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BACKGROUND: Emerging literature suggests that fine particulate matter [with aerodynamic diameter ≤2:5 lm (PM2:5)] air pollution and its compo-
nents are linked to various neurodevelopmental outcomes. However, few studies have evaluated how PM2:5 component mixtures from distinct sources
relate to cognitive outcomes in children.

OBJECTIVES: This cross-sectional study investigated how ambient concentrations of PM2:5 component mixtures relate to neurocognitive performance
in 9- to 10-year-old children, as well as explored potential source-specific effects of these associations, across the US.

METHODS: Using spatiotemporal hybrid models, annual concentrations of 15 chemical components of PM2:5 were estimated based on the residential
address of child participants from the Adolescent Brain Cognitive Development (ABCD) Study. General cognitive ability, executive function, and
learning/memory scores were derived from the NIH Toolbox. We applied positive matrix factorization to identify six major PM2:5 sources based on
the 15 components, which included crustal, ammonium sulfate, biomass burning, traffic, ammonium nitrate, and industrial/residual fuel burning. We
then utilized weighted quantile sum (WQS) and linear regression models to investigate associations between PM2:5 components’ mixture, their poten-
tial sources, and children’s cognitive scores.
RESULTS: Mixture modeling revealed associations between cumulative exposure and worse cognitive performance across all three outcome domains,
including shared overlap in detrimental effects driven by ammonium nitrates, silicon, and calcium. Using the identified six sources of exposure,
source-specific negative associations were identified between ammonium nitrates and learning & memory, traffic and executive function, and crustal
and industrial mixtures and general cognitive ability. Unexpected positive associations were also seen between traffic and general ability as well as
biomass burning and executive function.

DISCUSSION: This work suggests nuanced associations between outdoor PM2:5 exposure and childhood cognitive performance, including important
differences in cognition related both to individual chemicals as well as to specific sources of these exposures. https://doi.org/10.1289/EHP14418

Introduction
Ambient particulate matter (PM) air pollution is considered to be
one of the greatest environmental threats to human health due to its
near ubiquity and widespread effects.1 In particular, PMwith aero-
dynamic diameter ≤2:5 lm (PM2:5) comprises chemicals with
documented neurotoxic effects.2–4 As such, ambient PM2:5 expo-
sure poses serious risks to brain health, which is likely exacerbated
in children.5 As children have higher respiratory rates than adults,
have developing lung and immune systems, are more active, and
spend more time outdoors than adults, their exposure to outdoor air
pollution is likely higher than that of adults.6 Beyond increased

exposure and risk in early childhood, children may also be suscep-
tible to longer-term effects of air pollution when it affects their
ongoing development. The brain, in particular, follows a protracted
course of growth and continues into the third decade of life,7–9 pro-
viding a large window of vulnerability for air pollution to impact
neurodevelopment.10,11 Moreover, the transition from late child-
hood to early adolescence marks a dynamic period of brain plastic-
ity that ultimately allows for the development of more complex
thinking and reasoning skills, also known as executive functions,
including the ability to focus, hold, and manipulate information.12–14
These cognitive abilities are central to healthy development and life
course outcomes, as they are associated concurrently and prospec-
tively with academic achievement,15–17 as well as physical health
and financial wellbeing.18,19 Thus, potential neurotoxic effects of
PM exposure on cognitive development during the transition from
childhood to adolescence may have long-term consequences for
growing youth.

Literature over the past 10 years suggests a link between PM ex-
posure and various cognitive and behavioral impairments in both
epidemiologic and animal inhalation studies.20 However, several
knowledge gaps exist. Previous studies focused on air pollution and
child and adolescent cognition have found mixed results,21–28 but
few of these studies focused on the potential neurotoxic effects of
PM during the window of exposure in late childhood and early ado-
lescence.29,30 Moreover, most of these previous studies on neurobe-
havioral effects of PMcame from small studies conducted in limited
geographical locations. Geographic variability, in particular, is im-
portant for a comprehensive assessment of PM effects, as PM2:5
itself is a mixture of various organic and inorganic components,
and its chemical composition and sources can vary significantly
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geographically,31 with differing effects on human health.32,33 To
our knowledge, no study has examined how PM2:5 mixtures relate
to cognitive outcomes, let alone during early adolescence. This
work is important as mapping neurotoxic effects of PM2:5 compo-
nents and source mixtures may not only facilitate a clearer picture
of its neurodevelopmental impacts, but also provide actionable
insights for policymakers that may help inform and facilitate
source-specificmitigation strategies to improve air quality.

