaining the data’s substantial contribu-
tion to information gain. EFB efficiently reduces the
number of effective features by bundling mutually
exclusive features—those not taking non-zero values
simultaneously—into a single feature. By leveraging
GOSS and EFB, LightGBM achieves superior com-
putational speed and lower memory usage compared
to other GBDTs, without compromising the accuracy
intrinsic to GBDT models.

In addition to LightGBM, we evaluated a variety
of ML models widely applied in neurophysiological
research, employing our proposed feature set as out-
lined in table 1. These models encompass traditional
ML approaches such as LR, SVM with both Linear
(SVM-Lin) and radial basis function kernels (SVM-
RBF) [122], the tree-based RFmodel [123], and ANN
models with diverse architectures, including MLP
[68], long short-termmemory (LSTM) [124], convo-
lutional neural networks (CNN) [125], and Residual
Networks (ResNet) [126]. The details of the train-
ing procedure, model architectures, and hyperpara-
meter selection are presented in appendix C. In our
preliminary decoding analysis shown in table 2, by
leveraging all neural features, we assessed the decod-
ing accuracy for accelerometry jerk and bar press rate
across the aforementionedMLmodels, averaged over
subjects in each recording session. Performance eval-
uation was conducted using both the coefficient of
determination (R2) and the Pearson correlation coef-
ficient (r) metrics. It should be noted that here, R2 is
not the squared Pearson correlation coefficient, and
its value lies within the range of (−∞,1]. A negative
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Table 2. Performance of ML models for decoding defensive behaviors averaged across subjects in each recording session. The
performance was evaluated using the coefficient of determination (R2) and the Pearson correlation coefficient (r). The best results are
bolded.

Behavior Metric Session LR SVM-Lin SVM-RBF RF MLP LSTM CNN ResNet LightGBM

Accelerometry
jerk

R2

Habituation −59.52 −140.8 0.4495 0.4581 0.4668 0.4554 0.4614 0.4545 0.4677
Conditioning −1099 −3.593 0.3931 0.6324 0.6240 0.6301 0.6239 0.6216 0.6310
Extinction −62.73 −6.935 0.4815 0.4913 0.4878 0.4646 0.4779 0.4592 0.4952
Recall −2.040 −0.3346 0.4916 0.5417 0.5214 0.5391 0.5449 0.5390 0.5515

r

Habituation 0.4660 0.5038 0.6895 0.6974 0.6914 0.6827 0.6934 0.6817 0.6998
Conditioning 0.2497 0.5543 0.7052 0.8417 0.8313 0.8357 0.8224 0.8132 0.8425
Extinction 0.5340 0.5443 0.7037 0.7147 0.6951 0.6782 0.6978 0.6747 0.7187
Recall 0.5515 0.5940 0.7320 0.7688 0.7614 0.7712 0.7676 0.7615 0.7753

Bar press rate

R2

Habituation −466.0 −719.3 −8.451 0.3299 0.3105 0.3201 0.3281 0.3188 0.3306
Conditioning −638.8 −92.94 −20.55 0.2819 0.2697 0.2610 0.2734 0.2713 0.2848
Extinction −22.16 −49.67 −13.56 0.3713 0.3576 0.3654 0.3722 0.3578 0.3798
Recall −2.027 −2.517 −9.068 0.3746 0.3618 0.3597 0.3610 0.3576 0.3761

r

Habituation 0.3626 0.3194 ——–a 0.5995 0.5796 0.5809 0.6064 0.5856 0.6113
Conditioning 0.3202 0.2899 ——–a 0.5480 0.5313 0.5298 0.5334 0.5331 0.5435
Extinction 0.4536 0.3432 ——–a 0.6115 0.6072 0.6105 0.6204 0.6101 0.6237
Recall 0.3540 0.3248 ——–a 0.6249 0.6134 0.6029 0.6212 0.6251 0.6368

a Not applicable due to the fact that the model produced a single constant value as its output for all inputs, and thus a Pearson

correlation coefficient could not be computed.

Figure 2. Comparative performance of ML models for decoding accelerometry jerk (Left) and bar press rate (Right) in accuracy,
training time, inference time, and memory size, averaged across subjects and sessions. Each circle represents a model, with the size
of the circle proportional to the memory size (on a logarithmic scale), and with the color of the circle proportional to the accuracy
evaluated using R2 (in an exponential scale).

R2 suggests that the decoded behavior captures less
variation in the real behavior than a constant value
equivalent to the average of the ground truth, indicat-
ing relatively poor decoding performance. Our find-
ings in table 2 indicate that by using our extracted
neuro-markers as inputs, LightGBM outperformed
other ML models in decoding both accelerometry
jerk and bar press rate in 14 out of 16 comparis-
ons. We also employed ANNs to test their capability
of automatic neural feature extraction for decoding
defensive behaviors. LSTM-Raw, WaveNet-Raw (an
advanced CNN model with a multi-temporal-scale
structure) [127], andResNet-Raw [126] used raw LFP
signals as inputs for the decoding tasks appendix B.
The results from this experimental setup, as delin-
eated in table A2, were systematically compared with

the decoding performance of models that incorpor-
ate neuro-markers (table 2). This analysis reveals that
manual feature extraction consistently outperforms
the ANN models using raw LFP signals, and it sug-
gests that these neuro-markers introduce a level of
specificity and relevance that current ANN architec-
tures struggle to achieve autonomously when work-
ing with neural data.

The performance superiority of LightGBM for
decoding defensive behaviors is further evident from
the comparative analysis of accuracy, training and
inference times, as well as memory usage across dif-
ferent models. As illustrated in figure 2, LightGBM
achieved the highest decoding accuracy among all
tested ML models for both behavioral metrics, as
indicated by the R2 values in the scatter plots (0.5364
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for accelerometry jerk and 0.3428 s for bar press
rate). Moreover, LightGBM not only shows a reduced
memory footprint (28.30 kB) but also exhibits sig-
nificantly lower training times (5.336 s for accelero-
metry jerk and 5.130 s for bar press rate) and infer-
ence times (0.06 006 ms for accelerometry jerk and
0.05 966 ms for bar press rate), compared with other
models that achieve relatively lower decoding accur-
acy (SVM-RBF, RF, MLP, LSTM, CNN, and ResNet),
presented in figure 2 and table A3. Training time is the
duration in clock time for training a model using all
training samples, and inference time refers to the time
used for each model to provide a prediction for one
test sample. These attributes of LightGBM suggest its
significant advantages in predicting avoidance beha-
viors in a closed-loop application where accuracy,
speed, and memory efficiency are all critical [39].
Therefore, we selected LightGBM as the basis model
for subsequent analyses in our study.

All ML models were conducted on a single core
of AMD Ryzen Threadripper PRO 5995WX CPU by
Python 3.8.16, scikit-learn 1.2.2, and Pytorch 2.0.1,
and they were run on the same platform Red Hat
Enterprise Linux 7.9. The implementation of LR,
SVM-Lin, SVM-RBF, and RF was conducted using
scikit-learn, whileMLP, LSTM, CNN, ResNet, LSTM-
Raw, WaveNet-Raw, and ResNet-Raw were imple-
mented via Pytorch. LightGBM was implemented
using the LightGBM package provided by Microsoft.

2.7. Model training and evaluation
Figure 1(d) illustrates the model training process
using the dataset configuration detailed in figure 1(c).
LightGBM models were trained in a subject-specific
and session-specific manner, premised on the hypo-
thesis that neural representations of defensive beha-
viors exhibit inter-subject variability. Furthermore,
we fitted models separately for each recording ses-
sion because we expected the neural encoding to shift
over time. Tone-shock conditioning and extinction
learning both involve significant plasticity in the IL-
BLA circuit, and thus defensive behaviors might be
driven by different activity patterns before vs. after
a given stage of learning. For each subject and ses-
sion, 5 LightGBM models were trained and assessed
using the 5 folds designated for the training and val-
idation sets, which were subsequently used for the
selection of top-ranked features based on high fea-
ture importance values. A final LightGBMmodel was
then trained using the aggregated training and val-
idation sets and evaluated against the held-out test
set, incorporating either band power features, selec-
ted top-ranked features (named as LightGBM-Top in
the following analyses), or the entire set of extracted
features.

The model’s decoding performance was quanti-
fied using R2 and r to compare ground truth with
predicted behavioral measurements. The loss in R2

served to evaluate the neuro-markers’ contribution
to decoding performance by their exclusion from the
model. R2 was also applied in the validation set’s per-
formance analysis to guide the selection of a spe-
cific number of top-ranked features. Additionally, r
was also utilized to compare the similarities between
feature importance matrices. The evolution of the
training curves, delineated by the percentage change
in L2 Loss (Mean Squared Error Loss) with increas-
ing iterations, provided further insight into training
dynamics.

