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Abstract
Background/Objectives Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation 
intervention that shows promise as a potential treatment for depression. However, the clinical efficacy of tDCS 
varies, possibly due to individual differences in head anatomy affecting tDCS dosage. While functional changes in 
brain activity are more commonly reported in major depressive disorder (MDD), some studies suggest that subtle 
macroscopic structural differences, such as cortical thickness or brain volume reductions, may occur in MDD and 
could influence tDCS electric field (E-field) distributions. Therefore, accounting for individual anatomical differences 
may provide a pathway to optimize functional gains in MDD by formulating personalized tDCS dosage.

Methods To address the dosing variability of tDCS, we examined a subsample of sixteen active-tDCS participants’ 
data from the larger ELECT clinical trial (NCT01894815). With this dataset, individualized neuroimaging-derived 
computational models of tDCS current were generated for (1) classifying treatment response, (2) elucidating essential 
stimulation features associated with treatment response, and (3) computing a personalized dose of tDCS to maximize 
the likelihood of treatment response in MDD.

Results In the ELECT trial, tDCS was superior to placebo (3.2 points [95% CI, 0.7 to 5.5; P = 0.01]). Our algorithm 
achieved over 90% overall accuracy in classifying treatment responders from the active-tDCS group (AUC = 0.90, 
F1 = 0.92, MCC = 0.79). Computed precision doses also achieved an average response likelihood of 99.981% and 
decreased dosing variability by 91.9%.

Conclusion These findings support our previously developed precision-dosing method for a new application in 
psychiatry by optimizing the statistical likelihood of tDCS treatment response in MDD.
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Introduction
Major Depressive Disorder (MDD) is a complex and mul-
tifaceted mental health condition that affects hundreds of 
millions of individuals worldwide (Otte et al. 2016). MDD 
has a substantial impact on an individual’s daily function-
ing and quality of life, leading to difficulties in personal 
relationships, work productivity, and social activities 
(Bromet et al. 2011; James et al. 2018). Depressive dis-
orders are the third largest cause of disability worldwide 
(James et al. 2018), and the economic burden associ-
ated with this condition is substantial (James et al. 2018; 
Greenberg et al. 2021). In 2018, the annual cost of MDD 
in the United States was estimated to be $326.2 billion, 
which is a nearly 40% increase from 2010 (Greenberg et 
al. 2021).

Despite the availability of different treatment options, 
such as medication and psychotherapy, nearly 31% of 
patients do not achieve remission (Gibson-Smith et al. 
2015), and the long-term outcomes are often unsatisfac-
tory (Nemeroff 2007). Moreover, many of these treat-
ments have non-trivial side effects, including sexual 
dysfunction, insomnia, weight gain, etc. (Trivedi et al. 
2006; Nemeroff 2007). In some cases, these side effects 
can lead patients to turn away from pursuing or continu-
ing treatment. Due to the high prevalence and substantial 
burden of MDD, there is a growing need for alternative 
or complementary interventions that can provide effec-
tive and long-lasting relief for individuals with treatment-
resistant depression (Trivedi et al. 2006; Nemeroff 2007; 
Warden et al. 2007).

One such treatment is transcranial direct current 
stimulation (tDCS), a non-invasive brain stimulation 
technique that involves the application of a weak elec-
trical current over the scalp to modulate cortical excit-
ability (Albizu et al. 2019). tDCS alters the sub-threshold 
membrane potential of neurons (Albizu et al. 2019) and 
increases regional blood flow while modulating local 
neurotransmitter concentrations during stimulation 
(Radman et al. 2009a; Fritsch et al. 2010; Reato et al. 2013; 
Podda et al. 2016; Kronberg et al. 2017; Antonenko et al. 
2019; Alvarez-Alvarado et al. 2021). In vivo and in vitro 
studies have shown that the weak electric field induced 
by tDCS can modulate cortical excitability (Esmaeilpour 
et al. 2018), as well as alter synaptic plasticity (Podda et 
al. 2016; Kronberg et al. 2017, 2020). tDCS has shown 
promising results for treating various neuropsychiatric 
conditions (Szymkowicz et al. 2016; Clancy et al. 2018; 
Indahlastari et al. 2021; Kim et al. 2022), including MDD 
(Knotkova et al. 2012; Brunoni et al. 2013, 2017). Several 
randomized controlled trials for MDD have achieved 
varying results by targeting the hypoactive dorsolateral 
prefrontal cortex (DLPFC) with tDCS (Fregni et al. 2006; 
Bares et al. 2008; Boggio et al. 2008; Murphy et al. 2009; 
Nitsche et al. 2009; DMMsF et al. 2012; Kalu et al. 2012; 

