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BACKGROUND: The clinical potential of Raman spectroscopy is well established but has yet to become established in routine
oncology workflows. One barrier slowing clinical adoption is a lack of evidence demonstrating that data taken on one spectrometer
transfers across to data taken on another spectrometer to provide consistent diagnoses.
METHODS: We investigated multi-centre transferability using human oesophageal tissue. Raman spectra were taken across three
different centres with different spectrometers of the same make and model. By using a common protocol, we aimed to minimise
the difference in machine learning performance between centres.
RESULTS: 61 oesophageal samples from 51 patients were interrogated by Raman spectroscopy at each centre and classified into
one of five pathologies. The overall accuracy and log-loss did not significantly vary when a model trained upon data from any one
centre was applied to data taken at the other centres. Computational methods to correct for the data during pre-processing were
not needed.
CONCLUSION: We have found that when using the same make and model of spectrometer, together with a common protocol,
across different centres it is possible to achieve system transferability without the need for additional computational instrument
correction.

BJC Reports; https://doi.org/10.1038/s44276-024-00080-8

BACKGROUND
Raman spectroscopy (RS) is a technique that is able to detect the
vibrational modes of a molecule. A Raman spectrum is unique to
the inelastically scattered photons from a given molecule and can
be used to identify the biochemical constituents of a biomedical
sample. Unfortunately, biomedical samples are highly complex,
resulting in many overlapping Raman signals, requiring computa-
tional methods to interpret the underlying biochemical features.
This must be done in the presence of various sources of non-
Raman signals emanating from the laser-sample interaction, from
cosmic rays and components of the instrument itself. These can
overwhelm the relatively weak Raman effect. Improvements to
Raman spectrometers and computational methods have made
this task tractable, and many proof-of-concept studies demon-
strate that RS can be applied to cancer samples in order to; classify
cancers from tissue or other biological samples (e.g. serum) [1–3],
to detect pre-cancerous changes [4, 5] and to detect tumour
edges during surgery [6, 7]. Oesophageal cancer diagnostics is a
setting that could gain much from the clinical translation of RS.
Oesophageal cancers are often diagnosed late, resulting in high

mortality rates. Pre-cancerous lesions are difficult to identify
during endoscopy and the histopathological reliability of excised
tissue is known to be problematic [8, 9]. In particular, diagnoses
based on morphological information are known to be limited, with
kappa statistics of agreement amongst pathologists as low as 0.28
[10]. There are a number of complementary techniques, such as
immunohistochemistry (IHC), which can increase this agreement.
However, this technique is not without its drawbacks. For instance,
p53 immunostaining, a strong prognostic marker in oesophageal
cancers, is only interpretable in approximately 80% of cases [10].
There is evidence that RS may be able to further augment such
information. A recent meta-analysis found that ex vivo applica-
tions of RS to diagnose oesophageal cancers had a pooled Area
Under the Receiver Operating Characteristic (AUROC) curve of 0.99
[11]. Such results establish the potential of RS to discriminate
between healthy and cancerous samples. However, there are a
number of issues hindering its ability to generalise to the clinical
setting, including small sample sizes, biased validation strategies,
simpler binary datasets, and sub-optimal pre-processing [3]. In
particular, these studies were performed at single centres and the
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transferability of a model developed at one centre to unseen
clinical settings has yet to be established.
This issue occurs because Raman spectrometers are high-

precision instruments, and slight variations in any of their
components can result in deviations in Raman wavenumber and
intensity values [12, 13]. There are a number of components that
contribute to these deviations, including the excitation source,
wavelength selector, detector, and optics [14]. In addition,
datasets may be obtained under different conditions, such as
differing acquisition times or laser powers, resulting in hetero-
geneous datasets. These variations are especially problematic in
biomedical samples which often only manifest marginal differ-
ences between disease classes. Additionally, machine learning
(ML) approaches which utilise wavenumber selection are particu-
larly prone to poor generalisation due to their sensitivity to shifts
in the wavenumber axis [15].
The attempt to make a model trained on one spectrometer

