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Abstract

Objective.—Brain recordings exhibit dynamics at multiple spatiotemporal scales, which are 

measured with spike trains and larger-scale field potential signals. To study neural processes, it 

is important to identify and model causal interactions not only at a single scale of activity, but 

also across multiple scales, i.e. between spike trains and field potential signals. Standard causality 

measures are not directly applicable here because spike trains are binary-valued but field potentials 

are continuous-valued. It is thus important to develop computational tools to recover multiscale 

neural causality during behavior, assess their performance on neural datasets, and study whether 

modeling multiscale causalities can improve the prediction of neural signals beyond what is 

possible with single-scale causality.

Approach.—We design a multiscale model-based Granger-like causality method based on 

directed information and evaluate its success both in realistic biophysical spike-field simulations 

and in motor cortical datasets from two non-human primates (NHP) performing a motor behavior. 

To compute multiscale causality, we learn point-process generalized linear models that predict the 

spike events at a given time based on the history of both spike trains and field potential signals. We 

also learn linear Gaussian models that predict the field potential signals at a given time based on 

their own history as well as either the history of binary spike events or that of latent firing rates.

Main results.—We find that our method reveals the true multiscale causality network structure 

in biophysical simulations despite the presence of model mismatch. Further, models with the 

identified multiscale causalities in the NHP neural datasets lead to better prediction of both spike 

trains and field potential signals compared to just modeling single-scale causalities. Finally, we 

find that latent firing rates are better predictors of field potential signals compared with the binary 

spike events in the NHP datasets.

Significance.—This multiscale causality method can reveal the directed functional interactions 

across spatiotemporal scales of brain activity to inform basic science investigations and 

neurotechnologies.
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1. INTRODUCTION

Identifying the functional causality structure in brain networks is important for our 

understanding of neural mechanisms underlying brain functions and for designing 

neurotechnologies to decode and modulate brain states [1–11]. Further, many behaviors 

involve multiple spatiotemporal scales of neural activity, spanning not only neural spiking 

activity but also larger-scale neural population activity measured through local field 

potentials (LFP) [12–28]. Thus, identifying the causality structure can be important not 

only at a single scale of activity but also across different activity scales [2,12,29,30]. As 

many modern neurophysiological datasets provide measurements of the brain at multiple 

scales through simultaneous recordings of spike trains and field potentials [31,32], statistical 

tools that can assess multiscale causality are important to develop and validate. Further, it is 

important to study whether modeling the causality structure across different scales can lead 

to more accurate models of neural activity beyond what is possible through identifying a 

single-scale causality structure. Finally, neurophysiology experiments can record from only 

a subset of neurons in the brain and as such, functional causality is generally evaluated 

by Granger-like causality methods in which causality is statistically measured within the 

recorded data only. Regardless of the method used, a fundamental limitation of such 

Granger-like causality evaluation is that identified causal connections are not conditioned on 

the unrecorded activity (see also Discussion). To improve accuracy of Granger-like causality 

assessment, it is beneficial to consider as much data as possible within a given experimental 

recording. As spiking and field potential activity provide measurements of the brain at 

multiple scales [31, 32], considering both of these multiscale signals simultaneously could 

lead to more accurate causality analyses.

Identifying multiscale causality introduces additional challenges because of the signal 

differences in the spike train and field potential modalities. Spike trains consist of fast 

action potential events that take a binary 0–1 value while field potentials are continuous-

valued signals [8,33–36]. Some prior multiscale studies focus on undirectional connectivity 

using correlation-based measures such as spike-field coherence [18,37–40] or on developing 

encoding models that fit correlation terms between signals [8,41,42]. But these studies do 

not focus on assessing causality and directional interactions between spike trains and field 

potentials. There are also studies on spike-field coherence that measures consistent neural 

spiking at a specific phase of LFP [43] and on model-free measures such as spike-triggered 

average of the LFP (stLFP) that assess interactions from spike trains to field potentials, 

but these measures are not always causal [30]. To assess causality, traditionally, Granger 

causality [44] is used for continuous signals like LFP and electroencephalography (EEG)/

magnetoencephalography (MEG) [45–47]. Also, although Granger causality is not directly 

applicable for discrete signals that are not Gaussian processes [33], it has been used for 

filtered continuous signals generated from spike trains [47–49]. But assessing multiscale 
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causality between spike trains and field potentials requires methods that can work on a 

mixture of both discrete and continuous signal modalities.

For binary spike trains alone, other methods for computing causality have also been 

developed beyond Granger causality [47,50–58]. Some methods use a generalized linear 

model (GLM) framework to model the spike trains as point processes [53, 54, 56, 57, 59]. 

Doing so, causality for spike trains can be computed using an information-theoretic measure 

termed directed information [53–56, 60], which is a generalization of Granger causality. But 

these methods are applicable within only spike trains rather than across spike trains and field 

potentials.

In general, methods for computing causality for spike trains or field potentials are either 

model-based or model-free. Model-based methods can explicitly incorporate the influence 

of various factors such as behavior on neural activity but depend on the accuracy of the 

constructed models. Despite this challenge, these methods have been shown to be useful 

tools for analyzing causality statistically and can reveal neurophyisological insights as 

shown in prior work [47, 56]. However, to ensure the accuracy of the estimated causality, 

these methods need to be carefully validated by assessing the accuracy of the underlying 

models in predicting the neural signals.

To measure causality in spike-field networks, one prior approach applied Granger causality 

by operating on the power spectrum of the spike trains computed using multitaper 

techniques in sliding bins [61]. This method is non-parametric and model-free. Thus, new 

methods are needed to produce an encoding model of spike-field network interactions as 

encoding models are often desired. Further, computing the spectrum required stationarity 

and did not consider the behavior. As a dynamic behavior such as movement makes the 

spectrum change over time, new methods are needed when a dynamic behavior is being 

performed to take it into account. Another prior approach computes a joint probability 

density across all signals [62]. But because computing this density is complex, this approach 

has focused on smaller networks, for example consisting of 3 signals or nodes [62]. As 

modern datasets contain recordings from tens or hundreds of electrodes, there is a need to 

develop and validate methods that can assess multiscale causality across larger networks. 

Further, as the predictor for field potentials, this prior approach directly used the binary 

spike trains [62]. However, compared with the measured binary spike trains, the firing rates 

of neurons may be a better predictor of field potentials [30,63]; but these firing rates are 

not measurable and are instead latent. Thus, firing rates are challenging to incorporate in a 

model of field potentials.

To address the above challenges in computing multiscale causality between binary 

and continuous spike-field signals, we recently developed a model-based Granger-like 

theoretical framework and tested it within numerical Monte Carlo simulations [64]. In this 

model-based Granger-like framework, a spike train is modeled as a point process GLM in 

which the instantaneous firing rate of each neuron is modeled as a function of the history 

of both the spike trains and the field potentials across the network. Further, in addition 

to their own history, field potentials can be modeled either as a function of the history of 

the measurable binary spike trains or the history of the latent firing rates. This framework 
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resolves the above challenges through three main ideas. First, to enable assessing causality 

across networks consisting of several nodes/signals, it assumes that conditioned on the 

history of all signals—i.e. all spike trains and field potential time-series—, spike trains and 

field potentials at a given time are conditionally independent and thus their models can be 

separately estimated. Second, to enable using the latent firing rates of neurons as predictors 

of field potentials, the framework consists of a sequential maximum-likelihood estimation 

approach. It first fits the GLM model of the spike trains to estimate the latent firing rates 

and then uses these estimated latent firing rates to fit the model of field potentials. Third, 

time-varying dynamic behavior is modeled as covariates in both spike and field models. 

Thus, a stable measure of causality during behavior can be estimated. Together, these ideas 

resolve the challenge of estimating a large number of parameters, allow for firing rates to 

be predictors of field potentials, consider behavior, and generate a network encoding model. 