2.8. Feature selection
Integrating an increased number of neuro-markers
across spectral, temporal, and connectivity domains
may enhance the decoding accuracy for defensive
behaviors. However, this augmentation results in a
proliferation of features, increasing computation time
and memory requirements. Furthermore, some fea-
tures may be uninformative or redundant within the
ML framework, complicating the derivation of neur-
oscientific insights frommodels based on an extensive
array of features. In our study, we extracted 17 types
of neuro-markers, totaling 1296 features as input
into the model, which inflated the computational
costs unnecessarily. Consequently, we implemented
a feature selection method to reduce computational
demands, mitigate the risk of model overfitting, and
identify which LFP features were most informative
and, thereby, potentially causal to behavior.

We utilized SHapley Additive exPlanations
(SHAP) for the assessment of feature importance
among neuro-markers [128]. SHAP is a compre-
hensive measure of feature importance based on the
Shapley values from a conditional expectation func-
tion of the originalmodel. These values offer a unique
feature importancemetric that adheres to three desir-
able properties including local accuracy, missingness,
and consistency when evaluating the additive attri-
bution of one feature to the prediction output [128].

For each defensive behavior across every record-
ing session, we assessed the SHAP values for every
feature across the 5 LightGBM models, each trained
using a distinct fold. Subsequently, for each feature,
we computed the mean of its absolute SHAP values
across all data instances and folds, establishing this as
the cumulative contribution of the feature within that
session. To identify the top-ranked features that are
both subject- and behavior-specific and exhibit con-
sistency across different days, these calculated attri-
butions were further averaged over 4 recording ses-
sions to determine the ultimate feature importance,
as shown below:

impi =
1

5NS

∑
s

∑
f

∑
n

|ϕn,f,s,i| (2)

where impi is the importance of feature i ∈
{1,2, . . .,M}, ϕn,f,s,i is the SHAP value for data
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instance n ∈ {1,2, . . .,N}, fold f ∈ {1,2, . . .,5}, ses-
sion s ∈ {1,2, . . .,S}, and feature i, and M,N,S are
the numbers of features, samples, and sessions,
respectively.

Features were subsequently ranked based on their
SHAP importance in the training set. Then in the
order of their rankings, we sequentially added the fea-
tures into the feature set, as the input to the model.
All models with increasing amounts of ranked fea-
tures were subsequently trained on the training set
and evaluated on the validation set using R2. The
peak validation performance is the highest average R2

across 5 folds among these models. We implemented
a paired-sample t-test between the average R2 of these
models and the peak performance, and identified the
feature subset with a p-value no less than 0.05 in the
significance test and with the minimum number of
features as the selected feature set. The feature selec-
tion process therefore can be written as follows:

θ∗i,f = argmin
θ

L
(
h
(
x
trainf
j1

, . . .,x
trainf
ji

|θ
)
,ytrainf

)
R2
i =

1

5

∑
f

R2
(
h
(
x
valf
j1

, . . .,x
valf
ji

|θ∗i,f
)
,yvalf

)
R2
max =max

i
R2
i

i∗ =min
i

{
i : g

(
R2
i ,R

2
max

)
⩾ 0.05

}
X∗ =

[
xj1 , . . .,xji∗

]
(3)

where x
trainf
i is the ith feature in the training set of

the fth fold with i ∈ {1, . . .,M} and f ∈ {1, . . .,5}.
{xtrainfji

} are the sorted features such that imp
trainf
j1

>

.. . > imp
trainf
jM

, and {xvalfji
} are the features in the val-

idation set of the fth fold sorted as in the training set.
ytrainf and yvalf are the target variables in the training
and validation set of the fth fold respectively. h(θ) is
the model with parameters θ. L(•,•) is the loss func-
tion, R2(•,•) is the coefficient of determination func-
tion, and g(•,•) is the function of calculating p-value
in paired-sample t-test. i∗ is the amount of selected
features, {xi} is the set of features, andX∗ is the selec-
ted feature set.

2.9. Statistical analysis
We conducted paired-sample t-tests to assess the dif-
ferences in decoding performance between acceler-
ometry jerk, bar press rate, and freezing score. We
applied the same method to determine whether
decoding performance using selected top-ranked
features was significantly different from the peak
performance identified during feature selection.
Additionally, paired-sample t-tests compared the
SHAP values of features without or with various tem-
poral delays, by employing neural features not only
from the current window, but also from the preced-
ing windows lagged by up to 20 s, across all recording
sessions and subjects. Because there is an inherent
motor delay between the perception of threat and

the emission of defensive behavior, decoding might
perform better if that delay were taken into account
using this lagged method.

Independent-sample t-tests were utilized to
determine the statistical significance of overall SHAP
feature importance within specific frequency bands
relative to all other bands, across all recording sessions
and subjects. This test was also applied to evaluate
the significance of feature contributions to decoding
performance within specific frequency bands in com-
parison with contributions from all other frequency
bands. The Wilcoxon signed-rank test was employed
to compare decoding performance when using band
power features, selected top-ranked features, and the
entire set of extracted features across all subjects. To
account for multiple comparisons, Bonferroni cor-
rections were applied to adjust p-values, tailored to
the number of comparisons conducted. The imple-
mentation of paired-sample t-tests, independent-
sample t-tests, and the Wilcoxon signed-rank tests
were carried out using the SciPy package.

2.10. Comparison with existing work using
LightGBM for neural decoding
LightGBM is a well-established method in vari-
ous fields, but its application within the context of
predicting defensive responses for closed-loop sys-
tems in neuropsychiatricmodulation presents unique
challenges and opportunities. This section com-
pares our innovative approach to the LightGBM
application with existing methods, emphasizing the
advancements we have made in decoding avoidance
behaviors.

Most existing applications of LightGBM in neural
decoding have typically focused on limited datasets,
often emphasizing either spectral or temporal fea-
tures but seldom integrating extensive connectivity
measures [39, 98, 129–132]. Such studies include
more straightforward applications in general clas-
sification tasks within neuroscience but lack the
depth of neural correlates integration. Our study
uniquely integrates a broad array of neuro-markers
from three different domains-spectral, temporal, and
connectivity. This comprehensive integration allows
for a deeper understanding and modeling of neural
dynamics associatedwith defensive behaviors, enhan-
cing the model’s ability to predict and interact with
complex neural phenomena.

While other studies may use LightGBM, they
often employ more traditional feature selection tech-
niques, such as recursive feature elimination or prin-
cipal component analysis, which do not provide
the same level of interpretability or direct link-
age to neural dynamics [114, 129, 130, 133, 134].
Conversely, our approach utilizes SHAP to perform
feature selection, enhancing interpretability and
focusing on the most impactful features for model
prediction. This methodology is innovative in its
application, providing clear insights into how specific
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neuro-markers influence model outputs, thereby
advancing the field towards more interpretable and
effective neural decoding strategies.

Comparative analyses in existing works often
focus solely on the neural decoding accuracy of ML
models including LightGBM [131, 133, 135]. Our
research, however, not only demonstrates the super-
ior performance of LightGBM over traditional and
some ANN models but also provides a detailed com-
parative analysis showing this advantage across mul-
tiple metrics (accuracy, training time, inference time,
and memory size). These metrics are all critical
factors for real-time decoding in closed-loop neur-
omodulation, highlighting our model’s suitability for
high-stakes, real-time applications in clinical settings.

In summary, while LightGBM is used across vari-
ous domains for decoding, our application in the con-
text of neuropsychiatric closed-loop systems leverages
unique dataset characteristics, advanced feature selec-
tion methods, and rigorous comparative perform-
ance evaluation to significantly enhance the utility
and efficacy of this tool in neuroscientific research.

3. Results

3.1. Comparison of decodability of defensive
behaviors using proposedML framework
The comparison of training processes and decoding
performances for accelerometry jerk, bar press rate,
and freezing score is depicted in figure 3. Figure 3(a)
depicts the training curves, showcasing the L2 loss
changes, averaged across subjects and recording ses-
sions. Themodels underwent training using the train-
ing set, with the percentage change in L2 loss from
the initial untrained state evaluated on both the train-
ing and validation sets. For all three behaviors, the
L2 loss for training sets exhibited a consistent decline
with additional iterations. However, the validation
set loss for the freezing score demonstrated minimal
improvement (−9.5%), in contrast to accelerometry
jerk (−53.6%) and bar press rate (−34.6%).