Palm et al. 2012; Brunoni et al. 2013, 2017). Some stud-
ies have reported significant improvements in depressive 
symptoms compared to sham stimulation (Fregni et al. 
2006; Bares et al. 2008; Boggio et al. 2008; Murphy et al. 
2009; Nitsche et al. 2009; Kalu et al. 2012; Brunoni et al. 
2013, 2017), while others have failed to demonstrate sig-
nificant effects (DMMsF et al. 2012; Palm et al. 2012).

This may be due to the “one-size-fits-all” or fixed dosing 
approach adopted by most tDCS trials. Specifically, all 
participants are assigned to receive the same stimulation 
parameters (e.g., F3/F4 at 2 mA) without regard to each 
individual’s unique anatomy. Thus, the level of variability 
in trial outcomes could be (at least partially) attributed 
to individual differences in head anatomy. For example, 
individual MRI-derived computational models of tDCS-
induced current are linearly affected by anatomical attri-
butes such as cortical atrophy (Indahlastari et al. 2020a), 
leukoaraiosis (Indahlastari et al. 2020b), skull thickness 
(Opitz et al. 2015), adiposity (Truong et al. 2013), etc. 
While these anatomical factors represent just one dimen-
sion of inter-individual variability, anatomical factors 
have the greatest effect on the distribution and targeting 
of tDCS, affecting individual response to tDCS (Bulubas 
et al. 2019; Albizu et al. 2020; Suen et al. 2020; Nandi et 
al. 2022). Although every brain possesses unique char-
acteristics, variations in brain structure are also particu-
larly evident in the presence of pathology, like depression 
(Kanner 2004; Palazidou 2012). However, the majority of 
research has investigated the impact of anatomical dif-
ferences on tDCS response in healthy populations. Thus, 
there is a pressing need to investigate the predictive value 
of pathological differences in anatomy on treatment out-
comes in tDCS. A method to account for individual ana-
tomical differences in an MDD population may provide a 
unique pathway toward a precision medicine approach of 
tDCS for maximal therapeutic outcomes.

Considering inherent dosing variability across individ-
uals, algorithms of machine learning (ML) can be applied 
to patient-specific, neuroimaging-derived computational 
models of electric current to address the heterogeneity 
of response to tDCS (Albizu et al. 2020, 2023; Kambe-
itz et al. 2020; Kim et al. 2022). While other studies have 
utilized machine learning to classify treatment response 
(Albizu et al. 2020, 2023; Kambeitz et al. 2020; Kim et 
al. 2022), only our previous results have leveraged this 
approach to optimize tDCS dosing (Albizu et al. 2020, 
2023). Thus, the current study replicates our previous 
results in a new, clinical and affective domain by apply-
ing a machine learning approach to 1) classify individual 
response to tDCS application, 2) investigate the features 
of the electric field that are the best classifiers of treat-
ment response, and 3) optimize tDCS parameters to 
maximize the likelihood of treatment response. Poten-
tial findings of this study may show promise in refining 
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stimulation dosing strategy by accounting for individual 
anatomical differences. Precise targeting of brain regions 
in need of stimulation may potentially improve outcomes 
for patients with MDD.

Methods
Structural imaging and behavioral data were sourced 
from a phase-III, randomized, non-inferiority, triple-arm, 
placebo-controlled study (NCT01894815; Fig.  1). In the 
trial, 245 MDD patients were recruited to one of three 
groups: active-tDCS with placebo pill, sham-tDCS with 
escitalopram, and sham-tDCS with placebo pill (Brunoni 
et al. 2015).