The two expanded parametric models can then be used to compute a multiscale causality 

measure in terms of directed information.

While this multiscale causality framework was shown effective within Monte Carlo 

simulations [64], its statistical tests to assess causality to field potential signals required 

repetitively splitting the data, which resulted in reduced data efficiency and redundant 

computation. To make the method suitable for real neural datasets, especially when 

assessing causality for a large number of signals in modern datasets that contain recordings 

from tens of electrodes, it is important to improve the data efficiency of the method because 

real datasets are length-limited and contain a large number of electrodes. Moreover, the 

framework was only tested in Monte Carlo simulations, and so it remained unclear whether 

multiscale causality can be recovered in more realistic biophysical simulations—where there 

exits a model mismatch between the fitted model and the ground truth network—or in real 

neural datasets. Further, it is not known whether multiscale spike-field network causalities 

exist in real neural data, and whether modeling these multiscale causalities would improve 

the prediction of neural signals beyond what is possible with single-scale causality. Finally, 

it is not known whether field potentials are better predicted from the history of the binary 

spike trains or that of the latent firing rates.

Here, we address the above problems by developing a new data-efficient statistical test 

procedure within our multiscale network causality method based on the Wald test [65], 

and by then demonstrating the multiscale network causality method on both biophysical 

simulations and experimental data collected from two non-human primates (NHP) during an 

arm reaching behavior. We refer to the network model with the identified causal connections 

as the multiscale spike-field causality graph. First, we show that our new test procedure 

is more data-efficient and can thus perform better with the same amount of training 

data. Second, we show that the method can identify multiscale causality in more realistic 

biophysical simulations of spike-field network activity in which the ground-truth network 

structure is known. Then, we apply the method to NHP spike-field data during motor 

behavior and show that given its data-efficiency, the method can perform causality tests 

within high-dimensional recordings from over 100 electrodes. Also, our results on NHP data 

suggest the existence of multiscale spike-field network causality. Further, we find that the 

multiscale causality method leads to models that improve the prediction of both spike trains 

and field potentials in NHP data. Finally, in the NHP datasets, we find that latent firing 
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rates are better predictors of field potentials and explore the properties of different directed 

connections, such as their density as a function of distance or their density within vs. across 

brain regions.

2. METHODS

In this section, we first describe the spike-field causality graph identification problem. Then 

we describe the multiscale encoding model and the causality graph identification procedure. 

Finally we describe the experimental data during a motor task and the model evaluation 

measures.

2.1. Multiscale spike-field causality graph

We define a multiscale network as a collection of spike trains and field potentials, which we 

refer to as multiscale signals. The multiscale signals consist of the binary spike trains from 

C neurons and D continuous-valued field potential time-series. We denote the sets of C spike 

trains and D field potentials by N = N1, N2, …, NC  and Y = y1, y2, …, yD , respectively. 

To allow for the possibility that the timescale of spike trains is faster than field potentials, 

our model can use a smaller sample time for spike trains than that of field potentials if 

needed. In the model, spike trains are observed at time t and field potentials are observed at 

time mt, where m is the ratio between the sampling frequencies of field potentials and spike 

trains as a positive integer. Then the value of the q-th spike train Nq at time t can be denoted 

by Nt
q, and the value of the q-th field potential yq at time mt can be denoted by ymt

q  (where the 

q-th signal could be the one recorded from the q-th recording channel for example).

We compute the causality between spike trains and field potentials by developing a 

multiscale model and using it to compute a directed information measure [60, 64], as we 

now describe. Assume that we have a recording length of n, i.e. t ∈ [1, 2, …, n]. We denote 

the likelihood function of the field potential ymt
q , causally conditioned on all signals in the 

network up to time mt − 1, by ft(ymt
q | |N ∪ Y\{yq}). Here A ∪ B indicates the union of sets A

and B and A\B indicates the relative complement of set B in set A, i.e. the elements in set 

A that do not belong to B. Similarly, we denote the likelihood function of a spike train Nmt
q , 

causally conditioned on all signals in the network up to time mt − 1, by ft(Nmt
q | |N ∪ Y\{Nq}). 

Thus the conditional likelihood function of the n samples of yq and Nq can be denoted by 

fn(yq | |N ∪ Y\{yq}) and fn(Nq | |N ∪ Y\{Nq}), respectively. We have

fn(yq | |N ∪ Y\{yq}) = ∏
t = 1

n
ft(ymt

q | |N ∪ Y\{yq})

(1)

fn(Nq | |N ∪ Y\{Nq}) = ∏
t = 1

n
ft(Nmt

q | |N ∪ Y\{Nq})
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(2)

We now define the causality measure. Consider a signal zi and a signal wj, which can each 

be either spike train or field potential. Directed information [53–56,60,64] as a measure of 

causality from zi to wj is defined as the log-likelihood ratio

In(zi wj | |N ∪ Y\{zi, wj}) =

ln fn(wj | |N ∪ Y\{wj})
fn(wj | |N ∪ Y\{wj, zi})

=

ln fn(wj | |N ∪ Y\{wj}) − ln fn(wj | |N ∪ Y\{wj, zi}) .

(3)

Given this definition, there is no causality from zi to wj if and only if

fn(wj | |N ∪ Y\{wj}) = fn(wj | |N ∪ Y\{wj, zi}) .

(4)

Intuitively, having no causality means that knowing the signal zi is not helpful in predicting 

the signal wj if one already knows all signals other than zi and wj.

We can also define a directed information rate as

I(zi wj | |N ∪ Y\{zi, wj}) =
1
n [ln fn(wj | |N ∪ Y\{wj})

−ln fn(wj | |N ∪ Y\{wj, zi})] .

(5)

Note that the history of all signals in the network are considered in Equation (4) to provide 

a measure of conditional causality. However, we can also condition on only the history of 

a subset of the network. In a special case, we can condition on no other network nodes 

to study unconditional causality. In this case, we can say that there is no unconditional 

causality from zi to wj if and only if

fn(wj | | {zi}) = fn(wj) .

(6)

There are four possible kinds of causality in a multiscale network: spike-spike, spike-field, 

field-spike, and field-field. We can represent these causalities using an unweighted directed 

graph named causality graph. In this graph, each vertex represents a spike train or a field 

potential and each directed edge represents causality between two vertices.
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2.2. Causality graph identification

Having defined the causality measure in the multiscale spike-field network, we need to 

estimate the likelihood models in Equation (1) and Equation (2) to compute it and develop 

a statistical test to assess the significance of causality. This estimation is based on our 

proposed multiscale parametric models defined above as we expand on below. We also 

devise the statistical tests for causality assessments below.

2.2.1. Spike train model and causality to spike trains.—A binary spike train can 

be modeled as a point-process GLM that depends on various covariates [33, 64], including 

the history of all observed spike trains, field potentials and the current behavioral states. 

Here we denote the behavioral states at time mt by umt. For each spike train q at time mt, the 

model is fully specified by the instantaneous firing rate function λmt
q .

Given any subset of spike trains Nsub ⊆ N\ Nq  and any subset of field potentials Ysub ⊆ Y

we write the logarithm of the firing rate of the qth spike train Nq ∈ N within the GLM 

framework as

ln λmt
q (Nsub ∪ Ysub) =

β0
q + ∑Nj ∈ Nsub ∪ {Nq} β1

qj′Nmt − 1, mt − mKs
qj

+ ∑yj ∈ Ysub β2
qj′ym(t − 1, t − Ks

q)
j + β3

q′umt

(7)

where Ks
q is a non-negative integer representing the length of history. Here β’s with 

subscripts and superscripts are parameters to be estimated. All β’s are vectors except β0
q. Aa, b

denotes the vector Aa, Aa + 1, …, Ab  and Am(a, b) denotes the vector Ama, Ama + m, …, Amb . We note 

that all samples of spike trains from time mt − mKs
q to time mt − 1 are included as covariates 

in the GLM model above as can be seen in the first summation on the right side of Equation 

(7).