applicable to other instruments has been called model transfer. To
this end, two main subdivisions have been described in the
literature: spectral standardisation and model updating [15]. The
former adjusts datasets to make them more similar by, for
instance, calibrating their wavenumber axes to align with
prominent Raman peaks. It can also include instrument response
correction to remove the effect of detection efficiency varying
with wavenumber. Such perturbations are known to deteriorate
ML performance [16]. Spectral standardisation methods have been
shown to ameliorate between-system deviations [17, 18]. Model
updating seeks to make the ML models themselves robust to
variations between datasets. This can be achieved by training
models with data from multiple instruments, thus forcing a model
to be robust against dataset variations. It could also be achieved
by selecting shared and invariant features between datasets.
Model updating by training traditional ML models, such as Partial
Least Squares, on data from multiple instruments has been found
to be ineffective [15]. However, the recent utilisation of deep
learning (DL) in RS applied to oncology samples may provide a
solution [3, 19, 20]. Convolutional neural networks (CNN), first
developed in the context of image recognition, are known to be
able to learn invariance to a number of input perturba-
tions: regardless of the position of an object in an image, even
if rotated, the model can still accurately recognise the object. In
the context of biomedical RS, invariance to translation, stretching,
and intensity may make a model robust to model transfer.
In this study, we expand upon the work of Isabelle et al., who

investigated the system transferability of an oesophageal dataset
taken across three centres [21]. They found that although
instrument calibration methods resulted in a demonstrable
concordance of data across three centres, this did not translate
to an improvement in binary classification performance when
transferring models between systems. Here we expand the sample
size and the number of classes while also exploring a greater
range of modelling techniques, namely Principal Component
Analysis - Linear Discriminant Analysis (PCA-LDA), Support Vector
Machine (SVM), and CNN.

METHODS
Sample collection and preparation
Samples were obtained from patients with a scheduled endoscopy for
Barrett’s surveillance or from patients who had surgery for oesophageal
cancer (Fig. SI1). Barrett’s oesophagus involves metaplastic changes to the
columnar mucosa and can predispose individuals to oesophageal cancer
[22]. 66 FFPE samples from 51 patients were taken from the histopathology
archive at Gloucestershire Hospitals NHS Foundation Trust, from which
patients had given informed consent for their tissues being used for future
research. These procedures were performed under local (endoscopic
resection) or general (oesophageal resection) anaesthetic in accordance
with an approved ethical proposal [Gloucestershire Local Research Ethics
Committee]. Routine histopathology reports were used to assist with

sample selection, while clinical data managers helped identify representa-
tive regions with one distinct pathology, identifying one of five clear
histologies: normal squamous (NSQ), intestinal metaplasia (IM), low and
high-grade dysplasia (LGD and HGD) and adenocarcinoma (AC). Being fully
accredited by UKAS, all samples adhered to ISO15189 standards. 8 μm
tissue sections were cut and mounted onto stainless steel slides as
described in detail in SI2. Three contiguous sections were collected from
each sample and one was sent to each of the three participating centres
(Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation
Trust, Gloucester, UK; University of Exeter, Exeter, UK; and University
College London, London, UK). Standard H&E slides of adjacent tissues were
also taken to identify regions of interest and to confirm pathologies. One
consultant and one registrar histopathologist outlined regions of interest
and confirmed diagnosis.
Each centre used the same make of benchtop spectrometer; prototype

Renishaw RA816 Biological Analyser (Renishaw plc, Wotton-under-edge,
UK). These are configured for pathology use with a 785 nm laser excitation,
a 50x NA 0.8 objective, a 1500mm−1 grating, and a motorised XYZ stage.
Data was collected in StreamLineTM mode over the fingerprint region
400−2200 cm−1, using a 10 μm grid and an integrated exposure time of
6 seconds per point. Data was collected over spatial regions exhibiting a
homogenous pathology, with map sizes varying from 11 × 18 to 75 ×
93 spectra. All three centres followed the same protocol for taking the
Raman maps. Regions of interest were matched between all centres to that
identified by the histopathologists so that all centres mapped approxi-
mately the same regions: this was not exact as the slides were taken from
adjacent sections of the same tissue. Samples that breached the protocol
at any centre were removed from the downstream analysis, leaving
61 samples from 51 patients.

Preprocessing
Cosmic rays were removed using 3 × 3 spatial median filtering across
adjacent spectra. Saturated spectra were automatically flagged by the
manufacturer’s software and removed. This resulted in 560819 spectra,
unevenly distributed over the five classes (Fig. SI3). Each spectrum was
standard normal variate normalised.