Participants
16 patients with Major Depressive Disorder (MDD) 
receiving active-tDCS stimulation were selected (in 
accordance with a previous study (Suen et al. 2020)) 
for further analysis by the current study [mean (sd) 
age = 42.8 (10.9), mean HDRS-17 = 21.6 (3.9), 9  F:7  M]. 
Eligible patients were diagnosed with MDD accord-
ing to DSM-5 criteria and confirmed by psychiatrists 
using the Mini-International Neuropsychiatric Inter-
view (MINI) (Amorim 2000). Eligible patients were 
between 18–75 years old, had a score of 17 or higher on 
the 17-item Hamilton Depression Rating Scale (HDRS-
17), and had a low suicide risk as determined by the 

MINI. Patients with bipolar disorder, substance abuse 
or dependence, dementia, a personality disorder, brain 
injury, a current pregnancy, specific contraindications to 
tDCS, current or previous use of escitalopram, or pre-
vious or concurrent participation in other tDCS trials 
were excluded. Coexisting anxiety disorders (generalized 
anxiety disorder, specific phobia, panic disorder, or social 
anxiety disorder) did not result in exclusion. Before the 
trial, patients were free of antidepressants or completed 
a washout. Benzodiazepines were limited to a stable dose 
of 20 mg/day of diazepam equivalent. The trial was con-
ducted at the University Hospital and Department and 
Institute of Psychiatry, University of São Paulo.

tDCS protocol and application
Using the Omni-Lateral-Electrode system (Seibt et al. 
2015), the anode and cathode electrodes (5 × 5 cm2 pads) 
were positioned over the left and right dorsolateral pre-
frontal cortices, respectively (165° rostral and 10 cm apart 
near F5/F6 of the 10–20 system) (Brunoni et al. 2015). 
Each session involved a 30-minute application of 2  mA 
of tDCS (Soterix Medical, tDCS-CT for clinical trials) for 
10 weeks. The first 15 sessions occurred daily, except for 
weekends, while the remaining 7 sessions were held once 
per week for a total of 22 sessions conducted. Patients in 
both the active and sham tDCS groups were subjected to 
the same protocol. The devices were pre-programmed 

Fig. 1 A schematic of the ELECT clinical trial design. The current study performed secondary analysis of the active-tDCS + placebo group with baseline 
MRIs (n = 16; green square). Created with Biorender.com

 



Page 4 of 14Albizu et al. Bioelectronic Medicine           (2024) 10:25 

with a randomized code to deliver either active or sham 
stimulation, However, in the sham group, the current was 
automatically turned off after 30 seconds.

Treatment outcomes
Trained psychiatrists and psychologists, who were 
unaware of the trial-group assignments, conducted all 
assessments. All assessors were trained using the struc-
tured interview guide for the HDRS-17 and only started 
participating in the study if the reliability was > 90% 
compared to the gold standard. Efficacy and safety were 
evaluated at screening, baseline, and at the end of weeks 
3, 6, 8, and 10. Positive class labels (n = 10) were defined 
as > 50% reduction between the baseline and 10-week 
timepoint on the HDRS-17, the Montgomery–Åsberg 
Depression Rating Scale (MADRS), and Positive and 
Negative Affect Scale (PANAS), similar to a previous 
study (Suen et al. 2020). No significant safety concerns 
were identified during the study. To assess the integrity of 
trial-group blinding, patients were asked to guess which 
intervention they had received and to rate the confidence 
in their prediction. Participants were unable to guess 
tDCS assignment (χ 2 (2) = 2.6, p = 0.27).

Imaging sequences and parameters
Structural T1-weighted MRI scans were obtained on a 3T 
MR system (Achieva, Philips Healthcare, Netherlands). 
The 3D Fast Field Echo sequence parameters included: 
repetition time (TR) = 7 ms; echo time (TE) = 3.2 ms; flip 
angle = 8°; field of view (FOV) = 240 × 240  mm; resolu-
tion = 1 × 1  mm; slice thickness = 1  mm; and 180 sagittal 
slices. MR acquisitions were conducted between 4 and 8 
days before baseline and took place at the Department of 
Radiology (Hospital das Clínicas da Universidade de São 
Paulo, São Paulo) during the weekends.

Computational model construction
The individual T1-weighted images were converted into 
a 256 mm3 isometric field of view, 1 mm3 voxel size, and 
RAS orientation with the FreeSurfer v7.1.1 image analy-
sis suite (http://surfer.nmr.mgh.harvard.edu/). Individual 
head volumes were segmented into six tissue types: white 
matter, gray matter, cerebrospinal fluid, bone, skin, and 
intracranial air with HEADRECO (Nielsen et al. 2018) – 
provided by SimNIBS v3.2.1 (https://simnibs.github.io/
simnibs/build/html/index.html). Individual tissue types 
were assigned default isotropic conductivity values using 
the Realistic vOlumetric-Approach to Simulate Tran-
scranial Electric Stimulation (ROAST; https://www.par-
ralab.org/roast/) toolbox (Huang et al. 2019). A custom 
MATLAB 2022a (https://www.mathworks.com/) script 
was used to simulate electrodes according to the Omni-
lateral Electrode System (Seibt et al. 2015). At these cus-
tom locations, 5 ×  5 cm2 electrodes with + 2  mA/-2  mA 