We denote the set of all unknown parameters (all β’s) in Equation (7) by θ. Elements in θ
need to be estimated using maximum likelihood estimation (MLE) by maximizing the point 

process likelihood function of Nmt
q  written as

ft(Nmt
q | |Nsub ∪ Ysub) =

(Δλmt
q (Nsub ∪ Ysub))Nmt

q
e−Δλmt

q (Nsub ∪ Ysub)

(8)

where Δ is the time-step used to bin the spikes [33,64]. Note that the likelihood of spike 

trains is evaluated at times mt because the field potential signal is only available at these 

times. However, the firing rates at time mt are evaluated using all samples of spike trains at 

every time-step from time mt − mKs
q to time mt − 1 as seen from Equation (7).

The MLE is given by
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θ = arg min
θ

[−ln fn(Nq | |Nsub ∪ Ysub)] .

(9)

To find the set of signals that cause Nq, we need to select the smallest sets Nsub and Ysub

such that fn(Nq | |Nsub ∪ Ysub) = fn(Nq | |N ∪ Y\ Nq ). This would mean that conditioning on 

signals other than the ones in Nsub and Ysub does not improve the likelihood function and 

thus all and only signals in Nsub ∪ Ysub cause Nq. To select the hyperparameters Nsub, Ysub, 

and Ks
q (i.e. history length), we devise a model selection procedure based on comparing 

fn(Nq | |Nsub ∪ Ysub) with different hyperparameters [64]. We use the Akaike information 

criterion (AIC) for this selection [66] and thus for a given Nsub and Ysub we pick Ks
q as 

follows:

Ks
q = arg min

Ks
q

{min
θ

[−ln fn(Nq | |Nsub ∪ Ysub) + δKs
q]}

(10)

where δKs
q is the number of parameters with δ = m(|Nsub| + 1) + |Ysub| and with | ⋅ | being the 

operator counting the number of elements in a given set. To determine whether a signal 

z ∈ Nsub ∪ Ysub causes Nq, by Wilk’s theorem [67], under the hypothesis that z does not cause 

Nq, we have

2In(z Nq | |Nsub ∪ Ysub\{z}) ∼ χ2(cKs
q)

(11)

where χ2(k) denotes a chi-squared distribution with degree of freedom k, c = 1 if z is a spike 

train and c = m if z is a field potential. If the p-value in this test is smaller than a desired 

threshold, we say z significantly causes Nq. This enables us to remove any signal in a given 

set Nsub ∪ Ysub that does not significantly cause the modeled spike train. We will further 

explain the model selection procedure in Section 2.2.3. For tests on spike train models, the 

threshold of p-value is set to 0.05 and we also control false discovery rate (FDR) using 

Benjamini-Hochberg procedure [68].

2.2.2. Field potential model and causality to field potentials.—We model a field 

potential using a linear Gaussian model. We assume a field potential yq ∈ Y is Gaussian 

distributed with time-variant mean μmt
q  at time mt and fixed variance σq

2. The mean of the field 

potential depends on various covariates, including the history of observed field potentials, 

the history of spike firing rates (which need to be estimated) and the current behavioral 

states. Instead of the history of spike firing rates, it is easy to use the history of the observed 

binary spike trains as predictors as well because these spike trains are directly observed. 

We can thus study whether the binary events or the firing rates are better predictors of the 
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field potentials. Given any subset of spike trains Nsub ⊆ N and any subset of field potentials 

Ysub ⊆ Y\ yq , we can write the mean of the field potential as

μmt
q (Nsub ∪ Ysub) =

α0
q + ∑Nj ∈ Nsub α1

qj′ln λm(t − 1, t − Kf
q)

j

+∑yj ∈ Ysub ∪ {yq} α2
qj′ym(t − 1, t − Kf

q)
j + α3

q′umt

(12)

where Kf
q is the history length for spike-field and field-field causality, which is a non-

negative integer. Here α’s with subscripts and superscripts are parameters to be estimated. 

Thus, the Gaussian likelihood function of the field potential is given by

ft(ymt
q | |Nsub ∪ Ysub) =

( 2πσq)−1e−[ymt
q − μmt

q (Nsub ∪ Ysub)]2(2σq
2)−1

.

(13)

We denote the set of all remaining unknown parameters by θ including all α’s in Equation 

(12) and σ in Equation (13). Elements in θ still need to be estimated using MLE by 

maximizing the Gaussian likelihood function as

θ = arg min
θ

[−ln fn(yq | |Nsub ∪ Ysub)] .

(14)

We now have to perform model selection and statistical tests of causality for the field 

potential models. In our previous work, this was done through a data-expensive and 

redundant empirical data-splitting process [64]. Here, we improve on the data efficiency 

of this method by devising an alternative analytical approach as described in the next 

paragraphs. The new method is better suited for neural data analyses as real datasets are 

length-limited and can contain recordings from many electrodes, thus introducing a large 

number of parameters and signals.

The new analytical method is devised as follows. Once α’s are estimated, the covariance 

matrix of these estimates – i.e., covariance of α’s – denoted by V  plays an important role in 

model selection procedure and statistical tests for causality as we will show below. Finding 

this covariance matrix is not straightforward. This is because we use the history of spike 

firing rates as predictors of field potentials and thus the spike train models have to be 

estimated before the field potential models can be estimated, resulting in a 2-step MLE 

problem for the field potential models. This means that in the second step of MLE, there 

are nuisance parameters β ’s in the spike models that are estimated from the first step. The 

latent spike firing rates computed using these nuisance parameters are different from the true 

values, and thus V  is also related to the variances of β ’s.
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We thus need to estimate V , which is the covariance of the α parameters of the field 

potential model in the presence of nuisance parameters. To do so, we leverage a method 

developed for this covariance estimation in the presence of nuisance parameters [65]. Let’s 

use ∇ζ to denote the first order derivatives of a function w.r.t. ζ and ∇ζη
2  to denote the 

second order derivative of a function w.r.t. ζ and η. We define Gα = − n−1∇αα
2 ln fn yq  as 

the second order derivative of −n−1 ln fn yq  w.r.t. α’s. Let Gβ = − n−1∇αβ
2 ln fn yq  be the 

second order derivative of −n−1 ln fn yq  w.r.t. β’s then α’s, and M = − n−1∇ββ
2 ln fn(N)

with −n−1 ln fn(N) = − n−1 ln fn N1 + ln fn N2 + … + ln fn NC ]. Also let 

Ωα = n−1∑t = 1
n ∇α ln ft ymt

q ∇α ln ft ymt
q ′, and Ωβ = n−1∑t = 1

n ∇β ln ft Nmt ∇β ln ft Nmt ′ where 

ft Nmt = ft Nmt
1 , …, ft Nmt

C ′ (see Equations (1), (2)). It can be shown that [65]

V = n−1Gα
−1ΩαGα

−1

+ n−1Gα
−1GβM−1ΩβM−1Gβ

′ Gα
−1 .

(15)

All variables in Equation (15) are evaluated at the estimated value of the parameters, i.e., at 

α and β . The first term in V  above is the same as the typical covariance in a 1-step MLE. 

The second term in V  is contributed by the uncertainty of the nuisance parameters β ’s due to 

the 2-step nature of the MLE here that affects the field potential model. Now that we have 

an estimate of V , we can formulate the model selection procedure and statistical tests for 

assessing causality to field potential signals.

