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BACKGROUND: More accurate predictive biomarkers in patients with gastroenteropancreatic neuroendocrine tumours (GEP-NETs)
are needed. This study aims to investigate radiomics-based tumour phenotypes as a surrogate biomarker of the tumour vasculature
and response prediction to antiangiogenic targeted agents in patients with GEP-NETs.
METHODS: In this retrospective study, a radiomics signature was developed in patients with GEP-NETs and liver metastases
receiving lenvatinib. Patients were selected from the multicentre phase II TALENT trial (NCT02678780) (development cohort).
Radiomics variables were extracted from liver metastases in the pre-treatment CT-scans and selected using LASSO regression and
minimum redundancy maximum relevance (mRMR). Logistic regression and Cox proportional-hazards models for radiomics and
combined radiomics with clinical data were explored. The performance of the models was tested in an external cohort of patients
treated with sunitinib (test cohort). Associations between the radiomics score and vascularisation factors in plasma were studied
using hierarchical clustering and Mann–Whitney U test.
RESULTS: A total of 89 patients were included in the study, 408 liver metastases were analysed. The CT-based radiomics signature
was associated with clinical benefit in the development (training and validation sets) and test cohorts (AUC 0.75 [0.66–0.90], 0.67
[0.49–0.92] and 0.67 [0.43–0.91], respectively). The combined radiomics-clinical signature (including the radiomics score, Ki-67 index
and primary tumour site) improved on radiomics-only signature performance (AUC 0.79 [95% CI 0.64–0.93]; p < 0.001). A higher
radiomics score indicated longer progression-free survival (hazard ration of 0.11 [0.03–0.45]; p= 0.002) and was associated with
vascularisation factors (p= 0.01).
CONCLUSIONS: Radiomics-based phenotypes can provide valuable information about tumour characteristics, including
the vasculature, that are associated with response to antiangiogenics.
CLINICAL TRIAL REGISTRATION: This is a study of the Lenvatinib Efficacy in Metastatic Neuroendocrine Tumours (TALENT) phase II
clinical trial (NCT02678780).
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BACKGROUND
Neuroendocrine tumours (NETs) are considered heterogeneous
and complex to treat malignancies. Nevertheless, in the last two
decades the treatment landscape for gastroenteropancreatic
neuroendocrine tumours (GEP-NETs) has improved considerably,
with an increase in available treatment strategies, making patient
stratification and treatment selection more challenging. There is a

wide range of effective therapies including somatostatin analo-
gues, radiolabelled somatostatin analogues, molecular-targeted
agents or chemotherapy [1–3]. Among them, antiangiogenic
targeted therapies such as lenvatinib have demonstrated a high
radiological response rate in these patients [4, 5]. Several clinical
indicators have been considered as prognostic factors for NETs
such as the Ki-67 proliferative index and disease staging [6].
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However, there remains a clinical need to find predictive
biomarkers of response to novel targeted therapies for achieving
more precise patient selection [7].
Radiomics analysis allows for the extraction of quantitative data

from routinely acquired medical images and correlation of
imaging features with the underlying tumour characteristics
including the tumour vasculature [8]. Radiomics opens a window
of opportunity to develop new tools for improved prediction and
response evaluation to novel treatment options. Current studies
have been focused on applying radiomics for NET staging, grade
characterisation and determination of alternative prognostic
factors [9–19], but there is scarce data about radiomics to predict
response to antiangiogenics in NETs [19]. Accounting for the
emerging treatment strategies for NET patients, radiomics could
also contribute in determining the best therapeutic approach for
each patient.
The aim of this study was to develop and evaluate the

performance of a computed tomography (CT)-based radiomics
signature for tumour response prediction to antiangiogenic
agents prior to treatment. Patients with advanced GEP-NETs
enrolled in a multicentre phase II clinical trial conducted with the
antiangiogenic targeted agent lenvatinib were included in the
study [5]. To validate the signature, an external cohort of patients
with pancreatic NET treated with another multikinase inhibitor
with also proved antiangiogenic activity used in routine clinical
practice, sunitinib, was studied. Secondarily, a multiphase model,
that included information of both arterial and venous CT-image
acquisitions, was explored to see whether this improved
the performance for response prediction. Moreover, integration
of the CT-based radiomic model and clinical data was also
investigated in an attempt to improve the predictive value of this
tool. We hypothesised that a CT-based radiomics phenotype can
provide meaningful information about biology of NETs (including
the tumour vasculature) and its susceptibility to respond to
antiangiogenic treatment. The CT-based radiomics signature could
be used to stratify patients by identifying those that are more
likely to benefit from antiangiogenic targeted agents.