boundary conditions were assigned as anode and cath-
ode, respectively. A finite element solver, getDP, was used 
to compute voltage solutions to the Laplace equation. 
Additional MATLAB routines were used to compute cur-
rent density from electric field and tissue conductivity, in 
accordance with Ohm’s law (J = σ E ; Fig. 2). Further, to 
assess the importance of the current density magnitude, 
the current density direction, and the curren density vec-
tor (magnitude and direction) in classifying treatment 
response; we compare the classification performance 
of each data type (see supplemental materials for more 
information).

Supervised machine learning
A Support Vector Machine (SVM) algorithm was used 
to classify the responders from non-responders, like our 
previous approach (Albizu et al. 2020). SVM searches 
for the optimal hyperplane that can separate two classes 
with maximal margin, under the assumption of indepen-
dently and identically distributed (iid) data (Steinwart 
and Christmann 2008), which is met in this study. For the 
detailed machine learning methodology, please refer to 
the supplemental materials. To replicate our prior results, 
three data types: current density magnitude, direction, 
and vector were extracted to be utilized for classification 
(Albizu et al. 2020). For feature weight generation and 
deployment, a final model was trained on all 16 current 
density maps to derive overall classification weights. The 
feature weights at each voxel were separated by positive 
and negative weights that classify responders and non-
responders, respectively. To identify the specific features 
that classify tDCS-related depressive symptom improve-
ments, positive weights were normalized (i.e., 

∑
w+ = 1

) with the following equation to determine their percent 
contribution toward response classification:

 
w+ =

{
wi∑

v:wv>0wv
, wi > 0

0, wi ≤ 0
 (1)

Regions of interest (ROIs) were defined using the Har-
vard-Oxford atlas [52], and regions were ranked based 
on the average weight of each voxel in that region, w+

ROI

: 1
|v∈ROI |

∑
v∈ROIw

+
v , where ROI  represents the set of 

voxels within a specified region of the atlas.

Dose optimization
Learned weights of the SVM model were used in a modi-
fied, weighted Gaussian mixture model (GMM) to gen-
erate a precision model that accounts for inter-personal 
variation based on the current distribution of respond-
ers. The empirical responder mean, empirical responder 
variance, and SVM feature weights were used to estimate 
each Gaussian model. The likelihood (ℓ) of a new subject 

http://surfer.nmr.mgh.harvard.edu/
https://simnibs.github.io/simnibs/build/html/index.html
https://simnibs.github.io/simnibs/build/html/index.html
https://www.parralab.org/roast/
https://www.parralab.org/roast/
https://www.mathworks.com/
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belonging to the responders’ current distribution (i.e., 
response likelihood) was calculated using:

 �
(
x | w+, µ , σ

)
= e

−
∑ V

v=1
w+v (xv−µ v)

2

σ 2
v+1  (2)

where w+
v  is the SVM response classification weight (s.t., ∑

w+ = 1), µ v  is the empirical responder mean, and 
σ 2

v is the empirical responder variance for the vth  of V  
features. The likelihood estimate was used as the objec-
tive function to optimize tDCS parameters (i.e., electrode 
placement and injected current intensity; see Fig.  3) for 
each individual’s unique head anatomy. In total, electrode 
positions were optimized from 71 locations from the 
10–10 system (71 × 70 = 4,970 potential electrode pairs). 
Further, the injected current intensity was simulated in 
0.1 mA increments up to 4 mA for a total of 40 possible 
input current levels. Thus, the overall tDCS optimiza-
tion space included 198,800 potential tDCS doses per 
person. Normalized mutual information, feature-wise 
regression, and feature-wise dot product were used as 
metrics to evaluate the performance of optimization by 
comparing the similarity of the optimization results with 
the average treatment responder. For visualization of 

optimization performance, principal component analysis 
(PCA) was also utilized to project the expansive feature 
space and Gaussian model into two dimensions (i.e., the 
first two principal components). As an additional metric 
of optimization performance, current density volumes of 
optimized doses for non-responders were passed back 
through the original SVM model to assess reclassification 
of non-responders as responders following optimization.