Therewere large differences in the degree towhich
the different forms of defensive behavior could be
decoded from the IL/BLA LFPs (i.e. in the degree to
which these behaviors were encoded within the LFPs
in that brain circuit). Specifically, the freezing score
was only marginally decodable across sessions, with
the mean coefficient of determination (R2) averaged
across subjects never surpassing 0.12 in all record-
ing sessions, as shown in figure 3(b). While the bar
press rate showed a higher degree of decodability, per-
formances were slightly diminished during the con-
ditioning session, attributed to strong bar press sup-
pression resulting from foot shocks. Accelerometry
jerk emerged as the most reliably decodable beha-
vior, with the mean R2 values across subjects consist-
ently exceeding 0.46 in all recording sessions. Overall,
decoding accuracy varied significantly among differ-
ent defensive behaviors, following a descending order

from accelerometry jerk to bar press rate to freezing
score. These findings remained consistent when eval-
uated using both R2 and the Pearson correlation coef-
ficient (r) for performance assessment.

The variation in decoding performance may
arise in part from the distinct characteristics of
each behavioral signal, as illustrated in figure 3(c).
Accelerometry jerk is characterized by a smoothly
fluctuating signal that remains predominantly
non-zero. In contrast, bar press rate often drops to
zero but then has sharp deviations from baseline dur-
ing bouts of pressing. Freezing score exhibits some
local deviations even after smoothing. Regarding the
freezing score in figure 3(c), the model succeeds in
tracking the global trend, resulting in a relatively high
r. Nevertheless, it struggles to capture local variations,
leading to an R2 of 0.071 for the freezing score. This
indicates that the decoded behavior scarcely captures
variance from the actual behavior, offering only mar-
ginal predictive improvement over the expected value
of the true behavior. In light of these findings, sub-
sequent analyses concentrated on accelerometry jerk
and bar press rate, given that interpretations derived
from the non-predictive models of freezing score
could potentially be misleading.

3.2. Importance and contribution of
neuro-markers to the decoding performance
Subsequently, our focus shifted towards understand-
ing the importance of each neuro-marker type in
decoding defensive behaviors. Figures 4(a) and (b)
delineate the importance of three feature domains,
diverse neuro-markers, and frequency bands in
decoding defensive behaviors. A notable observa-
tion is that spectral, temporal, and connectivity fea-
tures all play a crucial role in decoding defensive
behaviors. Specifically, temporal (43.0%) and spec-
tral (41.1%) features outweigh connectivity features
(15.9%) for the prediction of accelerometry jerk. In
contrast, for bar press rate prediction, connectivity
(39.8%) emerges as the predominant domain, sur-
passing spectral (34.7%) and temporal (25.5%) fea-
tures. Among the individual types of neuro-markers
for accelerometry jerk decoding, band power (BP)
(33.2%), line length (LL) (21.0%), and band power
ratio between channels (BPRC) (10.2%) stand out as
the most influential features within the spectral, tem-
poral, and connectivity domains, respectively. This
holds true despite the availability of a larger number
of connectivity features compared to spectral or tem-
poral features, owing to connectivity’s reliance on the
squared number of channels. For bar press rate, BP
(18.9%) and BPRC (15.5%) consistently rank as crit-
ical, with other spectral and connectivity features like
band power ratio between bands (BPRB) (11.2%) and
band Pearson correlation (BCorr) (8.2%) also con-
tributing substantially to predictions, unlike other
temporal features. Notably, for the leading contrib-
utors (BP and BPRC) as well as other neuro-markers
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Figure 3. Decoding performances for accelerometry jerk, bar press rate, and freezing score. (a) Comparisons of training curves of
our ML model for decoding accelerometry jerk (Left), bar press rate (Middle), and freezing score (Right). The percentages of the
change of L2 Loss on the training and validation sets are shown with the increasing number of iterations during the training
process. The shading areas indicate standard errors across subjects. (b) Decoding performance for accelerometry jerk, bar press
rate, and freezing score in four recording sessions averaged across subjects. The line in the boxplot shows the average performance
across subjects, and each dot indicates the result of an individual subject. The performances were evaluated using the coefficient
of determination (Left, R2) and the Pearson correlation coefficient (Right, r). The asterisks denote the significant difference in the
decoding performance of two defensive behaviors. (Paired-sample t-test; ∗ ∗ ∗ : p< 0.001) (c) Decoding examples for
accelerometry jerk (Left), bar press rate (Middle), and freezing score (Right), from a single rat and session (OB44, Habituation),
with performance evaluated using R2 and r.

that span seven frequency bands, including BCorr,
coherence (Coh), and phase locking value (PLV),
their high-gamma components are identified as cru-
cial for decoding defensive behaviors, except Coh for
accelerometry jerk and PLV for bar press rate, which
prominently feature alpha and gamma components,
respectively.

Beyond quantifying feature importance by eval-
uating their attribution to the prediction, we also
explored their impact on decoding performance, as
illustrated in figures 4(c) and (d). For accelerometry
jerk, BP, LL, and BPRC were identified as principal
contributors, aligning with their established predict-
ive importance in figure 4(a). The order of neuro-
marker contributions to accelerometry jerk decod-
ing performance as shown in figure 4(c) mirrors
their predictive significance as depicted in figure 4(a).
In the case of bar press rate, BCorr, BPRC, and
BPRB maintain a substantial impact on decoding
performance, consistent with figure 4(b). However,
BP’s contribution appears noticeably diminished rel-
ative to the aforementioned features, underscoring
its reduced spectral significance in comparison with
BPRB for bar press rate decoding.

This analytical approach to feature importance in
both prediction and decoding performance elucidates
the substantial importance of neuro-markers across
all three domains. BP and BPRC emerge as common
key contributors for decoding both defensive beha-
viors, with LL for accelerometry jerk and BCorr and
BPRB for bar press rate also deemed important in
terms of prediction and performance.

3.3. Importance and contribution of band powers
in different frequency bands to the decoding
performance
In figure 4, band power emerged as one of the
most influential features. We delved deeper into its
importance in terms of prediction and decoding
performance across seven frequency bands, includ-
ing delta, theta, alpha, beta, low-gamma, gamma,
and high-gamma, extracted from both IL and BLA,
for the decoding of accelerometry jerk and bar
press rate, as detailed in figure 5. The import-
ance matrices in figures 5(a)–(d) highlight the
importance of band power in these frequency bands
across recording sessions, brain regions, and targeted
behaviors. Collectively, these matrices consistently
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Figure 4. The importance of neuro-markers during decoding process. (a) (Left) The importance of various types of
neuro-markers for decoding the accelerometry jerk is illustrated in the outer chart. The importance of markers in the spectral,
temporal, and connectivity domains is shown in the inner chart. (Right) The importance of band power, band power ratio
between channels, band Pearson correlation, coherence, and the phase locking value in different frequency bands is shown in the
small charts. (b) Same as in (a), but for the bar press rate. (c) Contribution of various types of neuro-markers to the decoding
performance for accelerometry jerk, averaged across subjects and recording sessions and evaluated using the R2 loss after
removing each type of markers from the ML input. Error bars indicate the standard errors across subjects and sessions. (d) Same
as in (c), but for bar press rate.

reveal that high-gamma power in the IL and BLA
is more important for predicting behavior than
all other frequency bands, and that this is true
across different phases of aversive learning and
extinction. Figures 5(e)–(h) compare the pairwise
similarities among the elements of the import-
ance matrices from figures 5(a)–(d), examining
either the significance of spectral power within
identical bands and sessions across different brain
regions or in decoding diverse defensive behavi-
ors. These importance matrices exhibit substantial
correlation with each other (r> 0.61, p< 6.0e− 4),
with the high-gamma components invariably display-
ing elevated importance values. This pattern sug-
gests that high-gamma power maintains a consist-
ent associationwith defensive behavior across various
contexts.

Expanding our analysis to consider the band
powers from another angle, we explored their impact
on decoding performance across seven frequency
bands, as depicted in figures 5(i) and (j). Notably,
the exclusion of high-gamma power leads to a sig-
nificantly stronger decline in model performance

across subjects and sessions compared with all other
bands, aligning with observations from figures 5(a)–
(h). Therefore, the comprehensive findings of figure 5
underscore the pivotal role of high-gamma power as
the spectral band most closely linked to defensive
behavior, both in terms of attribution to prediction
and decoding performance.