METHODS
The institutional review board approved this retrospective study. Informed
consent for computational image analysis was waived.
All patients included in the clinical trial Lenvatinib Efficacy in Metastatic

Neuroendocrine Tumours (TALENT) NCT02678780 [5] provided written
informed consent.

Study sample
The development cohort consisted of patients with GEP-NETs treated with
the multikinase inhibitor lenvatinib in a multicentre, international, phase II
clinical trial conducted from October 2015 to August 2020, identified as
NCT02678780 (Supplementary Table 1 participant centres). The test cohort
consisted of patients with pancreatic NETs treated with the multikinase
inhibitor sunitinib as standard of care at the Vall d’Hebron Institute of
Oncology (Barcelona, Spain) from October 2011 to September 2020.
Patients with GEP-NET liver metastasis and intravenous contrast-

enhanced CT scans at baseline were included. Patients with artifacts at
baseline CT scans and patients in which the clinical outcome could not be
assessed due to toxicity or non-disease related death were excluded. A
total of 408 liver metastases from 89 patients were included (46 men [52%]
and 43 women [48%]), mean age 62 years (range 33–86).

Image acquisition and radiomics analysis
All CT scans were acquired within 28-days before the treatment starting
day. Contrast-enhanced images were obtained with 16- or 64-channel CT
scanners (Siemens, Philips, GE Medical Systems, Toshiba, Agfa), 1–5mm
slice thickness and 100–120 kV of voltage (Supplementary Table 2). Up to
six liver metastases per patient of at least 1 cm diameter were segmented
using the semi-automatic segmentation tool of 3D Slicer (version 4.11.0;
www.slicer.org; RRID:SCR_005619) [20] by a radiologist with more than 10
years of experience in oncological imaging (RPL). The tumours where

segmented in the CT arterial or venous phase depending on the tumour
contrast enhancement, selecting the phase in which tumours were better
depicted (Supplementary Fig. 1). Combined models including information
from both CT contrast-enhanced phases (arterial and venous) were also
explored. Images were resampled to isotropic voxels of 1 × 1 × 1mm3 by
using spline interpolation. Hounsfield units were binarized to discrete
values of 25 HU. CT-based radiomics features including first-order, shape
and five gray-level texture matrices (Gray Level Co-occurrence Matrix
[GLCM], Gray Level Dependence Matrix [GLDM)], Gray Level Run Length
Matrix [GLRLM], Gray Level Size Zone Matrix [GLSZM], and Neighbouring
Gray Tone Different Matrix [NGTDM]) were calculated in three dimensions
using the Pyradiomics package (version 3.0.1) for Python (version 3.6.13
Python Software Foundation, Delaware, USA; RRID:SCR_008394), compliant
with the Image Biomarker Standardisation Initiative guidelines [21]. To
investigate the prediction power of a multiphase radiomics model, the
arterial and venous CT-images were co-registered and the radiomics
features from both acquisition phases were extracted (Supplementary
Methods).

Clinical data
Clinical data from the development cohort were collected from the
TALENT clinical trial database where age, sex, primary tumour site, Ki-67
index, tumour burden, tumour grade and pre-treatment were registered.
Vascular endothelial growth factor receptor 2 (VEGFR2) and angiopoietin 2
(ANG2) quantifications were obtained from patients with plasma samples.
VEGFR2 and ANG2 plasma levels were determined by multiplex ELISA with
a custom-made glass-slide sandwich Quantibody Array (RayBioTech, GA,
USA). Regarding the test cohort, data were obtained from the electronic
patient records. Clinical benefit was defined as achieving either a complete
response (CR), partial response (PR) or stable disease (SD) by RECIST 1.1 for
a duration exceeding the median progression-free survival (PFS) in the
populations according to the phase II and III clinical trials [5, 22]. Therefore,
patients treated with lenvatinib who progressed before 15.7 months and
those treated with sunitinib who progressed before 11.4 months were
considered as not achieving clinical benefit. Clinical data were used to
develop a clinical only and a combined clinical-radiomics model.