PM2:5 is a complex aerosol mixture, including carbons, metals,
and trace elements.34–36 For example, traffic related PM2:5 includes
primary emissions from fuel combustion and wear and abrasion of
brakes, tires, etc. from light and heavy-duty vehicles,37,38 as well
as secondarily formed particles from reactions of gaseous and par-
ticulate precursors.39–41 Larger abrasion/wear particles are typi-
cally deposited onto or near the road and mixed with crustal and
mineral dust particles and corrosion of road materials.39,41 Fuel
and oil combustion contributes to PM2:5 through burning of wood,
coal, and gas for cooking or heating of the home as well as from
industrial sources (i.e., coal burning power plants). Natural sources
contributing to PM2:5 include crustal soil and dust and marine sea
salt aerosols, which can be suspended and resuspended by winds.
Secondary PM2:5 can also form because of chemical reactions
between its precursor aerosols and gasses under the right condi-
tions. For example, secondary organic and inorganic secondary
particles can form through reactions with gasses, including nitro-
gen dioxide (NO2), ammonia (NH3), sulfur dioxide (SO2), and/or
volatile organic compounds.42Moreover, not only do global differ-
ences exist in the relative contributions of these sources to PM2:5,35

but even within the US, regional and urban–rural differences exist
in source contributions to the PM2:5 mixture.43Many epidemiolog-
ical studies to date have shown that health effects of PM2:5 can vary
tremendously depending on its chemical components and major
contributing sources.44–47 Therefore, understandingwhich specific
chemical components and sources of the PM2:5 mixture are con-
tributing to neurotoxic effects during key developmental life stages
is of critical importance to reduce health burden.

Given this emerging literature suggesting the potential harmful
neurological effects of PM2:5 and its components, the goal of the
current study was to investigate how mixtures of PM2:5 compo-
nents and their sources relate to neurocognitive performance in
9- to 10-year-old children across the US. We employed novel,
machine learning–based exposure prediction models46,48 to esti-
mate annual concentrations of 15 PM2:5 components [i.e., zinc
(Zn), vanadium (V), silicon (Si), lead (Pb), nickel (Ni), potassium
(K), iron (Fe), copper (Cu), calcium (Ca), bromine (Br), sulfate
(SO2−

4 ), nitrate (NO−
3 ), ammonium (NH+

4 ), organic carbon (OC),
and elemental carbon (EC)] at the residence of each child from
the nationwide Adolescent Brain Cognitive Development Study
(ABCD Study). Using positive matrix factorization (PMF), we
also derived six major sources of these 15 PM2:5 components.
Next, we used a series of weighted quantile sum (WQS) regression
analyses to assess the associations between PM2:5 components and
their sources on cognitive function derived fromNIHToolbox cog-
nitive battery when children were 9–10 years old. The strength of
WQS is that it is a supervised framework that treats multiple pollu-
tants as a mixture to better capture the health effects of simultane-
ous co-exposure49–51 as seen in the real-world. WQS generates a
single index (called weighted quantile sum index) summarizing
the overall exposure effect of the mixture. The index, which gives
exposures with weaker effect a lower weight, is utilized in a multi-
variate regression model to test the association of the overall mix-
ture effect on the health outcome. Using WQS, we first examined
the mixture effects of the 15 individual PM2:5 components on
cognitive functioning. Next, we implemented a grouped WQS
regression as well as a series of complementary multiple linear

regressions using the six identified sources to examine how sources
of PM2:5 exposures relate to cognitive performance. While the lin-
ear regression modeling allowed us to examine the overall associa-
tion of each source with differences in cognition performance, the
groupedweighted quantile sum regressionmodel helped determine
the potential unique mixture effects of each source group on child-
ren’s cognition.