3.4. Importance and contribution of cross-region
neuro-markers in different frequency bands to the
decoding performance
In figure 4, the band power ratio between IL and
BLA emerged as a pivotal feature, especially in
the context of bar press rate decoding. We dissec-
ted the relative contribution of different frequency
bands as depicted in figure 6. Here again, high
gamma features were identified as the most influ-
ential encoders of defensive behaviors. Additionally,
beta band ratios from BLA to IL exhibited mar-
ginal significance for accelerometry jerk, as illus-
trated in figure 6(c). Figures 6(e)–(h) explore the
pairwise similarities among the elements of the
importance matrices from figures 6(a)–(d), assessing
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Figure 5. The high-gamma band powers are generally more predictive than other bands for decoding defensive behaviors. (a)–(d)
The importance of band powers (BP) in seven frequency bands and four recording sessions is illustrated in the importance
matrices, where each element is the SHAP values averaged across subjects. Bands with significantly higher importance than the
other bands are marked with red asterisks. (Independent-sample t-test; ∗ ∗ ∗ : p< 0.001). (a) BP in IL for decoding
accelerometry jerk. (b) BP in IL for decoding bar press rate. (c) BP in BLA for decoding accelerometry jerk. (d) BP in BLA for
decoding bar press rate. (e)–(h) The similarities between the importance matrices were evaluated using the Pearson correlation
coefficient (r) and p-value (p). Each dot indicates its importance in the same band and the same session between different brain
regions or defensive behaviors. Red points denote the importance of high-gamma powers. (e) BP in IL and BLA for decoding
accelerometry jerk (AJ). (f) BP in IL and BLA for decoding bar press rate (BPR). (g) BP in IL for decoding AJ and BPR. (h) BP in
BLA for decoding AJ and BPR. (i)–(j) The contribution of BP in seven frequency bands to the decoding performance, averaged
across subjects, was evaluated using the R2 loss after removing each band from the ML inputs. The error bars indicate the
standard errors across subjects. Bands with significantly higher contributions than the other bands are marked with asterisks.
(Independent-sample t-test; ∗∗ : p< 0.01, ∗ ∗ ∗ : p< 0.001). (i) The contribution of BP to the decoding performance for
accelerometry jerk. (j) The contribution of BP to the decoding performance for bar press rate.

either the importance of spectral power ratios within
identical bands and sessions across two reciprocal
ratios (IL/BLA and BLA/IL) or in decoding various
defensive behaviors. These comparisons revealed sig-
nificant similarities (r> 0.67, p< 1.1e− 4). High-
gamma power ratios were distinctly more important

than other bands in various analyses presented
in figures 6(e)–(h). This comprehensive analysis
indicates a clear concordance in the significance of
high-gamma power ratios between IL and BLA, align-
ing with the patterns of importance outlined in
figures 6(a)–(d).
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Figure 6. The high-gamma band power ratios between IL and BLA are generally more predictive than other bands for decoding
defensive behaviors. (a)–(d) The importance of band power ratios between IL and BLA (BPRC) in seven frequency bands and
four recording sessions is illustrated in the importance matrices, where each element is the SHAP values averaged across subjects.
Bands with significantly higher importance than the other bands are marked with red asterisks. (Independent-sample t-test;
∗ : p< 0.05, ∗ ∗ ∗ : p< 0.001). (a) BPRC of IL to BLA (IL/BLA) for decoding accelerometry jerk. (b) IL/BLA for decoding bar
press rate. (c) BPRC of BLA to IL (BLA/IL) for decoding accelerometry jerk. (d) BLA/IL for decoding bar press rate. (e)–(h) The
similarities between the importance matrices were evaluated using the Pearson correlation coefficient (r) and p-value (p). Each
dot indicates its importance in the same band and the same session between different brain regions or defensive behaviors. Red
points denote the importance of high-gamma power ratios. (e) BPRC of IL to BLA (IL/BLA) and BPRC of BLA to IL (BLA/IL) for
decoding accelerometry jerk (AJ). (f) IL/BLA and BLA/IL for decoding bar press rate (BPR). (g) IL/BLA for decoding AJ and BPR.
(h) BLA/IL for decoding AJ and BPR. (i)–(j) The contribution of BPRC in seven frequency bands to the decoding performance,
averaged across subjects, was evaluated using the R2 loss after removing each band from the ML inputs. The error bars indicate
the standard errors across subjects. Bands with significantly higher contribution than the other bands are marked with asterisks.
(Independent-sample t-test; ∗∗ : p< 0.01). (i) The contribution of BPRC to the decoding performance for accelerometry jerk. (j)
The contribution of BPRC to the decoding performance for bar press rate.

To gain further insights into the band power
ratios, we examined their impact on decoding per-
formance, as illustrated in figures 6(i) and (j). High-
gamma power ratios consistently led to the most
substantial decrease in performance across subjects
and sessions when excluded from the ML model.

Thus, high-gamma power ratios are critical to decod-
ing performance for both accelerometry jerk and bar
press rate, surpassing the impact of all other fre-
quency bands.

The band power ratios reveal variations in the
activation levels between IL and BLA, offering
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Figure 7. The high-gamma band Pearson correlations between IL and BLA are generally more predictive than other bands for
decoding defensive behaviors. (a) and (b) The importance of band Pearson correlations between IL and BLA (BCorr) in seven
frequency bands and four recording sessions is illustrated in the importance matrices, where each element is the SHAP values
averaged across subjects. Bands with significantly higher importance than the other bands are marked with red asterisks.
(Independent-sample t-test; ∗ ∗ ∗ : p< 0.001). (a) BCorr for decoding accelerometry jerk. (b) BCorr for decoding bar press rate.
(c) The similarity between the importance matrices for decoding accelerometry jerk and bar press rate was evaluated using the
Pearson correlation coefficient (r) and p-value (p). Each dot indicates its importance in the same band and the same session
between different defensive behaviors. Red points denote the importance of high-gamma correlations. (d) and (e) The
contribution of BCorr in seven frequency bands to the decoding performance, averaged across subjects, was evaluated using the
R2 loss after removing each band in the ML inputs. The error bars indicate the standard errors across subjects. Bands with
significantly higher contributions than the other bands are marked with asterisks. (Independent-sample t-test; ∗ : p< 0.05,
∗∗ : p< 0.01). (d) The contribution of BCorr to the decoding performance for accelerometry jerk. (e) The contribution of BCorr
to the decoding performance for bar press rate.

insights into their differential engagement during
defensive behaviors. These ratios allow researchers
to deduce the degree of synchronization and the
dynamic interactions between IL and BLA. However,
it is important to note that band power ratios alone
do not directly quantify the functional connectivity of
these regions. Consequently, we further explored the
Pearson correlations between neural signals of IL and
BLA, evaluating their significance for prediction and
impact on decoding performance across various fre-
quency bands, as depicted in figure 7. In this analysis,
correlations within the high-gamma frequency band
emerged as the most informative features, outper-
forming those of other frequency bands in decoding
both accelerometry jerk and bar press rate, as shown
in figures 7(a) and (b). Figure 7(c) demonstrates the
similarity between the elements of the importance
matrices from figures 7(a) and (b), revealing a signi-
ficant correlation (r= 0.53, p= 3.6e− 3). We further
explored the impact of band Pearson correlations on
decoding performance, as depicted in figures 7(d)
and (e). High-gamma correlations consistently led
to the most significant decline in performance when
excluded from the model.

Collectively, band power ratios and band Pearson
correlations elucidate the neural representations
between IL and BLA through distinct lenses.

Therefore, the findings presented in figures 5–7
together show that, across spectral and connectiv-
ity domains, oscillations in the high-gamma range
within and between IL and BLA are the most reli-
able encoder of defensive behaviors. Thus, within the
scope of our study, these features appear to be the
most reliable among the spectral, temporal, and con-
nectivity neuro-markers used for decoding avoidance
behaviors in a closed-loop paradigm.