Statistical analyses
The Statistics and Machine Learning Toolbox in MAT-
LAB 2022a was used to carry out statistical analyses. 
Hedges’ g was computed to define effect sizes of mean 
differences, corrected for small sample bias. Since all six-
teen participants in our study were individuals with no 
familial relationship, and each participant’s data was col-
lected under the same condition, these data points met 
the statistical assumptions of iid data.

Results
The parent ELECT clinical trial of the current study 
primarily found a significant decrease in the HDRS-17 
depression scores in both active-tDCS groups compared 
to sham-tDCS with placebo pill (tDCS with escitalopram: 

Fig. 2 The spatial distribution of current density for all 16 participants
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5.5 points [95% CI, 3.1 to 7.8; P < 0.001; Response rate: 
47%], tDCS with placebo pill: 3.2 points [95% CI, 0.7 to 
5.5; P = 0.01; Response rate: 41%]) in the intent-to-treat 
analysis.

Machine learning classification of tDCS intervention 
efficacy
In this study, we used a Support Vector Machine (SVM) 
learning algorithm to distinguish tDCS responders from 
non-responders based on modeled current density mag-
nitudes, directions, and vectors (a combination of mag-
nitudes and directions). Here, the SVM model accurately 
distinguished tDCS responders from non-responders 
using current density magnitudes, achieving an overall 
accuracy of 91.25% [95% CI 88.54% – 93.96%] with an 
area under the curve (AUC) of 0.90, an F1 score of 0.93, 
and a Matthews correlation coefficient (MCC) of 0.82 
(see Fig.  4). We also found that current density magni-
tudes outperformed current density vectors and cur-
rent density directions in classifying treatment response 
(F [2,29] = 65.08, p < 0.001). Specifically, the accuracy 
of the model based on current density vector was 85%, 
with an AUC of 0.89, an F1 score of 0.88, and an MCC of 
0.69. The accuracy of the model based on current den-
sity direction was 81%, with an AUC of 0.85, an F1 score 
of 0.86, and an MCC of 0.59 (see Table 1 for full results). 

These results indicate that current density magnitudes 
are a reliable classifier of tDCS treatment response in 
MDD.

Electric Field characteristics to Classify Treatment 
Response
Furthermore, we examined the brain voxels that classify 
tDCS responders (i.e., the feature weights learned during 
training, w+ from Eq. 1). As shown in Fig. 5, the median 
current magnitude was significantly higher in respond-
ers than in non-responders within these brain regions 
(r = 0.999, p < 0.001, see Fig.  5C), indicating a strong 
positive relationship between current density magnitude 
and treatment response. To quantify the difference in cur-
rent density magnitudes between responders and non-
responders, we calculated the effect size using Hedges’ g
. The effect size was 2.75, with a 95% confidence inter-
val between 2.08 and 4.46 (F [1,15] = 31.8, p < 0.001
; see Fig.  5D), indicating a large and reliable difference 
between the two groups. These results suggest that cur-
rent magnitude is a robust classifier of tDCS treatment 
response, and that higher current magnitudes within 
essential brain regions may be associated with a greater 
likelihood of response.

Fig. 3 A representative optimization space for a single participant. A 5th-degree polynomial fit was applied to demonstrate the gradient of treatment 
response across multiple parameters. The x-axis represents the applied current intensity in milliamps. The y-axis represents the electrode montage (i.e., the 
bipolar electrode configuration) by distance from the originally applied montage (e.g., F5/F6). The z-axis represents the statistical likelihood of treatment 
response for a single participant given the specific combination of parameters
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Regional contributions toward classification of tDCS 
response
To visualize the regions of the brain contributing to treat-
ment response, Fig.  6 illustrates the top ten regions of 
interest (ROIs) from the Harvard-Oxford atlas, based on 
the average normalized weight per voxel within each ROI. 
The distribution of percent contribution across Harvard-
Oxford ROIs is shown in Fig. 6B and C. The top ranked 

ROIs that classified depressive symptom improvements 
were largely located in the prefrontal and medial tempo-
ral lobes, as shown in Fig. 6A. These ROIs were labeled 
as the: (1) Left Superior Frontal Gyrus, (2) Right Supe-
rior Frontal Gyrus, (3) Right Supplemental Motor Area, 
(4) Left Middle Frontal Gyrus, (5) Left Heschl’s Gyrus, 
(6) Left Supplementary Motor Area, (7) Right Posterior 
Parahippocampal Gyrus, (8) Right Amygdala, (9) Right 
Middle Frontal Gyrus, (10) Left Central Operculum 
(Fig. 6). Overall, these brain regions have been implicated 
in emotion regulation, cognitive control, and sensory 
processing, all of which are disrupted in depression.