A model selection procedure is required when Nsub, Ysub, or Kf
q are undetermined. For 

given Nsub and Ysub, we select the history length Kf
q using an information criterion. For the 

multiscale model, there is uncertainty in α’s contributed by β ’s, i.e., the second term in V  in 

Equation (15) and so AIC is not directly applicable. However, we can apply AIC to a model 

with only field potential signals. Thus, taking the history of spike-field connections to be no 

longer than the history of field-field connections in this case, we select the length of history 

in the multiscale model as:

Kf
q = arg min

Kf
q

{min
θ

[−ln fn(yq | |Ysub) + δKf
q]}

(16)

where δKf
q is the number of parameters with δ = |Ysub| + 1.

The estimated V  is then applied to statistical tests for assessing causality. We use the Wald 

test [65] to test whether a sub-vector of α is 0 in Equation (12), and thus to determine 

whether a signal z ∈ Nsub ∪ Ysub causes yq. The Wald statistic follows a χ2 distribution under 

the null hypothesis αs = 0 and is given by

W = αs
′V s

−1αs ∼ χ2(r)
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(17)

where αs is any sub-vector of α, V s is a sub-matrix of V  with selected rows and columns 

corresponding to αs and the degree of freedom r is the length of αs. To assess causality from 

a signal z to a field potential yq, we consider the αs that only contains parameters related to 

z; we then say z does not cause yq when the p-value corresponding to the above test is larger 

than a threshold. We use a threshold of 0.05 for statistical tests and do separate FDR controls 

on spike-field and field-field connections in the following sections.

2.2.3. Model selection and causality assessment.—To find the set of signals that 

cause a spike train or a field potential, we use the above statistical tests described in Section 

2.2.1 and 2.2.2. We now describe how we assess causality to a spike train and to a field 

potential signal, respectively.

For a spike train Nq and another specific signal, we first model Nq using its own history and 

the history of that other signal to decide if that specific signal unconditionally causes Nq. We 

then construct the set Nsub ∪ Ysub to consist of all signals that significantly unconditionally 

cause Nq. This allows us to narrow down the number of signals for which we need to 

compute the conditional causality to Nq. We then proceed to testing the conditional causality 

within this set Nsub ∪ Ysub using Equation (11). In particular, we determine if each signal z
in Nsub ∪ Ysub significantly conditionally causes the modeled signal (i.e. when knowing the 

history of all other signals in set Nsub ∪ Ysub, does knowing z still help the prediction of Nq). 

At a given significance level, we eliminate every insignificant z from the set after all tests are 

done. This procedure provides the set of signals that significantly cause a spike train.

For a field potential signal yq, we first take Nsub ∪ Ysub to be N ∪ Y\ yq  i.e. all of the signals 

being recorded except yq itself. However, because these sets are high-dimensional, to reduce 

the computation complexity of model selection and make the method applicable to large 

channel counts, we devise a preprocessing procedure to reduce the number of signals that 

need to be considered in model-selection, i.e. the number of signals in Nsub ∪ Ysub. First, 

we fit a single-scale model with only field-field connections and remove the insignificant 

connections after FDR control from Ysub. The lengths of history are also selected using 

Equation (16). We then compute a residual for each field signal at each time point by 

subtracting the single-scale one-step-ahead prediction of the signal from its observed value 

(predicting the signal at the current time based on all past values of field potentials, see 

Section 2.4). This residual indicates the residual part of the field potential signal that 

is not predicted by the other field potential signals. Second, we consider each pairwise 

spike-field connection by fitting a pairwise field model for each residual series. Spike-field 

connections with p-values larger than threshold 0.05 are removed from Nsub. Together, these 

preprocessing steps provide us with a subset of signals Nsub ∪ Ysub before we do model 

selection for the multiscale model, thus reducing the complexity and allowing for causality 

assessment in large channel-sets.
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Having obtained the Nsub ∪ Ysub, we fit the multiscale model and look at the p-values 

computed by Equation (17) for the causality of spike trains to the field potential signal 

and remove the spike train whose p-value is the largest and also larger than a relatively 

large threshold of 0.95 from the set and then fit the model again. This threshold means that 

the removed spike train has less than 5% chance of having a causal connection to the field 

potential and thus helps avoid false negatives. We repeat this removal and refitting procedure 

until all p-values corresponding to spike trains are smaller than the threshold. Then the 

remaining signals in Nsub ∪ Ysub are the candidates that may cause yq. Now, the p-values 

computed by Equation (17) are used to find all significant causalities to field potential 

signals (see also Section 2.2.2).

Based on prior evidence about the length of history for spike and field potential dynamics 

and for computational tractability, we consider a history length of up to 100ms for a spike 

train [33] and up to 300ms for a field potential [30] in our model selection procedure. 

History lengths around these values are generally considered long enough for spike train and 

field potential dynamics [30,33]. This means that we allow Ks
q to be up to 10 and Kf

q to be up 

to 30 as the NHP data is sampled at 100 Hz, i.e. at a time-step of Δ = 10ms.

2.3. Motor task and neural data recording

We use multiscale recordings from motor cortical areas of two Rhesus macaques performing 

a motor task [69]. The NHPs reached to objects located at different 3D locations for a 

liquid reward and then returned to the resting position before initiating another reach as 

described in [69]. For the first NHP J, 7 sessions of recordings were obtained from the 

dorsal premotor cortex (PMd), ventral premotor cortex (PMv), primary motor cortex (M1), 

and prefrontal cortex (PFC) contralateral to the arm using an array of 137 electrodes (Gray 

Matter Research, USA) where neighboring electrodes were spaced 1.5 mm apart in X and 

Y directions and the depth in Z direction was adjusted by the experimenter. For the second 

NHP C, 4 sessions of recordings were obtained from left PMd, right PMd, left PMv and 

right PMv using 128 electrodes in total from 4 arrays (Gray Matter Research, USA). Arm 

movements were tracked by reflective body markers attached to the subject’s skin. Marker 

locations were captured by near infrared cameras with sampling frequency of 100 frames 

per second (Motion Analysis Corp., USA). Behavioral covariates ut were taken as the 7 

joint angle time-series corresponding to the shoulder, elbow and wrist movements (shoulder 

elevation, elevation angle, shoulder rotation, elbow flexion, pro supination, wrist flexion, and 

wrist deviation) [8]. Neural data was originally recorded with a sampling rate of 30 kHz. 

All surgical and experimental procedures were performed in compliance with the National 

Institute of Health Guide for Care and Use of Laboratory Animals and were approved by the 

New York University Institutional Animal Care and Use Committee.

As described in [69], local field potentials (LFPs) were extracted by applying a low-pass 

filter with 400 Hz cut-off frequency on the raw signals. Spike trains were obtained by band-

pass filtering the raw signal from 0.3 to 6.6 kHz and then identifying the threshold crossings 

below the mean filtered signal. The threshold was set to 3.5 standard deviations [69]. We 

fit models both for all available channels in each monkey and for selected higher-quality 

channels. In the latter case, we eliminated low-quality noisy spike trains by keeping the 10 
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spike trains that can be best predicted using only behavioral states as predictors in GLM 

models for each session [8]. We then also used the field potentials recorded from these 

channels in our network causality analyses. Here we use the same sampling rate for spikes 

and LFPs of 100 Hz (i.e. m = 1).

2.4. Prediction power

In the biophysical simulations, we can know the ground truth causality graph and compare 

that to the estimated causality graph. However, this is not the case for real neural data. 

As such, we evaluate the estimated causality graph in real data by asking how well the 

multiscale model with that causality graph can predict the spike trains and field potentials. 

In other words, we take the fitted multiscale model corresponding to an identified causality 

graph. We then use this fitted model to predict the signals one-step-ahead into the future. 