3.5. Feature selection chooses important
neuro-markers andmaintains decoding
performance
In this study, we introduced 17 types of neuro-
markers as features, yielding a total of 1296 features
for inclusion in our ML framework. Incorporating
all these features would lead to increased computa-
tional and memory demands. Feature selection is a
widely recognized strategy for mitigating the com-
putational burden of cognitive decoders [69, 136].
Figure 8 explores the impact of feature dimension-
ality on decoding performance and the proportion
of various types of neuro-markers among the selec-
ted features. Figure 8(a) presents the feature selec-
tion process based on feature importance as quan-
tified by SHAP values. Here, the decoding accuracy
on the validation sets, averaged across subjects, is
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Figure 8. Neuro-markers with higher feature importance and contribution to the decoding performance were chosen through
feature selection. (a) Feature selection using feature importance evaluated by SHAP values for decoding the accelerometry jerk
(Left) and bar press rate (Right). Features were iteratively selected according to the decreasing order of SHAP feature importance.
Shading areas indicate the standard errors across subjects. 36 and 81 top-ranked features were selected from all 1296 features
respectively. The performance saturates after 100 features. Venn diagram represents the overlap of top-ranked features for the
accelerometry jerk and bar press rate (Middle). (b) (Left) The proportion of different types of neuro-markers among the selected
top-ranked features for decoding the accelerometry jerk is illustrated in the outer chart. The proportion of selected features in the
spectral, temporal, and connectivity domains is shown in the inner chart. (Right) The proportion of band power, band power
ratio between channels, band Pearson correlation, coherence, and the phase locking value in different frequency bands are shown
in the small charts. (c) Same as in (b), but for decoding the bar press rate.

depicted in relation to the quantity of top-ranked
features. Notably, performance improves with an
increasing number of selected features, reaching a
plateau at approximately 100 features. By selecting
only 36 and 81 top-ranked features, we observed that
decoding accuracy on validation sets across all record-
ing sessions was comparable to, and not significantly
inferior to, the peak performance identified through
an exhaustive exploration of all possible counts of
top-ranked features (Paired-sample t-test; accelero-
metry jerk: p= 1.1e− 1, bar press rate: p= 6.1e− 2.
See section 2.8). These findings underscore the feas-
ibility of dramatically reducing feature dimensional-
ity by 97.2% (36 out of 1296) and 93.8% (81 out of
1296) without significantly compromising decoding
efficacy. Within the subset of 36 and 81 top-ranked
features selected for the decoding of accelerometry
jerk and bar press rate, respectively, an average of 10.7
features are concordant and can predict both defens-
ive behaviors across subjects.

Figure 8(b) and (c) delineate the distribution of
different types of neuro-markers within the selec-
ted features, aligning with the previously established

importance of these markers regarding prediction
and performance as depicted in figure 4. In the case
of accelerometry jerk, spectral (43.8%) and tem-
poral (40.6%) features were more frequently selec-
ted over connectivity features (15.6%). BP (37.2%),
LL (12.2%), and BPRC (12.5%) emerged as the pre-
dominant feature groups within the spectral, tem-
poral, and connectivity domains, respectively, as
shown in figure 8(b). Conversely, for bar press
rate, as illustrated in figure 8(c), the model exhib-
ited a preference for selecting connectivity fea-
tures (43.8%) over spectral (31.9%) and temporal
(24.2%), with BPRC (16.2%), BP (15.4%), BPRB
(11.0%), and BCorr (9.1%) identified as leading pre-
dictors. Across all neuro-markers that span 7 fre-
quency bands, including BP, BPRC, BCorr, Coh,
and PLV, high-gamma components were most fre-
quently chosen for decoding both defensive behavi-
ors, with the exception of PLV for bar press rate,
where the gamma component was more prominently
featured.

Since there can be a lag between decisions and
manifested behavior, we also evaluated the decoding
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Figure 9. The decoding performance was improved by using more than one type of neuro-marker, but remained good when only
high-importance features were used for training. (a) The comparisons of decoding performance for the accelerometry jerk using
band powers (BP), selected top-ranked features (Top: LightGBM-Top), and all features (All) in four recording sessions averaged
across subjects, evaluated using the coefficient of determination (R2). Mean denotes the performance averaged across sessions.
The line in the boxplot shows the average performance across subjects, and each dot indicates the result of an individual subject.
The comparisons in Mean were marked with asterisks if one averaged performance was significantly greater than the other.
(Wilcoxon signed-rank test; ∗ ∗ ∗ : p< 0.001, NS : p ⩾ 0.05) (b) Same as in (a), but for decoding the bar press rate. (c) Same as
in (a), but evaluated using the Pearson correlation coefficient (r). (d) Same as in (c), but for decoding the bar press rate.

results using lagged neural data, as presented in
figure A1. Figures A1(a) and (b) illustrate that neural
features temporally close to the current time point
yield superior decoding accuracy for both behavi-
ors, suggesting these features encapsulate a richer
neural representation regarding defensive responses
than those from earlier time windows. As shown
in figure A1(c), the inclusion of features from pre-
ceding time windows together with current features
does not markedly enhance the decoding perform-
ance for accelerometry jerk. In contrast, figure A1(d)
indicates a modest improvement in the decoding
of bar press rate when previous time window fea-
tures are incorporated. Furthermore, figures A1(e)
and (f) indicate that the predictive power of features
for both behaviors is predominantly concentrated in
recent time windows, with a significant decline in
predictivity as the temporal gap widens. The find-
ings indicate that neural representations closest to
the event of interest are most informative for decod-
ing both defensive behaviors, with immediate past
features contributing more significantly to model
accuracy than older ones. We thus have emphas-
ized the importance, in preceding and subsequent
analyses, of features aligned to behavior with zero
lag. The demonstrated temporal gradient in fea-
ture predictivity could inform the development of a
more refined real-time decoder for neuropsychiatric
interventions.

In figure 9, we explore the dependency of
decoding performance on the diverse types of neuro-
markers employed and the dimensionality of the fea-
ture set. This comparison is made between decoding
outcomes utilizing only conventional band powers,
decoding with a selected group of features as iden-
tified in figure 8, and decoding with the entire set
of extracted features. Figures 9(a)–(d) present the
decoding performance for accelerometry jerk and
bar press rate using band power features, selected
top-ranked features (LightGBM-Top), and all fea-
tures, assessed by R2 and r metrics, respectively. The
addition of other neuro-markers beyond only band
power, coupled with feature selection, significantly
enhances performance across sessions (for accelero-
metry jerk, R2 from 0.4815 to 0.5357, r from 0.7229
to 0.7579; for bar press rate,R2 from 0.3073 to 0.3476,
r from 0.5708 to 0.6092). Moreover, employing the
limited feature set as delineated in figure 8 does not
lead to a significant reduction in performance when
compared to the utilization of all features. This obser-
vation holds true for the decoding of both defens-
ive behaviors evaluated by both R2 and r metrics.
Notably, the adoption of feature selection exception-
ally reduces the model’s training time (182.3 ms
for accelerometry jerk, 309.6 ms for bar press rate),
inference time (0.05 079 ms for accelerometry jerk,
0.05 072 ms for bar press rate), and memory usage
(16.6 kB) across all subjects and sessions (table A3).
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Collectively, the results presented in figures 8
and 9 underscore that the feature selection pro-
cess effectively identifies important features with sig-
nificant additive attribution to the prediction out-
put and remarkable contribution to the perform-
ance in decoding defensive behaviors. Through this
process, a select group of top-ranked features not
only sustains decoding performance with remarkably
reduced training/inference time and memory usage
but also enhances performance in comparison to rely-
ing exclusively on band power features.

4. Discussion

We developed a machine learning framework
for accurately decoding defensive behaviors from
multi-channel local field potentials recorded from
the infralimbic cortex and basolateral amygdala.
Critically, accelerometry jerk and bar press rate exhib-
ited higher decodability compared to the freezing
score, as evidenced by both the training dynamics
and performance evaluations on the test set (figure 3).
These two decodable behaviors were encoded by dis-
tinct sets of highly informative features (figures 4
and 8).

This research builds upon our previous work,
which underscored that these metrics each capture
unique facets of defensive behavior [89]. The vari-
ation in encoding between behaviors suggests that
they may have distinct neural substrates, i.e. that a
closed-loop system designed to modulate defensive
processes might need to control different aspects of
cortical/amygdala physiology depending on the exact
process being targeted. The challenge in accurately
decoding the freezing score—conceptually the inverse
of freezing and calculated from video frame changes
to approximate the rat’s horizontal velocity—is
intriguing. Given its mathematical relationship with
accelerometry jerk, which essentially represents a
higher derivative of movement than freezing score,
this difficulty is unexpected. On the other hand,
considering that mammalian motor control often
optimizes forminimum jerk [137], it stands to reason
that such dynamics are more directly encoded in the
neural circuitry that eventually affects motor plan-
ning. Further, as noted in section 2.3, accelerometry
may simultaneously capture passive defense (freez-
ing) and active defense (darting behaviors [92]), and
thus might be more directly correlated to signals in
threat/defense-related circuits.

Freezing, as derived from the freezing score, is
probably the single most common behavior used to
study the IL, BLA, and the broader circuits of the
extended amygdala [85, 138, 139]. Its association
with various LFP processes, particularly emphasiz-
ing local oscillations and cross-regional synchrony
within the theta band, is well-documented [83, 93].
Therefore, our inability to decode this behavior

accurately presents a notable discrepancy. One pos-
sible explanation for this difference could be our focus
on decoding second-to-second changes in behavior,
in contrast to previous studies that typically examined
longer timescales, such as the percentage of a cue
tone spent in freezing versus other behaviors [80].
As illustrated in figure 3(c), our decoders demon-
strated better performance in capturing these broader
timescales (trends or global means) than short-term
variability in freezing score. This observation aligns
with our previous behavioral research, which indic-
ated that the mean freezing score across subjects cor-
relatedmore closely with themean accelerometry jerk
and bar press rate, than when analyzing individual
subjects [89]. This may be attributed to the averaging
process across subjects, which effectively smoothed
away local variance while preserving global trends,
thereby rendering freezing score more comparable
with other measured behaviors.