Modelling and statistical analysis
The development cohort was divided into training and validation sets
(70–30%) balanced for outcome in both sets and then tested in an external
cohort of patients with GEP-NETs (test cohort). As a standard method in
machine learning modelling, the training set corresponded to the group of
patients where the model was initially trained and the hyperparameters
were fitted using cross-validation; in the validation set, we explored the
model performance robustness; the final model generalisability was
evaluated in the test cohort (i.e., the external validation cohort).
The median radiomics value of all the evaluated liver tumours per

patient was implemented as feature aggregation method. We performed a
two-step procedure for feature selection based on LASSO and minimum
Redundancy Maximum Relevance (mRMR), these two have been shown to
benchmark other feature selection methods [23]. Three-fold cross-
validation was performed for LASSO hyperparameter tuning, choosing
the model with one standard error from the best area under the curve
(AUC). To avoid multicollinearity in the model features, mRMR was
implemented to reduce the number of variables controlling for a variance
inflation factor (VIF) < 2 and a Pearson square R < 0.5 [24]. Logistic
regression model was performed including the selected features. The area
under the curve (AUC) and 95% confidence interval (CI) (DeLong method)
were computed from the receiver operating characteristic (ROC) curve and
p values were assessed from Mann–Whitney U test. The decision threshold
to compute sensitivity and specificity was defined by Youden’s index.
We explored the combination of the radiomics score with established

prognostic factors in NETs, including Ki-67 index and primary tumour site.
Since tumour grade is correlated with Ki-67 expression, it was not included
as a separate factor in our analysis. Furthermore, the assessment of tumour
burden, which can indicate different prognoses, was already incorporated
into the radiomics model analysis. A logistic regression model including
the radiomics score and non-correlated clinical variables (Ki-67 index,
primary tumour site) was developed. Clinical data imputation was done
using random forest. PFS associations with clinical variables and predictive
radiomics scores were investigated using Cox Proportional-Hazard regres-
sion and Log-rank test. A multiphase model combining radiomics features
from arterial and venous phases was also investigated (Supplementary
Methods).
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Patients with both imaging and liquid biopsy were clustered based on
vascularisation factors (including VEGFR2 and ANG2) using hierarchical
clustering. Associations between radiomics score and vascularisation
factors were studied using Mann–Whitney U test. The study workflow is
summarised in Fig. 1.

RESULTS
Study patient characteristics
From a total of 128 patients (88 from the development and 40
from the test cohorts), 15 patients without baseline contrast-
enhanced CT scans or with artifacts in the area of interest were
excluded, 19 without liver metastases or measurable lesions
per RECIST 1.1 and 5 patients who presented toxicity before
clinical outcome evaluation were also excluded. Eighty-nine
patients were included in the radiomics analysis, 65 patients to
build up the model (development cohort) and 24 for external
validation (test cohort). Forty-four patients from the TALENT
clinical trial had concomitant CT images and liquid biopsy
samples.
For the exploratory analysis of combined information from both

CT contrast-enhanced phases (arterial and venous), 65 patients (41
from the development and 24 from the test cohorts) had CT scans
with both arterial and venous phases. A total of 282 tumours (5
[1–6] mean[range] lesion/patient) from the 65 patients of the
development cohort; 34 women and 31 men were included in the
final analysis. The median PFS was 14.9 [IQR 3.04–46.72] months;
46% (30/65) of patients presented clinical benefit (i.e., CR, PR or SD
over the median PFS) and 54% (35/65) did not.
The model was validated in the test cohort including a total of

126 tumours from 24 patients (5 [1–6] mean[range] lesion/
patient); 12 women and 12 men. The median PFS was 9.75 [IQR
2.90–29.47] months; 50% (12/24) of patients presented clinical
benefit and 50% (12/24) did not.
In the development cohort, clinical benefit was defined as the

combination of CR, PR or SD after 15.7 months, corresponding to
the median PFS time in the TALENT clinical trial [5]. In the test
cohort the cut-off for clinical benefit was defined at 11.4 months,
corresponding to the median PFS time in the cohort [22].
Flow chart of the study population selection is shown in

Supplementary Fig. 2. The population description is reported in
Table 1.