This means that we assess how well a signal can be predicted by the history of those signals 

that are identified as causing it within a fitted multiscale model. This way we can compare 

different causality graphs by comparing the prediction of their corresponding multiscale 

models. We refer to this one-step-ahead prediction capability as prediction power (PP) and 

define it for spike trains and field potentials as follows.

For each spike train, the one-step-ahead prediction of the continuous valued firing rates λq in 

Equation (7) can be computed from a model based on any given causality graph. Then given 

any threshold, we can predict the binary spike Nmt
q  to be 1 if the one-step-ahead predicted 

firing rate exceeds the threshold and to be 0 otherwise. We can then construct a receiver 

operating characteristic (ROC) curve by sweeping the threshold and compute the area 

under the curve (AUC) of the ROC. We define the predictive power (PP) as PP=2×AUC-1 

[8,13,42]. The range of PP is [0,1] in the training set but PP could be smaller than 0 in the 

test set. A perfect predictor achieves a PP score of 1 and a random predictor achieves a PP 

score of 0.

For each field potential, we find the one-step-ahead prediction of the field potential yq by 

computing μq from the multiscale model in Equation (12) based on the history of the signals 

that are identified as causing it in the identified causality graph. We define the normalized 

root mean-squared error (NRMSE) (the root mean-squared error normalized by the standard 

deviation of yq [70]) as

NRMSE = ∑
t

(μmt
q − ymt

q )2/∑
t

(yq − ymt
q )2

where yq is the mean of yq and the prediction μmt
q  is given in Equation (12). Given the 

NRMSE, for LFPs, we define PP=1-NRMSE. Thus the range of PP is also [0,1] in the 

training set but PP could be smaller than 0 in the test set. A perfect predictor achieves a PP 

score of 1 and a chance-level predictor achieves a PP of 0.

Our statistical tests are on functions of PP, for example on the PP increase ratio defined in 

Figure 3 that shows the ratio of improvement in PP between different cases (e.g., multiscale 
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vs. single-scale). Further, we use cross-validation to evaluate PPs and assess statistical 

significance in tests on functions of PP.

Note we report p-values using the scientific notation used in MATLAB in which xe − n
denotes x × 10−n.

3. RESULTS

In this section, we first show, using Monte-Carlo simulations, that the new statistical test 

on causality to field potentials in our multiscale causality method introduced in Section 

2.2.2 works successfully and is data-efficient. We then use biophysical simulations with a 

known ground-truth causality graph to show that our method can identify the ground truth 

multiscale causality graph in realistic simulations of multiscale spike-field signals. Finally 

we use our method to examine multiscale causality in NHP spike-field neural data during a 

motor behavior.

3.1. Simulation showing data-efficiency of the newcausality method

To show data-efficiency of the statistical test for assessing causality to field potentials, we 

compare the new test to our original test in [64] using the same simulated data from [64]. In 

[64], 100 randomly generated 10-node networks with 16 connections were used to evaluate 

the performance of our original multiscale causality method. Note in our prior work, we 

only performed Monte Carlo simulations to validate the approach [64]. We apply our new 

statistical test to the 100 random networks and evaluate the AUC from data lasting for 

different lengths of 3-min to 24-min.

Figure 1 shows the comparison of AUCs of the two tests. We can observe that for any given 

length of data shown in Figure 1a, the new method has larger AUC than the original method 

used in [64]. At 3 min, the overall AUC using the new method is significantly larger than 

the original AUC by 2.1% (p-value=1.6e-2, one-sided paired t-test). At 12 min, the overall 

AUC using the new method is again significantly larger than the original AUC by 9.0% 

(p-value=8e-20, one-sided paired t-test). Furthermore, the new AUC achieved using 6-min 

data is larger than the original AUC using even 12-min data (p-value=0.008, one-sided 

paired t-test). These results show that the new method performs as well or better than 

the original method using much less training data and thus is more data-efficient than the 

original method.

3.2. Biophysical simulation

We use the Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX) [71] 

to generate data from biophysical simulations. Given the position of electrodes, properties 

of neurons and tissues, VERTEX can calculate extracellular LFPs using a forward modeling 

approach [72].

3.2.1. Simulation settings.—The purpose of this simulation is to show that our method 

can identify the ground truth causality graph in a realistically simulated multiscale spike-

field network. We simulate 10 sessions of spike-field data, with each session lasting 200 

s. The placement of neurons are randomized for each session. For generality, each random 
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simulated network includes all 4 types of causality: spike-field, field-field, spike-spike, field-

spike. The overall simulated network structures are the same in each session but neurons 

are randomly placed in 4 different 3-D regions (A-D squares in the x-y plane in Figure 2a). 

The size of each region is 1 mm × 1 mm × 0.2 mm. The minimum distance between two 

connected regions is 6 mm. Neurons in a region are randomly placed in each session while 

electrodes recording LFPs are placed as shown in x-y plane with height z = 0.1 mm.

Each simulated network contains 6120 neurons. We chose our simulated network and its 

parameters such that we can have realistic firing rates with a reasonable number of simulated 

neurons and a known ground truth causality to which we can compare. Among all neurons, a 

network of 60 neurons (orange circles) and 20 electrodes (blue crosses) are shown in Figure 

2a. The weight of the synapses is 1100 pA for every connection between these neurons. 

Each of the 60 displayed neurons has an input from another neuron not shown in the figure 

through a synapse with a weight of 4000 pA. This input neuron fires with Poisson statistics 

at a rate of 10 Hz if connected to a displayed neuron without other inputs or 5 Hz otherwise. 

Each of the 30 displayed neurons with no displayed input from the same region also has 

an output to another 200 neurons within the same region through synapses with a weight 

of 2200 pA. All neurons are excitatory pyramidal neurons. Synapses are single exponential 

current-based and the axon arbor is uniformly distributed within the region. Other synapse 

properties are specified in Table 1. The structural and passive properties are the same as the 

layer 2/3 pyramidal neuron model described in [71]. The 60 neurons shown in Figure 2a 

and the 6000 neurons driven by them follow the same adaptive exponential (AdEx) model 

[73] with parameters specified in Table 1. These neurons also have random current input 

following Ornstein Uhlenbeck process with parameters also specified in Table 1.

The raw output from VERTEX includes spike timings and LFPs. The original sampling rate 

of LFPs is 1 kHz. Under the above simulation settings, neurons rarely spike more than once 

every 5 ms as expected. The maximum K considered here is also 30 for field potentials and 

10 for spikes. For spikes, we generate spike trains from spike timings. To obtain the spike 

trains, we generate time-series of 0’s and 1’s by binning the spikes in 5ms time bins. If there 

is a spike in a time bin, we set the value of the spike train at that time to 1 and if there is 

no spike in a time bin, we set the value of the spike train at that time to 0. For LFPs, we 

down-sample the LFP signals at 100Hz sample rate and standardize them to have zero mean 

and unit variance. Example simulated spike and LFP signals are shown in the Appendix.

3.2.2. Multiscale causal connections can be identified in biophysical 
simulations.—To have a clear ground truth between regions that we can then use for 

assessment, we select 20 spike trains from regions A and D and 10 LFPs from regions 

B and C as shown in Figure 2a. All our subsequent analyses will focus on these signals. 

The ground truth causality graph for these signals is shown in Figure 2b, d, with former 

showing the causality to the spike trains in area A and D and the latter showing the causality 

to LFPs in regions B and C. For spike-spike connections, the ground truth is the same as 

synapse connections and causal connections are shown with yellow. For the other 3 types 

of connections, each LFP in a region is caused by every direct synaptic input to that region 

and also causes every signal in that region and every signal in the next region with direct 
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synaptic connections. Thus for these 3 types of connections, the true causal connections are 

shown between regions (rather than being at the level of synapse connections) in yellow.