Beyond the conventional use of band power fea-
tures for decoding cognitive and emotional processes
[38, 69, 73], our model incorporates a broader array
of neuro-markers across spectral, temporal, and con-
nectivity domains. Temporal features demonstrated
a particularly significant contribution to decoding
accelerometry jerk over bar press rate, as evidenced
in figures 4(a) and (b). This disparity likely stems
from the capability of temporal-domain features to
capture changes over very short intervals, reflect-
ing the dynamic and swift variations in the defens-
ive behaviors that define the accelerometry jerk data.
Interestingly, connectivity features played a more
pronounced role in decoding bar press rate com-
pared to accelerometry jerk. This distinction may
reflect the difference in behavioral characterization
underpinning these behaviors; unlike accelerometry
jerk, bar press rate involves the suppression of a
reward-seeking response, diverging from motion-
based defensive behaviors like freezing. Hence, prior
studies linking defensive behaviors with theta oscil-
lations and cross-regional LFP connectivity may
more accurately depict variations in reward-related
processes. A noteworthy finding is that, alongside
coherence (Coh), significant decoding insights were
derived from the band power ratio between chan-
nels (BPRC) and band Pearson correlation (BCorr).
Thus, BPRC and BCorr warrant increased considera-
tion over Coh in subsequent fear regulation research.
We have demonstrated that these features encom-
pass unique information not captured by band power
alone [38, 74, 110, 140].

The high-gamma band was particularly import-
ant for decoding accelerometry jerk and bar press
rate in BP, BPRC, and BCorr (figures 5–7). This
finding contrasts with earlier research, where fear-
related behavior was primarily correlated with theta
band power and sycnhrony [83, 93]. The diver-
gence in findings could stem from our distinct
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analytical methodology. Whereas previous studies
often explored categorical differences, such as con-
trasting animals showing low versus high freezing
behavior in a dichotomized analysis, our approach
aimed to directly predict behaviors within indi-
vidual animals and sessions. Within this shorter
timescale, the involvement of faster processes, like
those within the high-gamma range, may become
more pivotal. We also used different electrodes,
with tighter spacing that emphasizes local signals
within IL and BLA. This again would emphas-
ize more spatially local high-frequency components
over more spatially distributed low-frequency LFPs.
However, this emphasis on local signals more real-
istically models a clinical scenario, where electrodes
would be implanted within a relatively small brain
region.

Other studies have attempted to decode/predict
defensive behavior from similar circuits, but with very
different goals ormethods. For instance, [64] attemp-
ted to predict freezing from LFP, but at a trial-to-trial
level, i.e. predicting the percentage of freezing within
a multi-second window from the 4 Hz LFP power
during that same time window. This is a much dif-
ferent andmore forgiving problem thanwe attempted
here, because thewide temporal windowswill smooth
away noise. Further, the ability to predict behavior at
fine timescales may be clinically relevant. A second
study [59] predicted active escape (shuttle runs)
using ensemble analyses of recorded single neurons
(potentially more informative but more costly than
LFP; see Introduction). When the authors attemp-
ted to inhibit defensive behavior through optogen-
etic manipulation, they found that shuttle runs could
only be blocked if light were delivered during the
period when an animal actively decided to respond.
Delivering light alongside the threat cue, but not
during behavior preparation, delayed but could not
eliminate the behavior. Further, neither of those
studies focused on optimizing a decoder for max-
imum performance with a minimal set of features.
They used decoding methods as a means towards
mechanistic explanation, as opposed to our emphasis
on showing performance as a step towards clinical
utility.

Through our feature selection process, we stra-
tegically chose a limited subset of features tominimize
the computation time and memory demands of our
ML framework. Utilizing only 36 and 81 top-ranked
features, as depicted in figure 8, we not only signific-
antly surpassed the decoding performance achieved
with 56 BP features but alsomatched the performance
obtained with the full set of 1296 features, as demon-
strated in figure 9. This indicates that neuro-markers
other than BP encode unique information critical for
decoding. The analytical findings from figures 4–7

further support that incorporating a broader spec-
trum of neural representations enhances decoding
effectiveness, offering a more nuanced insight into
neuro-markers’ roles in modulating defensive beha-
viors. Additionally, our results imply the existence
of a considerable number of features that are either
non-predictive or redundant within the model. The
feature selection process effectively eliminates less
informative features for each subject, thereby sig-
nificantly reducing computational expenses during
training and inference phases and lowering memory
requirements. These efficiencies, combined with the
high decoding accuracy, underscore the importance
of an optimized feature selection strategy for neural
decoders in neuropsychiatric brain-machine inter-
faces (BMIs).

Advanced machine learning models have been
shown to markedly enhance neural decoding per-
formance over conventional approaches. In our
investigation, we assessed the decoding capabilities of
state-of-the-artmodels in neural decoding tasks using
our extracted neuro-markers, including LR, SVM-
Lin and SVM-RBF, RF, MLP, LSTM, CNN, ResNet,
and Light Gradient Boosting Machine (LightGBM).
Building on our prior research on seizure detection
[97, 98, 141], mental fatigue prediction [75], fin-
ger movement classification [114, 142], and tremor
detection from electrophysiological signals [104,
143], gradient-boosted decision tree models (GBDT)
including LightGBM were found to outperform tra-
ditional ML models, including SVM and linear dis-
criminant analysis (LDA). Our findings further reveal
that LightGBM was the best-performing model in
14 out of 16 comparisons across decoding tasks, as
shown in 2. Although RF performed slightly better
than LightGBM in decoding accelerometry jerk dur-
ing the conditioning session as per R2 and in decod-
ing bar press rate as per r, LightGBM demonstrated
significantly shorter training times (accelerometry
jerk: 5.336 s, bar press rate: 5.130 s) and inference
times (accelerometry jerk: 0.06 006 ms, bar press
rate: 0.05 966 ms) compared to RF (training times:
accelerometry jerk: 176.8 s, bar press rate: 179.3 s;
inference times: accelerometry jerk: 1.765 ms, bar
press rate: 1.772 ms), as presented in figure 2 and
table A3. Overall, LightGBM achieved superior effi-
ciency in training/inference and memory usage com-
pared with other models with promising but lower
decoding accuracy, as shown in figure 2. These res-
ults underscore LightGBM’s capability to deliver both
precise decoding outcomes and remarkably rapid
decoding speeds with limited memory resources,
which are the key qualities for a decoder within a
closed-loop BMI system. Furthermore, LightGBM
offers additional advantages over other ML models:
it supports parallel computation, greatly speeding
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up training and inference processes. Importantly, it
exhibits low hardware complexity, as demonstrated
in recent low-power hardware implementations of
closed-loop neuromodulation systems [97, 105, 144].
Collectively, these attributes underscore LightGBM’s
potential applicability in future fully-implantable and
closed-loop psychiatric BMIs.

Although we demonstrated that LightGBM out-
performs artificial neural networks (ANNs) in accur-
acy for decoding defensive behaviors using neuro-
markers, this comparison may overlook the ANNs’
capabilities for automatic feature extraction and the
critical information in raw LFP signals. Recurrent
neural networks such as LSTM could identify con-
cealed temporal dependencies, while CNNs excel in
decoding themixed spatial and temporal information
embedded in neural representations. Consequently,
we utilized several modern ANNs, including LSTM-
Raw, WaveNet-Raw, and ResNet-Raw, with raw LFP
signals as inputs for decoding defensive behaviors.
These architectures provide unique approaches to
feature extraction, unbounded by predefined neuro-
markers. Findings in tables 2 and A2 indicate that
the overall performance of these ANN-Raw mod-
els is generally inferior to that of models employ-
ing manually selected neuro-markers. This discrep-
ancy underscores a critical insight: although ANNs
can autonomously extract features from complex
neural data, the relevance and utility of these fea-
tures for specific decoding tasks may be limited
without the guided feature selection afforded by
manual methods. Models that use neuro-markers,
such as LightGBM, benefit from the integration of
domain-specific knowledge and established neur-
oscientific findings during feature extraction. This
strategy inherently directs the model’s focus toward
the most informative predictors of defensive beha-
viors. Therefore, while the exploration of ANNs
for decoding from raw LFP signals provides valu-
able insights into data-driven feature discovery, cur-
rent evidence strongly supports the continued use
of neuro-marker-based models for higher accuracy
and reliability in decoding defensive behaviors. This
comparison also highlights an important considera-
tion for future research: the development of hybrid
models that integrate the strengths of both manual
and automatic feature extractionmethods, leveraging
GBDT’s decision strategy, domain-specific insights,
and nuanced neural encodings. Additionally, design-
ing ANN architectures specifically tailored to cap-
ture the temporal dynamics and spatial configura-
tions of neural data could bridge the gap between
traditional ML models and ANN approaches. These
strategies could further enhance decoding accuracy
and the generalization capacity of our models.