Machine learning and cross-validation strategy
Model development. PCA-LDA is a common modelling technique in
biomedical applications of RS for cancer diagnostics [3]. In particular, it has
been applied for the detection of oesophageal cancer by several groups
[13] and therefore provides a useful measure of baseline performance for
this study. PCA is used to reduce the dimensionality of a dataset and LDA
then constructs a decision boundary in PC space to classify spectra as
belonging to one of the five classes. SVMs also construct a decision
boundary, but are able to do so in a non-linear fashion by projecting the
data into a higher dimensional space. This is achieved using a kernel
function: we use the radial-basis function (RBF). These represent
’traditional’ ML models in contrast to ’deep’ learning models.
One type of DL architecture, the CNN, has seen great success in several

domains of medical imaging [23], and has become popular in oncological
applications of RS [3]. They are able to construct non-linear decision
boundaries, allowing them to capture pertinent features from data. It has
even been suggested that they negate the need for several pre-processing
steps in RS [24]. However, their suitability to medical applications of RS is
debated, as the technique typically requires large amounts of data which is
often prohibitively expensive to collect in the medical domain and can
consume extensive computational resources for training. In the context of
DL, this study has very few samples - although there are a copious number
of spectra, they are derived from relatively few independent samples. With
such a large parameter space that characterises such models and a small
sample size, over-fitting becomes a significant risk. It is unclear in this
situation whether DL would provide any benefit compared to the
traditional ML models.
To assess this, we developed a custom CNN. Althoughmore performant CNNs

exist, we constructed a relatively simple CNN to reduce the risk of overfitting,
using Python version 3.10 and the Pytorch framework [25]. Model details in SI4.
The Scikit-learn library was used for the PCA-LDA and SVM models [26].

Instrument calibration and corrections. The reproducibility of wavenumber
calibration between the three instruments was estimated to be within
0.5 cm−1 across the analysis region, while the reproducibility of system
response was estimated to be within 14% before calibration and 5% after
(SI5.1). Response calibration data was collected every six months through
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the manufacturer’s software by employing a NIST SRM 2242 response
calibration standard. Data was not response calibrated at source, but
instead was optionally applied post-collection so that its effect on model
performance could be investigated. All instruments had nominally
identical Nikon TU Plan Fluor 50X objectives. Though these were selected
to minimise objective contribution to the Raman signal, it remains a
significant signal component when collecting in a low signal regime such
as tissue sections. Objective reference spectra were collected for all
systems while focused on a stainless-steel slide and showed up to 30%
difference in shape across the analysis region (SI5.2). The observed
maximum objective contribution over the wavenumber region was at
1350 cm−1. The median objective signal was estimated to contribute 12%
to the signal in this region. Correction for the objective function was
performed by including objective spectra for the system in question as a
reference component in the extended multiplicative signal correction
(EMSC) processing of the data. These are standard instrument correction
techniques [27]. To assess the effect of instrument variation on model
performance, cross-validation (CV) was performed for all three ML models,
with and without response calibration plus objective correction (hence-
forth referred to as instrument correction).