We apply the multiscale causality algorithm to each session of the simulated data. A 

causality from one signal to another is defined as positive if the first signal causes the 

second. A positive causality in an identified network is true positive if the ground truth is 

positive. It is false positive if the ground truth is negative. Then we can also compute the 

true positive rate and false positive rate by dividing the number of true positives and false 

positives by the number of positives and negatives in ground truth, respectively.

The ratio of sessions for which a positive causality was identified from each signal to 

another signal is shown by the color in Figure 2c, e. Comparing with the ground-truth causal 

connections in Figure 2b, d, this figure suggests that the method is successful in identifying 

causal connections.

To quantify this performance, we plot the receiver operating characteristic (ROC) curves for 

different kinds of connections by sweeping the threshold of p-values from 0 to 1 (p-values 

used for causality detection). The average ROC curves across 10 sessions with shaded 95% 

confidence are shown in Figure 2f–i. We find the area under the ROC curve (AUC) in each 

case. The chance-level AUC is 0.5, which we compare to. As we can observe from Figure 

2i, true spike-spike causalities are accurately detected and the associated AUC is 0.999 ± 

0.001 (mean ± std), which is significantly larger than chance level of 0.5 (p-value=9e-26, 

one-sample one-sided t-test). In addition, for field-field, spike-field and field-spike causality, 

the AUCs are shown in Figure 2f–h and are 0.95 ± 0.04, 0.79 ± 0.10 and 0.91 ± 0.14, 

respectively. All these AUCs are also significantly larger than the chance level of 0.5 

(p-values=2e-11, 5e-6 and 3e-6, respectively; one-sample one-sided t-test).

3.3. Multiscale causal connections improve prediction of spike trains and field potentials 
in NHP datasets

Having established that the multiscale causality graph can be significantly identified in 

biophysical simulations, we next examined whether multiscale causal connections were also 

identified in real NHP motor datasets and if so whether their identification improved the 

prediction of spike-field activity. To investigate these questions, we define four types of PP 

to be compared: baseline, single-scale, cross-scale, and multiscale. Multiscale PP is the PP 

of full models that contain all kinds of connections including multiscale causal connections 

between spike-field and field-spike, as well as self-history for each signal. Baseline PP is the 

PP of a model acquired by removing causal connections from the full models and considers 

only self-history in prediction of a given signal. Single-scale PP is the PP of models acquired 

by removing spike-field and field-spike connections from the full models. Cross-scale PP 

is the PP of models acquired by removing spike-spike and field-field connections except 

self-history from the full models. All PP’s are computed in cross-validation as described in 

Methods. As a first validation and for easier visualization, in Sections 3.3.1 and 3.3.2, we 

focus on the causality analyses with the higher-quality 10-channel sets. In later sections, we 

repeat these analyses when using all channels and further provide all the other results by 

including all of the channels in the analyses. All conclusions are similar in the 10-channel 

sets and the all-channel set analyses.
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3.3.1. Spike train prediction.—Here we examine spike trains and find that the 

identified multiscale causalities improve the prediction of spike trains in cross-validation. 

To show a meaningful comparison, we compute these improvements for spike trains with 

at least one single-scale (spike-spike) and one cross-scale (field-spike) connection in all 5 

cross-validation folds. In this section we focus on a high-quality 10-channel set for each 

session for easier visualization and validation, and then we confirm that our conclusions for 

all-channel analyses are similar in Section 3.3.3.

Figure 3a shows that multiscale PP is significantly larger than baseline PP for all signals 

with multiscale connections (p-value<0.05 by one-sided t-test). We then asked whether the 

PP improvement over baseline was due to single-scale or cross-scale causal connections 

being identified. To answer this question, we found the normalized improvement of 

multiscale PP vs. both single-scale PP (p-value = 2e-11, one-sided t-test) and cross-scale 

PP (p-value = 0.045, one-sided t-test) as in Figures 3b and 3c, respectively. We can see when 

considering both connection types instead of just spike-spike or field-spike connections, 

most of the PPs (97.0% and 83.6% of PPs) for a spike train are significantly improved 

(p-value<0.05 by one-sided t-test). Figure 3b shows the normalized PP improvement 

contributed by field-spike connections was on average 66.0% for the significant signals, 

while Figure 3c shows the normalized PP improvement contributed by spike-spike 

connections was on average 24.7% for the significant signals. This result suggests that 

both spike-spike and field-spike causal connections are successfully identified, leading to 

improved prediction of spikes. Further, this result suggests that multiscale connections (from 

field potentials to spikes) exist and their identification helps the prediction of spike trains.

Interestingly, overall on average across signals, cross-scale connections were more important 

compared to single-scale connections in improving PP of spike trains (p-value=8e-20 by 

one-sided Wilcoxon rank sum test). This result suggests that the unique contribution from 

field potentials to spike train prediction is more than that from the spike trains.

3.3.2. Field potential prediction.—We next consider field potentials and find that the 

identified multiscale connections also improve the prediction of field potentials. Here we 

focus on the high-quality 10-channel sets for easier visualization and validation and then 

confirm that our conclusions for all-channel analyses are similar in Section 3.3.3. Similar to 

Figure 3a–c, Figure 3d–f show the PP improvements for field potentials that had at least one 

field-field connection and one spike-field connection identified in all 5 folds. Multiscale 

PP significantly improved compared with baseline PP for all signals with multiscale 

connections (p-value<0.05 by one-sided t-test). We then asked whether the improvement 

over baseline was due to single-scale or cross-scale causal connections being identified. 

To answer this question, we found the normalized improvement of multiscale PP vs. both 

single-scale PP (p-value = 2e-4, one-sided t-test) and cross-scale PP (p-value = 8e-37, 

one-sided t-test) as in Figure 3e and 3f, respectively. We can see that when considering 

both spike-field and field-field connections instead of just one kind of connection, 73.3% 

and 97.8% of the PPs were significantly improved, respectively (p-value<0.05 by one-sided 

t-test). Figure 3f shows that the normalized PP improvement contributed by single-scale 

(field-field) connections was on average 88.4%, while Figure 3e shows that the normalized 

PP improvement contributed by cross-scale (spike-field) connections was on average 10.3%. 
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This result suggests that both spike-field and field-field causal connections are successfully 

identified, leading to improved prediction of field potentials. Further, this result suggests that 

multiscale connections (from spike to fields) exist and that is why their identification helps 

the prediction of field potentials.

Comparing the single-scale and cross-scale contribution to PP’s reveals that for field 

potential prediction, single-scale causal connections are more important than cross-scale 

ones. On average, the normalized PP improvement contributed by single-scale (field-field) 

connections (88.4%) shown by Figure 3f is much larger than that by cross-scale (spike-field) 

connections (10.3%) shown by Figure 3e (p-value 3e-16 by one-sided Wilcoxon rank sum 

test). This result shows that the unique contribution to field potential prediction from field 

potentials is much larger than that from spike trains.

3.3.3. Prediction considering all signals.—We now consider all channels and study 

how much multiscale connections improve the prediction of signals by considering all 

observed signals. The models are fitted using the first 80% of samples and the PPs are 

computed using the last 20% of samples as test set. Similar to 10-channel sets, we find 

that the identified multiscale causal connections improve the prediction of both spikes and 

field potentials. For signals with multiscale connections, the mean of PP increase ratios of 

spikes from baseline to multiscale model was 58% (p-value 0.004; one-sided t-test). The 

mean of PP increase ratios of fields from baseline to multiscale model was 6.4% (p-value 

2e-47; one-sided t-test). Compared with the 10-channel sets, the improvement from baseline 

to multiscale is larger for all-channel sets because there are more connections being modeled 

in this latter case. Also, the associated averaged PP increase ratios across sessions from 

baseline, single-scale or cross-scale to multiscale models are summarized in Table 2. Similar 

to 10-channel set results, more PP improvement is contributed by field-spike or field-field 

connections than spike-spike or spike-field connections. All analyses that follow are done by 

considering all channels together.