Methods

Study Population
The ABCDStudy is the largest long-term study to date on brain and
behavior in children across the US.52–54 The study sampling was
designed to capture nationwide sociodemographic diversity by
recruiting participants from elementary schools (private, public, and
charter schools) at 21 study sites across the US52 (Figure 1).
Centralized institutional review board (IRB) approval was obtained
from the University of California, San Diego. Study sites obtained
approval from their local IRB. Each parent or caregiver provided
written informed consent and each child provided assent. All ethical
regulations were followed during data collection and analysis. For
more information, seeGaravan et al.52 andVolkow et al.54

Data for the current analysis is a subset of this ABCD Study
(sociodemographic and behavior data from NDA 4.0 data release
2021 and residential address exposure data from NDA 5.0 data
release in 2023 can be found at https://doi.org/10.15154/8873-zj65
and https://doi.org/10.15154/1523041, respectively). Primary inclu-
sion criteria for ABCD Study participants included age (9.0 to
10.99 years at baseline visit), fluency in English, and the ability to
complete the baseline visit magnetic resonance imaging (MRI). The
larger ABCD Study cohort is comprised of 11,876 participants 9.0
to 10.99 years of age at baseline visit. The current study excluded
participants without a primary address for the baseline timepoint to
assess PM2:5 mass and component exposures, leading to a sample
size of n=11,165 for the source apportionment analysis. For the ex-
posure and outcome analyses, additional subjects were excluded to
minimize the number of hierarchical levels of study design by ran-
domly selecting one participant per family. This resulted in a sample
size of n=8,589 participants (Table 1) who had complete informa-
tion andwere included in theWQS regression analyses. For one par-
ticipant, the source contributions were not available, leading to a
final sample of n=8,588 for the multiple regression analyses based
on source contributions.

Air Pollution Exposure
Estimates of 2016 annual mean residential air pollution exposure,
corresponding to when the children were 9–10 years of age, are
included in the ABCD Study’s Linked External Data (LED), which
is compiled and linked by the LED workgroup.55 We obtained an-
nual mean air pollution predictions from high resolution, machine
learning–based spatiotemporal models. These hybrid models com-
bined satellite-based aerosol optical depth remote sensing retrievals,
land-use regression, and chemical transport model outputs to pre-
dict, using an ensemble of machine learners, daily fine particulate
matter (i.e., PM2:5) exposure in lg=m3 at 1 km2 resolution56 and
daily 8-h ozone (O3) in ppb at 1 km2 resolution.57 Daily predicted
PM2:5 mass concentrations were then averaged into annual values
for 2016, thefirst year of baseline data collection. Annual concentra-
tions of 15 chemical components in PM2:5 across the US were also
obtained from similar machine learning–based models with a
50 m×50 m spatial grid resolution. In PM component models, 166
predictors were used, including but not limited to time and geogra-
phy information, satellite observation data (i.e., vegetation, water
index, nighttime lights, aerosol optical depth, etc.), meteorological
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data (i.e., temperature, humidity, wind, etc.), and emissions or surro-
gates of emission sources (distance to power plants, distance to
highways, traffic counts, etc.).46,48 These models were cross-
validated with EPA monitoring data across the US and had very
high performance accuracy [PM2:5 mass R2 root mean square error
ðRMSEÞ=0:89; Supplemental Table S2].46,48,56 These 1-year an-
nual averages of ambient air pollutants were then linked to the geoc-
odes of the child’s primary residential addresses, which were
collected in person from each participant’s caregiver at the baseline
study visit (October 2016–October 2018).

Cognitive Data from NIH Toolbox
Participants completed a cognitive battery, which included Cognitive
Battery of the NIH Toolbox (version 2) as well as additional cogni-
tive tests,58 at the same visit the addresses were collected, when the
children were 9–10 years old (i.e., baseline study visit). The cogni-
tive battery entailed the following: Picture Vocabulary Test (theta
score: mean= 0, standard deviation= 1), Oral ReadingRecognition
Test (theta score: mean=0, standard deviation= 1), Flanker Task
(score range: 0–10), List Sorting Working Memory Test (score
range: 0–26), Dimensional Change Card Sort (score range: 0–10),
Pattern Comparison Processing Speed Test (score range: 0–130),
the Picture Sequence Memory Test (theta score: mean= 0,
standard deviation= 1), the Little Man task (percent correct:
range 0–1), andReyAuditoryVerbal LearningTest (RAVLT) (total
correct score range: 0–45). All tests were administered using an
iPad with one-on-one monitoring by a research assistant. As previ-
ously published, Bayesian probabilistic principal components anal-
ysis along with varimax rotation was implemented to obtain the
principal components of the ABCD Baseline Cognitive Battery.59