Cross-validation strategy. Overfitting is a well-known problem in ML, in
which a model fits so well to the training set that it is modelling random
perturbations as opposed to learning real features [3]. This is increasingly
becoming recognised in the medical ML literature as a key reason for the
‘performance gap’, whereby excellent research results fail to generalise to
clinical settings [28]. A less well-known form of overfitting can occur at the
second level of inference: over-optimising model hyperparameters [29, 30].
Hyperparameters are choices that researchers make regarding certain
characteristics of a model; for instance, the number of PCs to retain in PCA-
LDA, the degree of decision boundary curvature in SVM-RBF, or the learning
rate for a CNN. A search for the best-performing hyperparameters risks finding
those values which happen to give good performance on the test data, but fail
to generalise [31]. This is exacerbated by low sample sizes, as methods to
ameliorate this effect, such as nested cross-validation, are only effective when
the sample is of sufficient size to allow the validation set to remain
representative of the target population. We circumvent this by selecting model
hyperparameters based on findings from previous work [32]. As the
hyperparameter space was not systematically searched we are gaining
generalisability as there can be no overfitting at the second level of inference
[31] at the cost of perhaps not finding the optimal model (underfitting). The
purpose of this study is to assess how well data were taken at one centre
transfers across to other centres. This addresses the problem of how data taken
at a single clinical site might be used to construct models that are clinically
relevant to other sites. Therefore, we trained our models iteratively one centre
at a time, leaving out two centres for testing. For each training centre we
performed 3-fold CV. This provides three estimates of performance,
sequentially using two-thirds of the data for training and one-third for testing.
This was repeated five times, each time with a different random seed so that
the training/test splits were different. This process resulted in a total of 15
estimates of model performance. We report the mean. Unfortunately, it is
difficult to construct confidence intervals as the data between folds is not
independent. We therefore only report the standard deviation. This simulates
the process of internal validation, in which performance metrics are obtained
by using portions of the existing dataset in lieu of independent (external)
datasets. This provides an estimate for how the model will generalise across to
the data taken at the other centres. Once this estimate is obtained we then
train the entire centre-level dataset and test against the two left-out centres. In
this way, we simulate the acquisition of external datasets, albeit from
ostensibly identical samples. Additionally, we trained each model on the all-
centre dataset, ignoring the centre-level structure, using the same 5 × 3 CV
strategy used for the single centres (Fig. SI6). We stratified all CV splits such that
class proportions were approximately preserved. It has been shown that when
splitting Raman data with a hierarchical structure the split should be
performed at the highest level, else spectra from the same sample will be
present in both the training and test sets, which artificially inflates performance
estimates [3, 33]. Hence, the data was split at the patient level. Additionally, any
pre-processing performed using global statistics was done after the data was
split to avoid data leakage. The average number of spectra per sample was
3065. In this application, we are interested in the overall sample label, as
opposed to the label of individual spectra (unlike margin detection which
would require demarcation of the individual spectra within each Raman map).
Thus we classified a sample based on a simple consensus amongst all spectra
from a sample. In this manner, all spectra are used for model construction, and
a single classification per sample is obtained.

Results are reported as accuracy and AUROC. Accuracy is a simple and
intuitive metric, but lacks nuance. The AUROC is commonly used in medical
diagnostics studies, showing the trade-off between sensitivity and specificity,
although it is only defined in binary terms, necessitating a one vs all other
classes approach to multiclass classification. Both of these metrics require
choosing a threshold above which a sample belongs to one class and below to
another class. Such classification metrics are described in the statistical
literature as ’improper’ in the sense that they do not capture the predictive
’confidence’ of a model - a value close to the threshold and a value far from it
gives the same prediction [34]. The log loss is a ’proper’ scoring metric that is
able to capture these subtleties, resulting in a more subtle, though less
intuitive, performance metric [35].

Model sensitivity to instrument perturbations
Deliberately perturbing ML inputs during testing is becoming an increasingly
recognised method to assess modes of failure, which helps assess the
suitability of a model to the clinical setting [28]. Wavenumber perturbation
(peak shifting) and instrument differences induced by the objective lenses
and instrument response are some characteristics deemed important during
model transfer between Raman instruments [17]. These have been explored
in the context of traditional ML techniques [16]. To assess the extent to which
perturbations to these components contribute to degrading model
performance we performed three in silico experiments.
Three potential sources of between instrument perturbations were

simulated, each simulated perturbation being systematically increased. It is
expected that at increasing levels of perturbations, model performance will
worsen. This can help assess whether any particular model is more robust
to such perturbations and gives an estimation of the degree of
perturbation that can be tolerated for inter-instrument model transfer.
For all in silico experiments the data from Centre 1 was used, subject to

the above-described 5 × 3 CV strategy. Additionally, for every fold, the test
data was perturbed in one of three separate ways (detailed below). Thus
the training data was a subset of that empirically derived from Centre 1
without any instrument correction. The test data, however, had varying
degrees of perturbations induced to simulate the effect of being taken
from a different instrument. Note that the purpose of these in silico
experiments was not to accurately model instrumental effects, but rather
to estimate the extent of different instrument perturbations the ML models
may be able to tolerate.

Simulating wavenumber perturbation. Wavenumber shifting was induced
in the test set by shifting each spectrum by a fixed number of data points.
Simulations were performed for shifts of up to 5 data points in either
direction. Each data point shift corresponds to approximately 2 cm−1, hence
the equivalent wavenumber shift range was approximately −10 to 10 cm−1.