3.4. Latent firing rates predict field potentials betterthan binary spike trains

In addition to handling the case of large networks, one advantage of our multiscale causality 

identification framework is that it allows our multiscale models to use either the latent spike 

firing rates or the observed spike events as field potential predictors. This can then allow 

us to test the hypothesis that latent firing rates may be better predictors of field potentials 

as could be implied from biophysical models [63]. We thus used our framework to test this 

hypothesis within the NHP datasets. As a comparison, we trained an alternative multiscale 

model with the same length of history. Figure 4 shows the multiscale PP difference between 

two models. We find that using the latent firing rates predicts the field potentials better than 

using the observed binary spike trains (p-value= 8.5e-49 for monkey J and 0.003 for monkey 

C, one-sided paired t-test). This result indicates that the latent firing rates contain more 

information than binary spike trains about field potentials. This result is consistent with the 

prediction in biophysical studies suggesting firing rate can be an LFP proxy [63].
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3.5. Properties of causal connections

3.5.1. Density of Connections and correlations to distance.—We next examined 

the density of connections and whether there was a relationship between the physical 

distance from a given signal and the density of connections from that signal. To do so, we 

evenly cut the sorted distances into 50 groups. Density in each group is defined by the ratio 

between the number of identified connections and all possible connections in that group. 

The distance representing each group is defined as the average of lower and upper bound 

of the distances in the group. Figure 5 shows the results of the correlation analyses between 

the distance of causal connections and their density for (a) field-field, (b) spike-field, (c) 

field-spike, and (d) spike-spike connections.

We find that there was a significant negative correlation between distance and density for all 

types of connections (p-value=2e-20, 2e-4, 5e-6 and 2e-6, respectively, Pearson’s correlation 

test). This result suggests that the density of the directed functional connectivity represented 

by directed information is negatively correlated with physical distance for connections from 

field potentials and also from spike trains.

3.5.2. Strength of causality—We then examined the strength of causality between two 

signals. From section 3.5.1, the density of field-field connections is much larger than that 

of other kinds of connections. This may be due to field potentials being aggregate network-

level signals that contain information from groups of neurons nearby. Here we examined 

the average strength of individual connections measured by directed information across 

11 sessions shown in figure 6. The strength of field-spike connections was significantly 

larger than the strength of spike-spike connections (p-value = 0.008, paired one-sided t-test) 

but the strength of field-field connections was not significantly different from the strength 

of spike-field connections (p-value=0.46, two sided t-test). This latter result suggests that 

field-field causality improves the prediction power of field potentials more than spike-field 

causality (see section 3.3.2) mainly because of the larger density of field-field connections as 

the individual field-field and spike-field connection strengths are comparable.

3.5.3. Causal connections within vs. across regions.—We also compared the 

density of causal connections across regions with that within regions. The electrode arrays 

were placed in different cortical regions via an MRI guided stereotax [69]. The regions for 

the two NHPs are specified in Section 2.3. Figure 7 shows the density of within-region and 

cross-region connections in each session. We can observe that the method identifies that 

there are more within-region connections than cross-region connections for each kind of 

connection (p-values: 9e-10, 0.1, 2e-9 and 1e-5, respectively; one-sided paired t-test).

4. DISCUSSION

Here we explore the causality structure in multiscale spike-field networks and demonstrate a 

multiscale spike-field causality graph identification method based on directed information in 

realistic biophysical simulations and in motor cortical spike-LFP data during motor behavior 

from two NHPs. We show that the method is data-efficient and can successfully identify the 

multiscale causal connections in biophysical simulations. Further, our method reveals that 

multiscale spike-field network causality exists in NHP spike-field motor cortical data during 
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arm movements and can be identified; indeed, models that included the identified multiscale 

causal connections better predicted both spike trains and field potentials compared to models 

that just included either single-scale or cross-scale connections. Finally, compared to using 

the binary spike trains as predictors, our method better predicted the LFPs by uniquely 

allowing for latent firing rates to be used as LFP predictors. These results show how 

causality can be computed in multiscale binary-continuous data reflected in spike-field 

measurements and how multiscale causality identification improves the modeling of spike-

field network activity.

Prior directed information measures of causality have been developed for a single scale 

of activity, e.g. spikes [53–56, 60]. Our method extends and demonstrates the directed 

information measure for estimation of multiscale causality in mixed binary-continuous 

spike-field signals. The multiscale directed information measure is a causal directional 

measure, and thus is distinct from prior non-causal measures to assess spike-field 

connectivity including spike-field coherence [18,37–40] or measures in encoding models 

that use the LFP features at a given time to predict the spikes at the same time [8,42] or to 

study correlations [41].

Our method is a model-based Granger-like causality method. There are some general 

limitations for these methods [56,74]. First, these methods depend on building statistical 

models of the phenomena, and thus depend on the accuracy of these models. Indeed, that 

is why as our main measure of how accurately causality is estimated in NHP data, we 

consider the model with the identified causality network, and find this model’s predictions 

for the measured spiking and LFP signals. As these signals are observations from the 

latent causality network, their better prediction can imply a better causality identification 

by our method. By comparing these predictions for models with the identified single-scale 

causality vs. models with the identified multiscale causality, we find that multiscale causality 

identification improves the prediction of both spike trains and LFP signals. Second, a 

fundamental challenge for assessing causality is that factors that are not measured in a 

given experiment cannot be considered or conditioned on in any causality method. Thus, 

the causality graph identified from the neural signals measured in an experiment provides a 

measure of network interactions within the measured network only and without conditioning 

on the unmeasured elements. Despite this challenge, model-based Granger-like causality is 

still a useful tool for analyzing functional connectivity statistically and could reveal insights 

about the neurophysiology as shown in prior work [47, 56], for example for activity during 

sleep or during visuomotor integration. Our work on modeling multiscale causality fills an 

important gap for such analyses because it allows us to model all observed signals in a given 

experiment for better causality assessment by including both field potentials and spike trains 

rather than just one or the other. As such the method enables including more factors/neural 

elements when assessing causality.

The method demonstrated here has several unique features. First, it allows multiscale 

causality to be assessed for large networks, which is needed for modern electrophysiology 

datasets that record from tens of electrodes. We demonstrated this capability by showing that 

the method can compute multiscale connections across a large number of spike and LFP 

signals in NHP data and in biophysical simulations. Second, our method allows the use of 
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latent firing rates as field potential predictors. The use of latent firing rates was motivated 

by biophysical suggestions that firing rates may be better LFP predictors compared to binary 

spike events [63]. Our results confirmed this biophysical conclusion. We found that in our 

NHP data, the estimated history of firing rates predicted the LFPs better than the history 

of binary spike trains. Also, our new multiscale causality test procedure based on the Wald 

test was more accurate for a given training data length, and thus was data-efficient. This 

is key for assessing causality in high-dimensional data recorded across large-scale brain 

networks. Finally, our method generates an encoding model of spike-field network activity 

during behavior that is more predictive of neural data compared with models that only use 

single-scale causality.

It is also important to note that by explicitly modeling a dynamic behavior as a covariate 

in the spike model in Equation (7) and field model in Equation (12), the method can take 

into account non-stationarities that are due to a changing behavioral signal that modulates 

the neural signals. Having modeled the changing behavior, the method then assumes that 

spike and field potential models are stationary within the typical time-lengths of a dataset. 

If the data time-length is much longer, it may be that the models change for example due to 

plasticity. Future work can thus explore refitting the models intermittently or adaptively for 

more accurate causality assessment.