Predictive model development and testing
LASSO regression lambda hyperparameter was set to 0.03 after
cross-validation analysis with 13 radiomics features with non-zero
coefficients. Six radiomics features were selected using mRMR
method as the maximum number of variables to avoid multi-
collinearity in logistic regression. The final model included
variables from first order, shape, and GLCM and GLRLM texture
matrices (Table 2). The radiomics model combining the selected
features predicted clinical benefit with an AUC of 0.75 [95% CI
0.60–0.90; p= 0.001] and 0.67 [95% CI 0.41–0.92; p= 0.115] in the
training and validation sets, respectively. In the test cohort, the
radiomics predicted response with an AUC of 0.67 [95% CI
0.43–0.91; p= 0.060] (Fig. 2a). Sensitivity and specificity for
classifying patients with clinical benefit with an optimal Youden’s
cut-off of 0.49 are described in Table 3. Internal cross-validation
showed a mean AUC of 0.67 [0.50–0.87] (Supplementary Fig. 3).
The radiomics model showed that tumour sphericity, hetero-
geneity assessed by GLCM Informational Measure of Correlation
(imc), and enhancement were associated with clinical benefit
(Fig. 2d). No significant differences in radiomics scores were found
between patients previously treated with antiangiogenics and
non-pre-treated patients (p= 0.33) (Supplementary Fig. 4). The
radiomics score for predicting clinical benefit showed significant
association with continuous PFS (HR 0.11[0.03–0.45]; p= 0.002)
(Fig. 2b).

The exploratory multiphase predictive model (combining
information from the arterial and venous CT phases) did not
improve the prediction capacity (AUC in test set 0.63 [0.39–0.87])
(Supplementary Fig. 5).

Integrating radiomics and clinical data
The clinical model combining Ki-67 and primary tumour site
showed poor performance in both the development (training 0.57
[0.40–0.74] and validation 0.56 [0.30–0.82]) and test sets (0.23
[0–0.46]). When combined with the radiomics score, the
radiomics-clinical model predicted response with an AUC of 0.79
[0.64–0.93; p < 0.001] and 0.72 [0.48–0.95; p= 0.06] in the training
and validation sets, respectively. In the test cohort, the combined
radiomics-clinical score associated with response with an AUC of
0.58 [0.33–0.82; p= 0.27]. The sensitivity and specificity for
classifying patients with clinical benefit with an optimal cut-off
of 0.36 are described in Table 3. The ROC curves of the combined
signature integrating radiomics-score and clinical variables were
also computed (Fig. 2a). Tumour burden was not included in this
integrative analysis because it was quantitatively included in the
radiomics analysis. Tumour grade was also excluded due to
correlation with Ki-67 index. The combined clinical-radiomics
score for predicting clinical benefit showed significant association
with continuous PFS (HR 0.12[0.04–0.43]; p= 0.001) (Fig. 2b).
However, none of the clinical variables including Ki67, primary
tumour site or tumour burden showed significant associations
with PFS (p < 0.05) (Supplementary Fig. 6).

Correlation of the CT-based radiomics score and tumour
vasculature
The study population was clustered according to proangiogenic
profiling factors, VEGFR2 and ANG2, by hierarchical clustering.
Cluster A included 21 patients grouped as highly vascularised
tumours showing higher values of VEGFR2 [median 18,784 (IQR
17,579–21,842) pg/ml] and ANG2 [2062 (1296–3328) pg/ml]
expression. Cluster B included 23 patients with poorly vascularised
tumours showing lower VEGFR2 [2289 (1577–9776) pg/ml] and
ANG2 level expression [709 (4079–1204) pg/ml]. Significant
associations were found between the radiomics score and
vascularisation clusters showing higher radiomics score in the
vascularised cluster A [0.51 (0.37–0.66)] and lower radiomics score
in the poorly vascularised cluster B [0.29 (0.21–0.445)] (p= 0.01)
(Fig. 2c).

DISCUSSION
The increasing development of targeted therapies for NETs has
pointed out the unmet need to define predictive biomarkers of
response for improving patient selection. The neoangiogenesis
process is a key feature in NET carcinogenesis and the field of new
antiangiogenic compound development is still active after
sunitinib, the only tyrosine kinase inhibitor utilisable in clinical
practice. In this study we explored an imaging phenotype based
on radiomics features from baseline CT scans that allows the
identification of patients most likely to benefit from antiangio-
genic treatment.
The developed radiomics signature outperforms clinical fea-