Simulating objective lens perturbation. The objective lens difference
spectra between instruments were observed to be complex functions of
several broad peaks across the analysis region. To simulate the variation of
objective contribution between instruments, a decaying sinusoid was
added to the test set (Fig. SI5.3). The amplitude of the sinusoid at its
greatest extent was obtained from the observed objective lens contribu-
tion of centre 1. This was then scaled between −100% and 100% in
increments of 20%. The maximum observed difference in objective
contribution was between centres 2 and 3 at 30%.

Simulating response perturbation. The response factor is a multiplicative
factor applied to the data during response calibration. Instrument response
was observed to be approximately linear over the range 400–1800 cm−1.
The response perturbation was simulated to be a line passing through 1 at
the centre of the wavenumber region and varying by between 1-p/200 at
one end of the region and 1+p/200 at the other, where p is the percentage
variation across the data, which varied in the range −100% to 100%. Thus,
a series of lines were created to emulate this process with varying degrees
of slope in order to simulate the effect of greater and lesser response
contributions. The maximum observed difference in response was
between centres 1 and 3 with a slope factor of approximately 15%.

RESULTS
Data description
Fig. 1a shows the average spectrum per class across all centres.
Fig. 1b shows the average spectrum per centre. It is difficult to
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draw conclusions from these graphs alone, but it is apparent that
the three intermediary pathologies of IM, LGD, and HGD have, on
average, a greater intensity than the more distinct groups of NSQ
and AC. Similarly, spectra collected from centre 3 has a generally
higher intensity. This effect disappears during normalisation.

Wavenumber perturbation results
The maximum wavenumber shift measured between the three
study instruments was 0.5 cm−1. Fig. 2a shows that the CNN and
PCA-LDA models are robust to wavenumber perturbation within
this observed range. The CNN performance remains robust
beyond these limits. The SVM performance is particularly sensitive
to this source of perturbation.

Objective lens perturbation results
Varying the additive contribution of a simulated objective lens largely
results in a gradual and smooth deterioration of performance over the
simulated range. The maximum observed difference in objective
signal contribution between the three centres in this study was
approximately 30%. This is indicated in Fig. 2b as black dotted lines.
Beyond this range, the performance of all the models deteriorates,
but again the SVM performance is particularly precipitous.

Instrument response perturbation results
Varying the multiplicative contribution of a simulated instrument
response also gives a gradual and smooth deterioration of
performance over the simulated range (Fig. 2c). The black dotted
lines show the range of estimated perturbations observed
between the three study instruments. Within that range, all
models are reasonably robust.

Simulated perturbations
Overall, the simulated perturbation results suggest that these
models are robust over some range of contributions from these
three sources of instrumental differences. For all simulations, this
range is greater than the measured instrument-to-instrument
differences, and therefore no significant impact on model
performance is expected when transferring between instruments.
The extent to which these perturbations can be tolerated is
model-dependent. The trends from the results suggest the SVMs
are more sensitive, especially with larger perturbations, consistent
with the findings of Sattlecker et al. [16]. The CNN is more robust
across a larger range of perturbations for all perturbation types.
This is consistent with the invariance property of CNNs. However,
the overlap in performance between CV folds, evident in the large
standard deviations, necessitates caution in this interpretation. It
may be possible to further exploit this property by inducing these
perturbations in the training set in a process known as data
augmentation, which was not explored here.

System transferability
Tables 1 and 2 compare the uncorrected and instrument-
corrected dataset performances. In order to more easily visualize
how these compare, the change in performance from the 5 × 3 CV
score per centre to the two held-out test centres is shown in Fig. 3.
These show there is no appreciable drop in the training accuracy
to that of the test centres as would be expected if transferability
was problematic. This is consistent with the simulation results, in
which the range of perturbation which adversely affects
performance was greater than that observed between the
instruments. Additionally, according to the accuracy, there is little
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to distinguish the performance of the three models on either
dataset. The log loss, however, suggests possible superiority of the
CNN, giving marginally lower scores, and with much narrower
variability, indicating the model gives a more robust estimate of
performance (Table SI7.1).