We found that the density of causal connections is negatively correlated with physical 

distance for connections in the NHP motor cortical data. This is consistent with a prior study 

[8] which has shown that the strength of non-causal correlations from LFP to spike trains 

drops over distance. It is also consistent with prior studies showing spike-LFP coherence 

drops over distance [29,75].

One future direction would be to explore whether the model selection procedure in this 

work may be further improved using regularization methods. Regularization methods like 

ridge or LASSO [76, 77] can help reduce over-fitting and can potentially be integrated into 

our method. However, because of the two-step model fitting procedure in our method and 

the fact that the distribution of regularized parameters within a regularization method are 

hard to find, it would be hard to statistically test the significance of causal connections with 

such a regularization procedure [78]. Nevertheless, a future direction could be to solve this 

challenge and assess whether regularization can further improve our method of multiscale 

causality identification.

The multiscale spike-field causality graph identification method demonstrated here can also 

be applied to other brain regions and behaviors to discover the multiscale causal interactions 

in spike-field networks that drive these behaviors. One can also use this method to explore 

the dependence of multiscale causality in a given brain region on behavioral and task 

context, or to study how the causal network topology may change as a result of adaptation, 

learning or plasticity [79–83]. This method can also inform the design of future closed-loop 

neural control systems such as brain stimulation systems [1, 3, 4, 84–98]. For example, a 

major question in developing deep brain stimulation (DBS) therapies for mental disorders 

such as treatment-resistant depression is which site within the brain should be stimulated 

[1,4,92]. This method can provide one approach to identify candidate sites by finding the 
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brain site that has the strongest causal connection to the cortico-limbic regions involved 

in mental disorders. This method can thus help develop future closed-loop DBS systems 

for mental disorders that aim to causally modulate symptom-related neural activity using 

the decoded symptom as feedback [1,3,4,87,92–94,96]. More generally, this method can 

facilitate the investigation of causal directed interactions in large-scale brain networks, 

whose findings can guide the development of more effective neurotechnologies.
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Appendix

Here we show an example of simulated data from networks shown in Figure 2a. As 

mentioned in Section 3.2, we use VERTEX [71] to generate the simulated data. The raw 

output from VERTEX includes spike timings and LFPs. The sampling rate is 1 kHz. Then, 

we generate the binary spike trains using 5-ms time bins. If there is a spike in a time 

bin, the corresponding value of the spike train is 1. If there is no spike in a time bin, the 

corresponding spike train value is 0. LFPs are downsampled to 100 Hz and standardized to 

zero mean and unit variance. Figure 8 shows 20 example spike trains and 10 example LFPs 

during a 10-second period.
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Figure 1. 
Comparison of new and original test procedures on causality to field potentials shows that 

the new method is more data-efficient. (a) AUC of field-field and spike-field connections 

with errorbar showing mean ± sem. (b) AUC of field-field connections with errorbar 

showing mean ± sem. (c) AUC of spike-field connections with errorbar showing mean ±sem. 

The new method can perform as well or better than the original method using much less 

training data.
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Figure 2. 
Multiscale causality identification method can find the directed connections within spike-

field networks in biophysical simulations. (a) Simulated network structure consists of 6120 

neurons as detailed in Section 3.2.1. The figure shows 60 neurons (orange circles) and 20 

electrodes (blue crosses) in 4 different 3-D regions (A–D squares in x-y plane). The size 

of each region is 1 mm × 1 mm × 0.2 mm. The minimum distance between two connected 

regions is 6 mm. Neurons in a region are randomly placed in each session while electrodes 

recording LFPs are placed as shown in x-y plane with height z = 0.1 mm. A spike train is 
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observed from each neuron. Connections between spike trains are shown in black arrows and 

are all from left to right. To have a clear ground truth between regions, 20 spike trains from 

regions A, D and 10 LFPs from regions B, C are modeled. (b–e) Ground truth and identified 

network between signals. The ground truth (b, d) and identified network (c, e) averaged 

across 10 sessions are shown. For (c, e), the colors indicate the ratio of sessions for which 

a positive connection was identified and the scale is shown by the color bar. (f–i) Receiver 

operating characteristic (ROC) curves of connectivity with shaded 95% confidence interval 

computed using the ground truth and identified networks. Our method can successfully 

identify (f) field-field (g) spike-field (h) field-spike and (i) spike-spike connections in the 

multiscale spike-field networks.
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Figure 3. 
(a–f) Multiscale causalities are successfully detected, thus improving the prediction of spike 

trains and field potentials. Signals—whether spike train signals in (a–c) or field potential 

signals in (d–f)—are sorted by the 95% confidence bound of PP increase ratios (these ratios 

are defined in the legends). PP increase ratios are significantly above 0 for signals to the 

right of the black vertical lines (p-value<0.05, one-sided t-test). Box plots to the right of 

each panel show the statistics of significant PP increase ratios, where the central mark is 

the median, the edges of the box are the 25th and 75th percentiles and the whiskers extend 
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to the most extreme data points that are not outliers. Outliers are shown by red crosses and 

are points whose distance to the box is larger than 1.5 times of the box height. P-values 

are shown for comparing the average to 0 by one-sided t-tests. (a–c) Multiscale causalities 

improve the prediction of spike trains. (a) PP increase ratio from baseline to multiscale. 

Signals from all 11 sessions with multiscale connections are shown. (b) PP increase ratio 

from single-scale to multiscale. (c) PP increase ratio from cross-scale to multiscale. (d–f) 

Multiscale causalities improve the prediction of field potentials. (d) PP increase ratio from 

baseline to multiscale. Signals from all 11 sessions with multiscale connections are shown. 

(e) PP increase ratio from single-scale to multiscale. (f) PP increase ratio from cross-scale to 

multiscale.
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Figure 4. 
Our method using latent firing rates predicts field potentials better than using binary spike 

trains. Panels (a) and (b) show the probability density function (PDF) of PP difference using 

firing rates vs. using spike trains for monkeys J and C, respectively. PP differences greater 

than 0 are shown in red and the rest are shown in blue. In most cases, PP differences are 

positive indicating that latent firing rates are better predictors of field potentials overall. The 

PPs are computed for all field potentials. The p-values are computed with one-sided paired 

t-test and indicate that PPs are larger when using latent firing rates compared to using binary 

spike trains as predictors.
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Figure 5. 
Causal connection density from a signal is negatively correlated to physical distance from 

that signal. Pearson’s correlation between the physical distance (mm) from a signal and 

the corresponding density of connections from that signal is shown for (a) field-field (b) 

spike-field (c) field-spike and (d) spike-spike connections in monkey J’s dataset where 

we have 3-D coordinates of electrodes. There is a significant negative correlation between 

distance and density of connections for all connection types.
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Figure 6. 
Average individual-connection strength of four types of causal connections measured by 

directed information (DI) with errorbar (mean ± sem) across sessions.
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Figure 7. 
Within-region and cross-region density of four kinds of connections in each session.
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Figure 8. 
We show 20 example spike trains and 10 example LFPs observed from a network shown in 

Figure 2a during a 10-second period. Sampling rates are 100 Hz for LFPs and 200 Hz for 

spikes (i.e., 5-ms spike bins). The regions to which the LFP and spike train signals belong 

are indicated by A-D. These regions as well as the LFP and spike train numberings are the 

same as in Figure 2a.
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Table 1.

Parameters of neurons, synapses and input currents in the biophysical simulation. AHP here refers to after-

hyperpolarization.

Name Value

spike generation threshold −50 mV

spike steepness parameter 1 mV

scale factor of AHP current 2.6 nS

AHP current time constant 25 ms

AHP current instantaneous change 600 pA

reset membrane potential −60 mV

cutoff membrane potential −45 mV

synapse exponential decay time constant 2 ms

axon conduction speed 0.3 m/s

synapse release delay 0.5 ms

input current mean 100 pA

input current std 30 pA

input current time constant 2 ms
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