In our study, we employed two metrics to assess
feature importance: SHapley Additive exPlanations
(SHAP) and the loss of R2 upon feature removal.
While SHAP values elucidate each feature’s addit-
ive attribution to prediction, they do not explicitly
evaluate the necessity of features for decoding per-
formance. Conversely, the loss of R2 quantifies a fea-
ture’s impact on performance, yet this metric might
yield ambiguous interpretations in cases of high fea-
ture correlation. Additionally, it fails to satisfy the
three desirable properties of additive feature attribu-
tion methods outlined by SHAP, namely local accur-
acy, missingness, and consistency [128]. Thus, there
is a compelling opportunity for researchers to explore
alternative metrics for evaluating feature importance
in terms of prediction and performance that both
minimize computational complexity and embody the
aforementioned properties. These metrics also high-
light a specific limitation of the LightGBM approach:
although we can identify which bands/features are
most important for a given analysis (here, high-
gamma), we cannot directly use that importance for
a simple, biomarker-driven intervention. Tree-based
methods focus on dichotomizing a given feature at
a specific value, but can select that feature again at
deeper tree levels if needed. Thus, they can model
complex non-linear and non-smooth relationships
between neural signals and behavior. Unlike a sim-
pler model such as a LR, however, tree-based meth-
ods do not produce clear or simple relations such as
‘to decrease defensive behaviors, it would be desir-
able to reduce BLAhigh-gammapower’. Inferring and
testing such potential causalities would require dif-
ferent approaches, e.g. permuting the model’s inputs
in a systematic way and measuring the outputs. On
the other hand, the superior decoding accuracy, feas-
ibility for hardware implementation, and substantial
pruning potential of tree-based models, as demon-
strated in [98, 105, 141] could enable more effi-
cient and effective closed-loop interventions com-
pared to conventional approaches that rely solely on
individual biomarkers [145, 146].

In this research, we evaluated our model using
an offline paradigm on a dataset aimed at decod-
ing defensive behaviors. To ascertain the robustness
of our model across a wider array of neuropsychi-
atric applications, it would be beneficial to validate
our model design using additional datasets, encom-
passing either identical or divergent tasks. Moreover,
transitioning from offline to online neural decod-
ing represents a significant challenge. In our future
work, we intend to deploy our decoding framework
within an online paradigm, thereby facilitating an
assessment of our model’s performance in real-time
applications.
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5. Conclusion

In this study, we analyzed LFP signals from IL and
BLA of rats subjected to a tone-shock protocol to
extract neuro-markers. These markers were sub-
sequently utilized in our ML decoding framework,
which incorporates SHAP-based feature selection and
LightGBM for decoding defensive behaviors. Notably,
the accelerometry jerk and bar press rate proved
to be more decodable than the freezing score. We
achieved an average decoding performance of R2 =
0.5357 and r= 0.7579 for the accelerometry jerk, and
R2 = 0.3476 and r= 0.6092 for the bar press rate,
with exceptionally low training/inference time and
memory usage: less than 310 ms for training, less
than 0.051 ms for inference, and 16.6 kB of memory
on a single core of AMD Ryzen Threadripper PRO
5995WX CPU. BP and BPRC emerged as signific-
ant neuro-markers for prediction and decoding per-
formance. The high-gamma band within BP, BPRC,
and BCorr was consistently identified as crucial for
decoding both defensive behaviors across both brain
regions. The selection of top-ranked features not only
surpassed the performance achieved using only BP
features but also maintained the performance level of
models utilizing the entire feature set. Our findings
underscore the efficacy of developing an accurate and
low-latency model for decoding defensive behavior
based on LFP features from circuits strongly linked
to these behaviors. This work lays the groundwork
for future development of an implantable closed-
loop psychiatric BMI, showcasing the potential of our
framework in advancing neuropsychiatric treatment
modalities.
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Appendix A. Detailed size of dataset
among subjects and sessions

Table A1 presents a comprehensive overview of
the dataset sizes distributed across the four exper-
imental sessions for training, validation, and test
sets. For each session, the dataset was split into
training, validation, and test sets with a ratio of
16:4:9. The variability in dataset size across dif-
ferent sessions underscores the diverse condi-
tions under which the models were trained, val-
idated, and tested, contributing to a robust evalu-
ation of the predictive models developed from this
data.

Table A1. Size of training, validation, and test sets averaged over
subjects in each recording session (Mean±std).

Session Training Validation Test

Habituation 2219±8 555±2 1248±5

Conditioning 1974±568 493±142 1110±319

Extinction 7518±13 1879±3 4229±7

Recall 2302±43 575±11 1295±24

Appendix B. Decoding performance of
alternative artificial neural network
models on raw LFP data

Both LSTM and CNN models excel in automatic
feature extraction, which involves identifying the
most relevant features from raw data without human
intervention. Therefore, we also implemented LSTM,
WaveNet, andResNet on rawLFPdata, namedLSTM-
Raw, WaveNet-Raw, and ResNet-Raw, for the same
decoding tasks.

The comparative analysis of decoding perform-
ance between models trained on manually selected
neuro-markers (table 2) and models trained on raw
LFP data (table A2) shows a marked superiority in
the models employing neuro-markers. The neuro-
markers likely encapsulate more relevant informa-
tion for predicting behavioral outcomes, thus allow-
ing the models to establish stronger and more
predictive relationships with the observed beha-
viors. This advantage underscores the importance
of our feature extraction and selection process in
enhancing model accuracy in predicting avoidance
behaviors.
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Table A2. Performance of LSTM-Raw and WaveNet-Raw for decoding defensive behaviors averaged across subjects in each recording
session. The performance was evaluated using the coefficient of determination (R2) and the Pearson correlation coefficient (r).

Behavior Metric Session LSTM-Raw WaveNet-Raw ResNet-Raw

Accelerometry
jerk

R2

Habituation −0.0006282 0.2393 0.2385
Conditioning −0.3068 0.1180 −0.8459
Extinction 0.08186 0.3871 0.3855
Recall −0.03857 0.3853 0.3205

r

Habituation 0.05207 0.5927 0.5844
Conditioning 0.01866 0.7395 0.6863
Extinction 0.1754 0.6711 0.6678
Recall 0.08446 0.6722 0.6817

Bar press rate

R2

Habituation 0.05732 0.0164 −2.299
Conditioning −0.01080 −16.3277 −28.53
Extinction −0.06147 0.2014 0.1864
Recall −0.09371 −0.09922 −1.657

r

Habituation 0.2886 0.4765 0.3224
Conditioning 0.2326 0.1642 0.2427
Extinction 0.2984 0.5565 0.5125
Recall 0.2473 0.5117 0.3555

Table A3.Memory size, training time, and inference time of ML models for decoding defensive behaviors. Training and inference time
were averaged across subjects and sessions.

Accelerometry jerk Bar press rate

Model Memory (kB) Training (s) Inference (ms) Training (s) Inference (ms)

LR 5.066 0.5426 0.04699 0.5436 0.04755
SVM-Lin 5.066 16.90 0.04125 18.39 0.04192
SVM-RBF 39280 73.36 5.280 ——–a ——–a

RF 29.26 176.8 1.765 179.3 1.772
MLP 365.0 8.108 0.08635 30.66 0.08605
LSTM 1387 91.69 0.3010 141.9 0.3869
CNN 88.50 28.51 0.2602 73.14 0.2589
ResNet 336.8 89.33 0.7599 411.1 0.7608
LSTM-Raw 228.5 1589 3.210 3540 3.211
WaveNet-Raw 67.22 45.29 0.8177 199.3 0.8117
ResNet-Raw 263.9 384.9 1.412 1537 1.402
LightGBM 28.30 5.336 0.06006 5.130 0.05966
LightGBM-Topb 16.60 0.1823 0.05079 0.3096 0.05072
a Not applicable due to the fact that the SVM-RBF failed to decode bar press rate across subjects and sessions.
b LightGBM-Top refers to LightGBM using selected top-ranked features after feature selection.

Appendix C. Model training procedure
and hyperparameter selection

LightGBM, LR, SVM-Lin, SVM-RBF, RF, MLP,
LSTM, CNN, and ResNet used neuro-markers,
Xneuro ∈ RM, as input for these models, where M is
the number of neuro-markers. LSTM-Raw,WaveNet-
Raw, and ResNet-Raw used raw LFP signals, XLFP ∈
RC×T, where C is the number of channels and T is
the sequence length.