tures (including Ki-67 and primary tumour type) for predicting
response to treatment (AUC 0.75 vs. 0.57). The radiomics signature
consisted of five radiomics features, indicating that patients with
more spherical and heterogeneous tumours are more likely to
respond to antiangiogenic treatment. Also, more intravenous
contrast-enhancing tumours are associated with better response.
Therefore, we investigated the association of tumour vascularisa-
tion (by means of plasma VEGFR2 and ANG2) and the predictive
radiomics score, showing that in the TALENT cohort, the CT-
radiomics score was associated with VEGFR2 and ANG2 expres-
sion. This suggests that radiomics quantification from baseline CT
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scans can non-invasively provide valuable information about the
tumour vascularisation. The TALENT research group has previously
shown that in antiangiogenic pre-treated patients, the plasma
proangiogenic profiling (VEGFR2 and ANG2 levels) significantly
predicts response in NETs [25]. In the subset of non-pre-treated
patients, different mechanisms of vascularisation and activation of
alternative signalling pathways could sustain the lack of associa-
tion between proangiogenic profiling and tumour response [26].
Interestingly, our signature did not show significant accuracy
differences between patients who had received previously
antiangiogenics or not, which may indicate that the radiomics

phenotype captures the tumour characteristics that make it
susceptible to antiangiogenic response that includes, but is not
limited to, tumour vascularisation.
The capacity of the radiomics signature to predict response was

tested in an independent population of patients with pancreatic
NETs treated with sunitinib, another multikinase inhibitor with
antiangiogenic effects but with different targets and affinity than
lenvatinib, with a stable performance of the radiomics signature.
The integration of prognostic factors such as Ki-67 index and
primary tumour site improved the performance of the radiomics-
only signature. However, the combined model (clinical-radiomics)
presented a modest performance in the sunitinib population that
can be related to the clinical differences between patients
receiving standard of care treatment and those within clinical
trials.
In previous research, a radiomics model based on the analysis of

the entire liver was reported, demonstrating predictive value for
response to everolimus in advanced NETs [19]. However, to our
knowledge, no previous studies have been reported exploring the
role of CT-radiomics in predicting response to antiangiogenic
multikinase inhibitors in NETs. Several studies have shown that
high-grade NETs present lower density (likely related to a lower
intratumoral microvascular density) than low grade NETs [18, 27].
Our study population included mostly grade 1 and 2 NETs, and no
significant differences in the tumour enhancement was identified
between them (Supplementary Fig. 7). Therefore, the relevance of
tumour intensity in the CT-radiomics signature represents most
likely a true specific predictive biomarker rather than an indicator
of aggressiveness or tumour grade.
Although NETs are often highly-dense tumours in contrast-

enhanced CT, usually more conspicuous in the arterial phase of
the CT scan, some tumours present different patterns and, as
shown in the study population, some tumours are better depicted
in the venous phase [28]. In this study, an expert radiologist
selected the phase (arterial or venous) of the CT scan where the
tumour was best depicted. We also investigated the integration of
a multiphase model (combining radiomics data from arterial and
venous phases) to address this concern. We demonstrated that
including radiomics features from multiple phases did not
improve the prediction in our population. Furthermore, we
correlated the radiomics score with vascularisation factors
(VEGFR2 and ANG2) in the population with concomitant imaging
and plasma samples and showed significant associations between
the radiomics-score and vascularisation-factor expression.
There are some limitations encountered in this study. First, the

population used for the training dataset was tied to the clinical
trial population. The test cohort was treated with a different
agent, although both are multikinase inhibitors with an
antiangiogenic effect, and the population slightly differs
clinically from the development cohort (i.e., primary site and
grade). This limitation is mainly affecting the performance of the
combined radiomics-clinical model in the test dataset. Second,
we developed a model using only one acquisition phase
selected by an expert radiologist, which can influence the
radiomics features. However, we explored the performance of
including both phases and it did not improve the prediction

Table 2. Radiomics model coefficients.

Radiomics features Coefficient [95% CI]

Shape flatness −0.82 [−1.6–−0.05]

GLCM Imc1 0.31 [−0.47–1.09]

First order 90th percentile 0.37 [−0.29–1.04]

GLRLM Long Run Low Gray Level Emphasis 0.16 [−0.58–0.91]

First order skewness 0.34 [−0.35–1.03]

Shape sphericity 0.84 [0.05–1.63]

Table 1. Population characteristics of the development and test
cohorts.