Model performance
As there is no discernible difference in performance between the
uncorrected and instrument-corrected data we proceed in the
most parsimonious manner; with the uncorrected data. Due to the
unintuitive interpretation and relative lack of use of the log loss in
biomedical studies, we focus on AUROC in the proceeding
discussion. A meta-analysis of RS applied to ex vivo oesophageal
cancers found a pooled AUROC of 0.99 when distinguishing
between malignant and benign tissues, indicating that RS has
potential for use in distinguishing malignant oesophageal
pathologies [11]. Our results accord with this (Table 3). SVM and
CNN clearly have superior performance. SVM is better at
discriminating AC samples (AUROC of 0.97 vs 0.91), but this
comes with a trend of less discriminatory power over the
intermediate classes of IM, LGD, and HGD. Which model is
preferable depends upon the clinical consequences of such
misclassifications. Unfortunately, histopathological definitions vary
worldwide, as do clinical pathways [36]. In LGD, molecular
architecture is largely preserved with only subtle morphological
changes, making it difficult to distinguish from non-dysplastic
tissue [37]. HGD displays more marked atypical features and hence
different morphological features. However, there is no clear
demarcation between the two, leading to high inter and intra-

rater variability [8, 38]. The distinction between grades is clinically
important as their management options vary. LGD is managed via
endoscopic surveillance with endoscopic resection as needed, or
potentially with radiofrequency (RFA) ablation. Patients with HGD
undergo more intensive surveillance with options including RFA
+/− endoscopic mucosal resection and surgical resection. The
clinical relevance of IM is less clear. IM is characterized by the
presence of goblet cells, normally present in the intestine. It is
associated with a risk of progressing to LGD [37]. However, its
clinical relevance is dependent upon its location in the
oesophagus [37]. This is further complicated by the fact that IM
can be further subdivided into three types, one of which is not
deemed a risk factor for gastric cancer, and the remaining two
having an association with developing cancer, but with an unclear
causal pathway [39]. There is debate in the community regarding
the necessity of the presence of IM for the diagnosis of Barrett’s
oesophagus [40].
Few oesophageal RS studies have attempted to distinguish

between pathology sub-types; those that have found performance
over the intermediary classes worse than NSQ vs all [41]. As RS
moves from proof-of-concept to clinical deployment, more studies
will need to focus on increasing the discriminative ability between
intermediary classes. DL architectures have elsewhere shown
potential to this end [3].

DISCUSSION
The single centre 5 × 3 CV training process simulates the process
of how data would be collected and trained: iterative subsets of

Table 1. Uncorrected data results per model.

5 × 3 CV
one centre

Centre 1 Centre 2 Centre 3 5 × 3 CV
All centres

PCA-LDA Centre 1 63.8% +/− 8.0 72.1% 63.9% 78.7% 64.2% +/− 6.9

Centre 2 62.5% +/− 6.4 63.9% 70.5% 63.9%

Centre 3 62.7% +/− 6.2 65.6% 60.6% 68.9%

SVM Centre 1 66.5% +/− 8.4 75.4% 63.9% 83.6% 63.9% +/− 11.2

Centre 2 67.1% +/− 9.3 63.9% 77.0% 63.9%

Centre 3 66.5% +/− 10.7 67.2% 63.9% 75.4%

CNN Centre 1 66.5% +/− 13.2 100% 67.2% 60.7% 68.4% +/− 5.6

Centre 2 63.1% +/− 6.4 65.6% 90.2% 63.9%

Centre 3 64.2% +/− 12.6 75.4% 65.6% 91.8%

Top line per centre represents accuracy (%) +/− 1 SD, bottom line represents log loss +/− 1 SD. Italicised entries indicate the training results and so are not
indicative of performance.

Table 2. Corrected data results per model.

5 × 3 CV
one centre

Centre 1 Centre 2 Centre 3 5 × 3 CV
All centres

PCA-LDA Centre 1 62.7% +/− 4.3 70.4% 70.5% 73.7% 62.2% +/− 11.2

Centre 2 64.4% +/− 8.3 67.2% 75.4% 68.9%

Centre 3 63.4% +/− 9.7 68.9% 67.2% 73.8%

SVM Centre 1 64.1% +/− 13.7 80.3% 63.9% 75.4% 66.6% +/− 8.8

Centre 2 64.0% +/− 12.9 62.3% 80.3% 68.9%

Centre 3 65.1% +/− 12.1 62.2% 65.6% 78.7%

CNN Centre 1 63.0% +/− 11.1 100% 54.1% 78.7% 68.2% +/− 9.6

Centre 2 61.4% +/− 11.3 62.3% 100% 65.6%

Centre 3 61.1% +/− 11.8 68.9% 59.0% 93.4%

Top line per centre represents accuracy (%) +/− 1 SD, bottom line represents log loss +/− 1 SD. Italicised entries indicate the training results and so are not
indicative of performance.
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the centre data would be used to train a model and the remaining
centre data would be used to estimate the ability of the model to
generalise to unseen data. As ML is a data-driven approach, it is
sensitive to the training data, which manifests in the variation of
performances across folds summarised by the standard deviation.
When the models are subsequently trained on the full centre data,