The three derived PCA factor scores, known as general cognitive
ability, executive function, and learning &memory, for each par-
ticipant at 9–10 years of age were included in the analysis.59 The
general cognitive ability included strongest loadings of Toolbox

Picture Vocabulary and Oral Reading Test followed by the List
Sorting Working Memory and Little Man Task performance.
Learning & memory included the strongest loadings from the
Toolbox Picture Sequence Memory Task and the RAVLT total
number correct, as well as the NIH Toolbox List Sort Working
Memory Task.59 Executive function included strongest loadings
from the Toolbox Flanker Task, the Toolbox Dimensional
Change Card Sort Task, and the Toolbox Pattern Comparison
Processing Speed Task.59

Confounders and Covariates
Weused a directed acyclic graph (DAG) to define, a priori, potential
confounding variables (i.e., those variables known to both predict
the outcomes of interest and also likely to influence where people
live, and thus their exposure to ambient air pollutants estimated at
the residence).60 This approach helped us to identify a minimally
sufficient adjustment set of variables for our primary analyses
(Figure S1). We considered both race/ethnicity and socioeconomic
factors as potential confounders, given that certain types of pollution
are higher in minority communities and for those from disadvan-
taged social status backgrounds61,62 due to structural racism and
class bias increasing the likely proximity of these communities to
major sources of pollution in the US.63,64 Questionnaire data on
caregiver’s sociodemographic were self-reported at the baseline
visit using REDCap (Research Electronic Data Capture), which is a
secure, web-based software platform.65,66 These sociodemographic
variables included age of child at the time of visit (in months), sex at
birth, caregiver reported race/ethnicity of the child (non-Hispanic
black, non-Hispanicwhite, Hispanic, Asian, other race), total house-
hold income in US dollars (<$50,000, ≥$50,000, <$100,000,
≥$100,000, or Do not Know/Refuse), average days per week of
physical activity,67 and average hours of screen time use per
day.68,69 Beyond sociodemographic and/or lifestyle factors, we also
considered several available additional environmental exposures as

Figure 1. Geographic distribution of the 21 ABCD Study sites across the US. Map created using R depicting study sites included in the ABCD Study within
five US regions. Note: CHLA, Children’s Hospital of Los Angeles; CUB, University of Colorado Boulder; FIU, Florida International University; LIBR,
Laureate Institute for Brain Research; MUSC, Medical University of South Carolina; OHSU, Oregon Health and Science University; ROC, University of
Rochester; SRI, SRI International; UCLA, University of California, Los Angeles; UCSD, UC San Diego; UFL, University of Florida; UMB, University of
Maryland Baltimore; UMICH, University of Michigan; UMN, University of Minnesota; UPMC, University of Pittsburgh; UTAH, University of Utah; UVM,
University of Vermont; UWM, University of Wisconsin—Milwaukee; VCU, Virginia Commonwealth University; WUSTL, Washington University in St.
Louis; YALE, Yale University. Numeric data for Figure 1 can be found in Excel Table S1.
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potential confounding variables. These included perceived neigh-
borhood safety (average score across three items including: “I feel
safe walking in my neighborhood, day or night,” “Violence is not a
problem in my neighborhood,” “My neighborhood is safe from
crime”) as assessed by caregiver, derived from three questions of
the ABCD Parent Neighborhood Quality/Crime Survey Modified

from PhenX (NSC),70,71 as well as geospatially derived characteri-
zation of urbanicity (based on 2010 Census definitions of urban,
urbanized area, and rural areas) within the primary residential cen-
sus tract at baseline.55 Lastly, given the ABCD study design, we
also adjusted all analyses for study site (n=21).