Dose optimization performance
To correct the differences in current density between 
responders and non-responders, a GMM (i.e., Eq.  2) 
was used to compute and optimize the likelihood of 
treatment response given the estimate current den-
sity within the brain. An exhaustive search of the tDCS 
optimization space was used to identify the global opti-
mum dosing parameters for non-responders to match 
the current profile of treatment responders. Following 

Table 1 A summary of the ablation experiment with SVM model 
performance per data type

Intensity Direction Combined
Accuracy 0.913 0.688 0.788
AUROC 0.918 0.808 0.866
F1 Score 0.932 0.795 0.835
MCC 0.812 0.301 0.539
Sensitivity 0.960 0.970 0.860
Specificity 0.833 0.217 0.667
FPR 0.167 0.783 0.333
FNR 0.040 0.030 0.140
AUROC – Area Under the Receiver Operating Characteristic Curve, MCC – 
Matthews Correlation Coefficient, FPR – False Positive Rate, FNR – False Negative 
Rate

Fig. 4 (A) A schematic diagram of the treatment response classification workflow. (B) The mean raw and fitted ROC curve of each data type across ten 
iterations. (C) The AUC of the ROC curve for each of the data types across ten iterations. (D) an aggregate confusion matrix across ten iterations for the best 
performing model. (E) Discrimination maps of regions that classify treatment response with the percent contribution of each voxel to the SVM decision 
function, superimposed onto the MNI152 Template
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optimization, original non-responders were signifi-
cantly closer to the responder current density mean by 
2.34 pooled standard deviations compared to pre-opti-
mization fixed dosing of non-responders (see Fig.  7A, 
F [1,11] = 20.59, p = 0.001, g = 2.34, 95% CI = 1.57− 4.73
). GMM dose optimization also achieved an average 
response likelihood of 99.981% (see Fig.  7B), indicat-
ing that the optimized doses were highly likely to lead 
to a positive treatment response. Furthermore, the 
optimized doses shared 60.9% (7.4 bits) of normalized 
mutual information with the mean current distribu-
tion for responders, indicating that the optimized doses 
were similar to those given to responders (see Fig.  7C). 
Regression of the mean optimized current density vector 

demonstrated strong feature-wise coherence (see Fig. 7F, 
R2 = 0.595, p < 0.001), which suggest that the optimized 
doses exhibited patterns of electrical current indicative 
of treatment response. Additionally, the GMM optimi-
zation decreased dosing variability by 91.9%, suggest-
ing that the optimized doses were more consistent than 
non-optimized fixed doses. Furthermore, the optimized 
doses exhibited 203.4% greater average feature-wise dot 
product with the current density vector of responders, 
indicating that the optimized doses were more similar 
to those given to responders than conventional non-
responder fixed doses (see Fig.  7D-E). Finally, the opti-
mized doses of the non-responder group were passed 
back through the original SVM discriminator and 100% 

Fig. 5 Plots to demonstrate the current density characteristics within regions predictive of tDCS responders. (A) Histogram of current magnitude (bin 
width of 0.0013 Am-2), with the y-axis representing the number of observations in each bin divided by the total number of observations, where the sum of 
all bar heights is equal to 1. (B) Cumulative histogram of current magnitude with the height of each step equal to the cumulative number of observations 
in the bin over the total number of observations in each bin and all previous bins where the height of the last bar is equal to 1. (C) Logistic regression of 
class labels vs. median current magnitude. Each dot represents a single participants median current magnitude. (D) The Hedges’ g between responders 
and non-responders is shown in a Gardner-Altman estimation plot. Each dot represents a single participants median current magnitude. The mean differ-
ence is plotted on a floating axis as a bootstrap sampling distribution. The mean difference is depicted as a dot; the 95% confidence interval is indicated 
by the ends of the vertical error bar
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Fig. 6 (A) Visualization of ROIs from the Harvard-Oxford atlas ranked based on their contribution toward predictions of treatment response. (B) Rank, 
label, and mean percent contribution per voxel of each ROI. (C) A bar graph to represent the average percent contribution per voxel within each ROI of 
the Harvard-Oxford atlas. Within the bar graph, the top ten ROIs are highlighted in red
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of these optimized doses were predicted to produce treat-
ment responders, indicating a high level of classification 
accuracy and effectiveness of the optimization strategy. 
Overall, these results demonstrate that dose optimiza-
tion maximized the likelihood of treatment response by 
consistently matching the current density distribution of 
treatment responders throughout the brain.