this simulates the process of model deployment. Finally, by testing
against the held-out centres, we simulated the process of testing
the model on unseen data. The caveat is that we used near
identical samples, thus we can be confident that any differences in
performance are due solely to (unwanted) instrument effects, as
opposed to being an artefact of the data. Any deviations due to
protocol interpretation by the different operators across the
centres were sufficiently minimal to allow the transfer. As the
centre level test results are within the expected range of
performance as estimated by the single centre level 5 × 3 CV,
we can conclude that our models trained on a single centre
transfer well across to data taken on the same make and model of
spectrometer when a common protocol has been followed.
Although this is a more limited arrangement than establishing
transferability across disparate spectrometers and protocols, it
establishes the possibility of developing RS models between
centres for targeted clinical applications. This would necessitate
the development of protocols suitable for each institution and
sufficient training of staff. By applying RS to FFPE tissues, we
largely adhered to current pathology pathways, only diverging by
taking an additional section for mounting onto stainless-steel
slides. Once an additional dewaxing step has been taken, the
sections are ready for Raman analysis. However, research work-
flows would need scaling up to facilitate clinical workflows and
high-through-put RS techniques may be necessary to meet clinical
demand.
A recent study exploring system transferability across a large

selection of spectrometers states that computational methods are
urgently needed to render RS models generalisable across settings
[16]. Our results suggest that transferability is not a concern
between different spectrometers of the same make and model
following a common protocol. The in silico simulations suggest
that CNNs could provide at least a partial solution, exploiting their
input invariance property to provide an alternative means to
achieve system transferability. The invariance property could be
further leveraged by inducing realistic artefacts during data
augmentation. This is a common method in DL which can help
models ignore irrelevant features. Although DL comes with its
own limitations, we have shown that CNNs are at least
competitive with traditional ML models even with relatively small
samples sizes.
Although we collected a large number of spectra, these came

from relatively few patients which are unlikely to be representative
of the entire population of interest. This limits the generalisability of
our work and would need to be conducted on a larger cohort to
ensure the results extend across the population.

CONCLUSIONS
The results from this study demonstrate that system transferability
can be achieved through instrument engineering with clinical
protocol adherence alone, bypassing the need for post-data-
collection corrections. Additionally, the advantage of CNNs over
PCA-LDA and SVMs is suggested and would likely manifest more
clearly with larger sample sizes. Although the performance metrics
are competitive with existing modalities for oesophageal cancer
diagnostics, this would require confirmation with a much larger
sample size.
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Fig. 3 Uncorrected vs corrected accuracy comparison. Dots with
solid lines indicate single centre 5 × 3 CV mean accuracy +/− 1 SD
with dashed lines to dots indicating test centre accuracies. Red
triangular dots indicate uncorrected data, and green circular dots
indicate corrected data. a Training on Centre 1. b Training on Centre
2. c Training on Centre 3.

Table 3. Uncorrected data: Class specific AUROC+ /− 1 SD by model.

NSQ IM LGD HGD AC

PCA-LDA 0.99+ /− 0.01 0.78+ /− 0.08 0.69+ /− 0.11 0.51+ /− 0.10 0.74+ /− 0.08

SVM 0.99+ /− 0.01 0.87+ /− 0.09 0.89+ /− 0.08 0.89+ /− 0.08 0.97+ /− 0.02

CNN 0.99+ /− 0.00 0.90+ /− 0.06 0.92+ /− 0.08 0.92+ /− 0.04 0.91+ /− 0.08
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DATA AVAILABILITY
Availability of data and materials. The data is available at the Zenodo repository:
https://zenodo.org/records/10229090 The protocol is available at the Zenodo
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CODE AVAILABILITY
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