Statistical Analysis
PM2:5 source apportionment analysis. To identify major sources
of PM2:5 exposure, we utilized the 15 PM2:5 components and
conducted a positive matrix factorization (PMF) analysis using
the Environmental Protection Agency (EPA) PMF software tool
version 5.0.72 PMF is a multivariate factor analysis method,
which aims to identify the optimal number of sources and appor-
tion or quantify their contributions to PM2:5 (in this case).73

When PMF is applied to the concentration matrix of PM2:5 com-
ponents, factor contributions and factor profiles can be obtained.
Factor contributions quantify the contribution of the source factor
to PM2:5 exposure and factor profiles describe the loading or
chemical fingerprint that serves to identify them, which is the rel-
ative amount of each component in these derived source factors
(hereafter called sources for simplicity) for a given number of
specified sources. Some advantages of PMF over other source
apportionment methods are a) its approach with inherent, physi-
cally realistic nonnegative constraints on decomposition of com-
ponent concentrations into factors and contributions74 and b) its
ability to down-weight individual data points by their uncertain-
ties, minimizing the influence of noisy samples or species on the
overall model solution. The EPA version 5.0 PMF model also
includes advanced rotational functions,75 which allow rotational
ambiguity to be minimized to derive more realistic and optimally
separated sources. A detailed description of the EPA version 5.0
PMF model can be found elsewhere72,73,76; however, we outline
the details of these equations as applied to the current study here.

As mentioned, when PMF is applied to the concentration ma-
trix of PM2:5 components, it decomposes it into two matrices:
factor contributions (G) quantifying the contribution of the source
factor to PM2:5 exposure and factor profiles (F) describing the
loading or relative amount of each component in these derived
sources for a given number of sources. The F matrix serves to
identify sources by their characteristic species or “chemical fin-
gerprints,” while the G matrix serves to quantify their contribu-
tions (amounts) to the sample. Specifically,

Xij =
Xp

k=1
gikfkj + eij, (1)

where xij represents the component concentrations, gik represents
the contributions of sources, fkj represents the factor profiles, and
eij represents the residuals. The subscript i corresponds to partici-
pants (samples), j to the components, and p to the optimal number
of factors selected by the analyst. G and F are derived by finding
the bestfit through a least squares optimization algorithm that itera-
tively minimizes the objective function Q, defined as the sum of
the squared residuals weighted by their respective uncertainties:

Qij =
Xm

i=1

Xn

j=1
ðeij=uijÞ2, (2)

where uij represents the sample specific uncertainty and with the
nonnegativity constraint that G and F are positive (or not signifi-
cantly negative) matrices. To estimate the sample specific uncer-
tainties for this model, the EPA PMF 5.0 model guidelines72

provide an equation for calculating uncertainties that rely on a
laboratory-providedmethod detection limit (MDL) values for each
species. Since this analysis is using predicted PM2:5 component
concentrations from ensemble learning–based spatiotemporal

Table 1. Baseline study sample characteristics of the current sample of 9- to
10-year-old participants from the ABCD study cohort, 2016–2018.
Variable Study sample (n=8,589)

Age (months)
Mean±SD 119 (7.4)
Sex at birth
Female 4,086 (47.6%)
Male 4,503 (52.4%)
Race/ethnicity
Asian 208 (2.4%)
Black 1,252 (14.6%)
Hispanic 1,822 (21.2%)
Other racea 891 (10.4%)
White 4,416 (51.4%)
Total household income
<$50k 2,338 (27.2%)
≥$50k & <$100k 2,233 (26%)
≥$100k 3,289 (38.3%)
Don’t know or refuse 729 (8.5%)
Urbanicity
Urbanized area 7,633 (88.9%)
Urban cluster 259 (3%)
Rural 697 (8.1%)
Perceived neighborhood safety
Mean±SD 3.87 (0.97)
Physical activity (hours/week)
Mean±SD 3.5 (2.3)
Screen times (hours/day)
Mean±SD 2.94 (2.21)
Study site
CHLA 274 (3.2%)
CUB 286 (3.3%)
FIU 511 (5.9%)
LIBR 568 (6.6%)
MUSC 301 (3.5%)
OHSU 486 (5.7%)
ROC 275 (3.2%)
SRI 290 (3.4%)
UCLA 358 (4.2%)
UCSD 590 (6.9%)
UFL 368 (4.3%)
UMB 466 (5.4%)
UMICH 578 (6.7%)
UMN 352 (4.1%)
UPMC 347 (4.0%)
UTAH 761 (8.9%)
UVM 457 (5.3%)
UWM 345 (4.0%)
VCU 191 (2.2%)
WUSTL 396 (4.6%)
YALE 389 (4.5%)