LightGBM and RF were trained for 1000 itera-
tions, and artificial neural network (ANN) models
(MLP, LSTM, CNN, ResNet, LSTM-Raw, WaveNet-
Raw, and ResNet-raw) were trained for 100 epochs,
all usingMSE Loss. The training processes were early-
stopped when the validation loss did not decrease for
five consecutive iterations/epochs. All ANN models

were followed by a prediction structure composed
of three fully connected layers with the dimensions
of 64, 32, and 1 for prediction. ANN models were
trained with a batch size of 64 samples and Adam
optimizer [147].

The detailed architectures of ML models are
introduced below, and we performed the following
hyperparameter search based on the lowest mean
squared error on the validation set:

LightGBM: The model employed a traditional
Gradient Boosting Decision Tree for boosting. We
optimized the hyperparameters including (a) the
maximum number of leaves in each tree within the
range {3, 5, 13, 29}; (b) the ratio of data instances ran-
domly sampled for training each tree within range
{0.7, 0.8, 0.9, 1.0}; (c) the frequency of sampling
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Figure A1. Time-dependent decoding performance and feature importance for two defensive behaviors. (a) Decoding
performance for accelerometry jerk using neural features either aligned at zero lag to behavior or lagged by up to 20 s with a step
size of 1 s for each time lag, in four recording sessions averaged across subjects, evaluated using R2. The shaded areas indicate the
standard errors across subjects. (b) Same as (a), but for decoding bar press rate. (c) Decoding performance for accelerometry jerk
when using features from more than one time lag, assessed using an increase in the R2 compared to a baseline without temporal
integration, in four recording sessions averaged across subjects. Neural features from both the current and preceding time
windows, extending up to 20 s, were incorporated. The shaded areas indicate the standard errors across subjects. (d) Same as (c),
but for decoding bar press rate. (e) SHAP importance of features integrating data from the current and preceding time windows
up to 20 seconds, averaged across subjects in four sessions for decoding accelerometry jerk. The error bars indicate the standard
errors across subjects. The comparisons between features from consecutive time windows are marked with asterisks if one time
window’s SHAP values are significantly greater than those of the preceding window across sessions and subjects (Paired-sample
t-test; ∗∗ : p< 0.01, ∗ ∗ ∗ : p< 0.001). (f) Same as (e), but for decoding bar press rate.

data instances {0, 4, 8, 12}; (d) the ratio of fea-
tures randomly sampled for training each tree
within range {0.7, 0.8, 0.9, 1.0}, (e) the learning
rate within the range [1e-3, 1e-1];. After hyperpara-
meter selection, it was trained and evaluated using:
(a) 5; (b) 0.9; (c) 8; (d) 1.0; (e) 1e-1. LightGBM-
Top (which is the LightGBM using selected top-
ranked features after feature selection) optimized
the same hyperparameters within the same range,
and it was trained and evaluated using: (a) 5; (b)
0.8; (c) 8; (d) 1.0; (e) 1e-1 after hyperparameter
selection.

LR: We did not perform a hyperparameter search for
this model.

SVM-Lin:We optimized the hyperparameters includ-
ing (a) the epsilon in the epsilon-tube of SVM within
the range {0.01, 0.05, 0.1, 0.5}, (b) the tolerance in
loss function for stopping criterion within the range

{1e-4, 1e-3, 1e-2}. After hyperparameter selection, it
was trained and evaluated using: (a) 0.1; (b) 1e-3.

SVM-RBF: We optimized the hyperparameters
including (a) the epsilon in the epsilon-tube of SVM
within the range {0.01, 0.05, 0.1, 0.5}, (b) the toler-
ance in loss function for stopping criterion within
the range {1e-4, 1e-3, 1e-2}. After hyperparameter
selection, it was trained and evaluated using: (a) 0.1;
(b) 1e-3.

RF: We optimized the hyperparameters including (a)
the maximum depth of the tree within the range
{2, 3, 4, 5}; (b) the ratio of data instances ran-
domly sampled for training each tree within range
{0.7, 0.8, 0.9, 1.0}; (c) the ratio of features ran-
domly sampled for each split within range {0.7,
0.8, 0.9, 1.0}. After hyperparameter selection, it
was trained and evaluated using: (a) 3; (b) 0.8;
(c) 0.9.
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MLP: The model employs multiple stacked fully con-
nected layers, each followed by a ReLU and a Dropout
layer. We optimized the hyperparameters including
(a) the number of hidden layers within the range {1,
2, 3, 4}; (b) the dimension of hidden units within the
range {32, 64, 128}; (c) the dropout rate within the
range {0, 0.1, 0.2, 0.3}; (d) the learning rate within the
range [1e-5, 1e-3]. After hyperparameter selection, it
was trained and evaluated using: (a) 2; (b) 64; (c) 0;
(d) 1e-3.

LSTM: The model employs multiple stacked LSTM
layers, each followed by a Dropout layer. The final
hidden state of the model was used as input for the
prediction structure. We optimized the hyperpara-
meters including (a) the number of recurrent layers
within the range {1, 2, 3}; (b) the dimension of hid-
den units within the range {32, 64, 128}; (c) the input
sequence length within the range {5, 10, 15}; (d) the
dropout rate within the range {0, 0.1, 0.2, 0.3}; (e)
the learning rate within the range [1e-5, 1e-3]. After
hyperparameter selection, it was trained and evalu-
ated using: (a) 1; (b) 64; (c) 5; (d) 0; (e) 1e-3.

CNN: The model employs multiple stacked 2-D con-
volutional layers with kernel size (1,K) and stride
(1, 2), each followed by a 2-D batch normalization, a
ReLU, and a Dropout layer. The output of the model
was flattened as input for the prediction structure.
We optimized the hyperparameters including (a) the
number of convolution layers within the range {2, 4,
6, 8}; (b) the kernel size K within the range {2, 4, 6,
8}; (c) the number of channels within the range {1, 2,
4}; (d) the dropout rate within the range {0, 0.1, 0.2,
0.3}; (e) the learning rate within the range [1e-5, 1e-
3]. After hyperparameter selection, it was trained and
evaluated using: (a) 4; (b) 4; (c) 4; (d) 0; (e) 1e-3.

ResNet: The model employs ResNet18 with 18
stacked 2-D convolutional layers with kernel size
(1,K), each followed by a 2-D batch normalization,
and a ReLU layer [126]. The output of the model
was flattened as input for the prediction structure.
We optimized the hyperparameters including (a) the
kernel size K within the range {3, 5, 7}; (b) the
learning rate within the range [1e-5, 1e-3]. After
hyperparameter selection, it was trained and evalu-
ated using: (a) 3; (b) 1e-3.

LSTM-Raw: The model employs multiple stacked
LSTM layers, each followed by a Dropout layer.
The final hidden state of the model was used as
input for the prediction structure. We optimized
the hyperparameters including (a) the number of
recurrent layers within the range {1, 2, 3}; (b)
the dimension of hidden units within the range
{32, 64, 128}; (c) the dropout rate within the range {0,

0.1, 0.2, 0.3}; (d) the learning rate within the range
[1e-5, 1e-3]. After hyperparameter selection, it was
trained and evaluated using: (a) 2; (b) 64; (c) 0.2;
(d) 1e-3.

WaveNet-Raw: The model employs an architecture
close to EEGWaveNet [127], using depth-wise 2-D
convolutional layers with kernel size (1, 2) and stride
(1, 2), and spatial-temporal 2-D convolutional layers
with kernel size (1, 4) and stride (1, 2). Each spatial-
temporal 2-D convolutional layer was followed by
a 2-D batch normalization, and a LeakyReLU layer.
The output of each scale went through global aver-
age pooling and they were collectively concatenated
as input for the prediction structure. We optim-
ized the hyperparameters including (a) the num-
ber of channels for spatial-temporal 2-D convolution
within the range {8, 16, 32}; (b) the learning rate
within the range [1e-5, 1e-3]. After hyperparameter
selection, it was trained and evaluated using: (a) 16;
(b) 1e-3.

ResNet-Raw: The model employs ResNet18 with 18
stacked 2-D convolutional layers with kernel size
(1,K), each followed by a 2-D batch normalization,
and a ReLU layer [126]. The output of the model
went through global average pooling and then was
used as input for the prediction structure. We optim-
ized the hyperparameters including (a) the kernel
size K within the range {3, 5, 7}; (b) the learning
rate within the range [1e-5, 1e-3]. After hyperpara-
meter selection, it was trained and evaluated using:
(a) 3; (b) 1e-3.
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