Discussion
The results of this study suggest that machine learning 
algorithms applied to computational models of tDCS 
can effectively classify and optimize treatment response 
in individuals with major depression. Specifically, the 
current study applied a machine learning approach to 
(1) classify individual response to tDCS application, (2) 
investigate the features of the electric field that are the 
best classifiers of treatment response, and (3) optimize 

tDCS parameters to maximize the likelihood of treat-
ment response. Our findings highlight the potential for 
machine learning algorithms to identify classification 
markers of response and prospectively adjust dosing 
parameters for optimal treatment outcomes.

Response classification and current characteristics
The classifcation capabilities of this approach may be par-
ticularly useful in identifying individuals who are likely to 
benefit from tDCS and in developing personalized treat-
ment approaches. Furthermore, our findings suggest that 
the magnitude of the electric field is the most effective 
classifier of treatment response, outperforming current 
density vector and direction. Specifically, responders 
were found to have greater current density magnitudes 
within the voxels that discriminate tDCS respond-
ers from non-responders. This finding suggests that the 

Fig. 7 Conventional fixed dosing compared to optimized dosing. (A) Dosing variability measured by root mean squared error (RMSE) compared to the 
responder current density within the brain for fixed versus optimized doses, respectively. Black dots represent the mean values. Error bars represent ± 1 
SD from the mean values. Histograms represent the normal distribution of the sample. (B) Response likelihood of responder (green), non-responder (red), 
and optimized (blue) models. Contour lines represent a 3D Gaussian distribution of the first and second principal components (i.e., PC1 and PC2) for re-
sponders. Histograms represent the smoothed distribution of PC1 and PC2 for estimated current density. (C) Estimated current density reaching the brain 
for responder (green), non-responder (red), and optimized (blue) dosing. Dots represent the median of each distribution. (D) 3D dot product of the mean 
current density vector for the fixed versus responder mean. (E) 3D dot product of current density vectors for average optimized dose versus average re-
sponder dose. (F) Scatter plot of the voxel-wise mean current density of optimized doses versus the voxel-wise mean current density of tDCS responders
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overall magnitude of current delivered may be a critical 
factor in the therapeutic effects of tDCS. Other current 
modeling studies have observed similar dose-response 
relationships to further support this notion (Amorim 
2000; Seibt et al. 2015; Chauhan et al. 2018; Göksu et al. 
2018; Antonenko et al. 2019; Suen et al. 2020). However, 
it is important to note that the direction of current may 
still play an important role in determining response. Both 
normal and tangential current have been demonstrated 
as essential components of current (Radman et al. 2009b; 
Rahman et al. 2013; Lafon et al. 2017; Rawji et al. 2018). 
Thus, future studies should integrate both current magni-
tude and directional components for a more comprehen-
sive understanding of how tDCS modulates brain activity 
and improves treatment efficacy.

The use of machine learning algorithms in the con-
text of tDCS treatment for major depression has several 
potential benefits. By identifying classification mark-
ers of response, machine learning algorithms may help 
to reduce reliance on fixed dosing or trial-and-error 
approaches currently favored in tDCS treatment, which 
can lead to suboptimal treatment outcomes and prolong 
the duration of treatment. Additionally, machine learn-
ing algorithms can be used to prospectively adjust dosing 
parameters to improve treatment outcomes, potentially 
leading to more efficient and effective treatment.