Parameter Development
cohort (n= 65)

Test cohort
(n= 24)

Mean age (years)a 60 ± 12(33–85) 63 ± 12 (38–86)

Sex

Female 34 (52) 12 (50)

Male 31 (48) 12 (50)

Primary tumour site

PanNET 24 (37) 23 (96)

GI-NET 33 (51) 1 (4)

Unknown 8 (12) 0 (0)

Pre-treatment

Sunitinib 10 (15) NA

Everolimus 19 (29) NA

None 36 (55) NA

Best response

Partial response 24 (37) 6 (25)

Stable disease 40 (62) 15 (62)

Progressive
disease

1 (1) 3 (13)

Mean Ki-67a,b 7.13 ± 5.87
(1.00–18.00)

21.96 ± 18.98
(1.30–55.10)

Gradeb

Grade 1 22 (34) 3 (12)

Grade 2 40 (61) 12 (50)

Grade 3 ··· 9 (38)

Unknown 3 (5)

PFS (months)c 14.9 [3.04–46.72] 9.75 [2.90–29.47]

OS (months)c 33.7 [9.21–46.94] 12.1 [4.00–47.00]

Number of lesions 4 (1–6) 5 (1–6)

Mean hepatic
tumour burden (dl)a

0.037 (0.001–2.209) 1.086 (0.007–1.054)

CT segmentation phase

Arterial 23 (35) 7 (29)

Pancreatic NET 14 (21) 6 (25)

Gastrointestinal
NET

9 (14) 1 (4)

Venous 42 (65) 17 (71)

Pancreatic NET 15 (23) 17 (71)

Gastrointestinal
NET

27 (42) ···

Data in parentheses are percentages.
aData are ± standard deviation and parentheses are range.
bData presented has no information from three patients.
cData are median [interquartile range].
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Table 3. Radiomics and radiomics-clinical model performance evaluation.

AUC [95% CI] p value Accuracy (%) Sensitivity (%) Specificity (%)

Radiomics model

Training 0.75 [0.60–0.90] <0.001 78 76 79

Validation 0.67 [0.41–0.92] 0.114 55 55 56

Test 0.67 [0.43–0.91] 0.09 63 67 58

Radiomics clinical model

Training 0.79 [0.64–0.93] <0.001 78 90 67

Validation 0.72 [0.48–0.95] 0.12 70 45 100

Test 0.58 [0.33–0.82] 0.276 54 17 92

Table containing the area under the curve (AUC), accuracy, sensitivity and specificity for the Youden’s cut-off 0.49 for the radiomics-only model and 0.36 for the
radiomics-clinical model.
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Fig. 2 Response prediction performance and explainability. Performance of the radiomics and radiomics-clinical models to predict
response to treatment using: a Receiver operating characteristic (ROC) curves for median progression-free survival (PFS) prediction and
b Kaplan–Meier curves for PFS probability. Explainability of the radiomics signature: c Associations between vascular factor expression and
radiomics score. The cluster A corresponds to highly vascularises tumours with high-radiomics score, while cluster B includes tumours with
poor vascularisation and low-radiomics score. d Visualisation of tumours with high-radiomics score (i.e., more spherical, heterogenous and
highly enhancing) and long PFS vs. low-radiomics score and short PFS. Spearman’s rank correlation analysis (p < 0.01).
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capacity and showed higher model overfitting. Third, the images
in this study underwent evaluation by a consistent expert
radiologist. Nevertheless, it is important to acknowledge that
variations in segmentation techniques and observers may
introduce biases that could impact the reliability of first-order
and textural radiomics features, as well as shape and size metrics
[29]. Finally, while we recognise the need for homogeneity in
radiomics modelling, achieved by focusing solely on liver
metastases, we acknowledge that further exploration and
potential validation in larger cohorts encompassing primary
tumours and other metastatic sites should be pursued. This will
contribute to a more comprehensive understanding of the
radiomics-based phenotypes in GEP-NETs.
In conclusion, the GEP-NET phenotype evaluated by means of

CT-based radiomics can be a useful non-invasive surrogate of the
tumour vasculature and has predictive value of tumour response
to antiangiogenic targeted agents. The improved prediction of
response to antiangiogenic therapy achieved by combining
radiomics with clinical prognostic factors can facilitate medical
decision making and optimise treatment outcomes for patients
with GEP-NETs. Nevertheless, despite the promising results of this
study, further research is necessary in larger, prospective trials for
implementation of this tool in clinical practice.
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