Regions of importance
To that end, our study identified specific ROIs that were 
effective classifiers of response to tDCS. These ROIs were 
primarily located in the prefrontal and medial temporal 
lobes, with the bilateral superior frontal gyri, parahip-
pocampal gyrus, and amygdala being within the top 10 
best classification ROIs. The prefrontal cortex (PFC) is 
involved in regulating mood and emotion (Drevets 2007; 
Pizzagalli 2014), as well as cognitive functions such as 
decision-making, problem-solving, and attention. Studies 
have shown that individuals with MDD have decreased 
activity in the PFC (Grimm et al. 2008; Diener et al. 2012), 
particularly in the dorsolateral prefrontal cortex (DLPFC) 
and anterior cingulate cortex (ACC). The importance of 
frontal regions is also likely a result of those being the 
areas targeted by the stimulation. The amygdala, on the 
other hand, is a key brain region involved in processing 
emotions, particularly fear and anxiety. Research has sug-
gested that individuals with MDD may have increased 
activity in the amygdala, leading to heightened emotional 
reactivity and sensitivity to negative stimuli (Whalen et 
al. 2002; Diener et al. 2012). Our findings of the best clas-
sification ROIs are consistent with previous research sug-
gesting that prefrontal and medial temporal lobes play 
a critical role in the pathophysiology of depression and 
the mechanism of action of tDCS (Whalen et al. 2002; 

Goldstein et al. 2007; Grimm et al. 2008; Diener et al. 
2012; Lindquist et al. 2017).

Dose optimization
The use of GMM optimization to personalize dosing for 
individual patients was also effective in computationally 
improving treatment response. Our results showed that 
GMM optimization led to significantly increased statisti-
cal response likelihood and decreased dosing variability 
compared to conventional fixed dosing for non-respond-
ers. Additionally, after receiving the optimized dose 
using our GMM method, the non-responder group were 
passed back through the original SVM discriminator, and 
100% of them were classified to produce the same level of 
current distribution as the responder group. These find-
ings suggest that the optimized dosing approach may be a 
promising method for improving the efficacy of tDCS for 
the treatment of depression.

Study limitations
Despite the promising findings of this study, several 
limitations should be noted. First, the sample size of this 
study was relatively small, which may limit the generaliz-
ability of our findings. Future studies with larger sample 
sizes are needed to validate our results and to determine 
the clinical applicability of our findings. Additionally, the 
current study used a retrospective design, which limits 
our ability to draw causal inferences about the relation-
ship between tDCS parameters and treatment response. 
Prospective and controlled precision-dosing studies are 
needed to confirm the causal relationship between tDCS 
parameters and treatment response. Another limitation 
of our study is the use of computational models to esti-
mate the electric field distribution. Although computa-
tional models are widely used in tDCS research, they are 
based on simplified assumptions (e.g., tissue segmenta-
tion, isotropic conductivity values, ideal electrode place-
ment, etc.) and may not fully capture the complexity of 
the electrical properties of the brain. Utilizing neuronavi-
gated electrode placement and modeling white matter 
anisotropy might improve these results in future studies. 
Furthermore, our current optimization approach primar-
ily accounts for physical differences, such as anatomical 
variations, in a multidomain problem where functional 
and physiological factors may also play critical roles. 
Accounting for additional domains, such as combining 
structural MRI (sMRI) and functional MRI (fMRI) data, 
would likely improve the predictive accuracy and efficacy 
of individualized tDCS dosing. Finally, the need for MRI 
scans to perform personalized treatment planning could 
be cost prohibitive in a clinical setting; if the results of the 
study prove marginal, the cost of MRI would not justify 
this approach. Thus, our findings should be interpreted 
with caution and validated using other methods, such as 
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in-vivo current density imaging and randomized control 
trials (Kasinadhuni et al. 2017; Göksu et al. 2018).

Conclusion
In summary, the ability of the current approach to iden-
tify classification markers of tDCS response and adjust 
dosing parameters accordingly may enable clinicians to 
optimize treatment outcomes for individual patients. 
This approach may also help to address the issue of vari-
ability in treatment response across individuals, which is 
a common challenge in the treatment of depression. The 
optimized dosing approach achieved an average response 
likelihood of 99.981% and significantly decreased dos-
ing variability by 91.9% compared to conventional non-
responder fixed doses. Furthermore, our findings suggest 
that the magnitude of the electric field within the brain 
is an effective classifier of treatment response, demon-
strating the importance of optimizing tDCS parameters 
to account for individual anatomical differences. Our 
findings highlight the potential for machine learning 
algorithms to improve the effectiveness of tDCS treat-
ment for depression. However, further research is needed 
to validate our findings and to determine the clinical 
applications of this approach. Nonetheless, these find-
ings have important implications for the development of 
personalized tDCS dosing regimens for the treatment of 
depression.
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