Note: Values shown are either mean (standard deviation) or n (% frequency). All charac-
teristics were reported by the child’s caregiver except for urbanicity, which was based on
2010 Census data. CHLA, Children’s Hospital of Los Angeles; CUB, University of
Colorado Boulder; FIU, Florida International University; LIBR, Laureate Institute for
Brain Research; MUSC, Medical University of South Carolina; OHSU, Oregon Health
and Science University; ROC, University of Rochester; SD, standard deviation; SRI, SRI
International; UCLA, University of California, Los Angeles; UCSD, UC San Diego; UFL,
University of Florida; UMB, University of Maryland Baltimore; UMICH, University of
Michigan; UMN, University of Minnesota; UPMC, University of Pittsburgh; UTAH,
University of Utah; UVM, University of Vermont; UWM, University of Wisconsin—
Milwaukee; VCU, Virginia Commonwealth University; WUSTL, Washington University
in St. Louis; YALE, Yale University.
aOther race/ethnicity category includes subjects who were parent-identified as American
Indian/Native American, Alaska Native, Native Hawaiian, Guamanian, Samoan, other
Pacific Islander, Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese, other
Asian, or other race (participants that were identified in more than one category or
multiracial).
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models, the model performance metric of root mean square error
(RMSE) was utilized instead of MDL to correspond to the average
prediction error (in concentration units) for each species.
Therefore, sample- and species-specific uncertainties were calcu-
lated as follows, using 0.1 as the error fraction (EF):

uij =

5
6
×RMSEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:5×RMSEjÞ2 + ðEF×XijÞ2
q if Xij ≤RMSE,

if Xij >RMSE:

8><
>:

(3)

Then, this matrix of uncertainties (uij) corresponding to the
component concentration matrix (Xij) was supplied as input to
PMF and utilized in Equation 2 when minimizing Q. Since the
PM2:5 component spatiotemporal models calculated RMSEs for
urban and nonurban regions separately, these were used in
Equation 3 based on the site’s urbanicity classification. The urban
and urban cluster levels of the categorical variable urbanicity were
grouped together and assigned the RMSE values for urban, while
the rural level was assigned the RMSE value for nonurban, which
were then used in Equation 3 to obtain the uncertainties. In addi-
tion, species were designated as “Strong” (S/N ≥2) or “Weak”
(S/N <2) in the analysis based on their PMF calculated signal-to-
noise ratio (S/N), which results in down-weighting species set as
“Weak” by a factor of 2.

Evaluation of our results was performed using uncertainty eval-
uation and comparing Fpeak rotation results.77 We conducted an
uncertainty evaluation to examine variability and error estimation
using the displacement (DISP) analysis method, which helps to
examine the selected solution intricately, including its sensitivity
to small changes.We also examined Fpeak rotations, which allows
for transforming a given solution space by rotating it and evaluat-
ing how the rotated results fill the solution space. Positive Fpeak
values tend to sharpen the F matrix, and negative values tend to
sharpen the G matrix. The optimal Fpeak value for solution rota-
tion was chosen based on the comparison of the rotational runs and
interpretability of profiles. G space plots were also evaluated for
rotational ambiguity and correlations between factor contributions.
We also evaluated the range of the objective function Q values to
confirm that the selected solution was a global minimum rather
than a local minimum. Q is a critical parameter for PMF, and there
exists two versions of Q, namely, Qtrue and Qrobust for each model
run. As per the PMF EPA guidelines72: Qtrue is the goodness-of-fit
parameter calculated including all points, whereas Qrobust is the
goodness-of-fit parameter calculated excluding points not fit by the
model, defined as samples for which the uncertainty-scaled resid-
ual is >4. The convergent solution with the lowest Qrobust value
was selected per EPA PMF guidelines. Further, to examine the
impact of outliers, the Qrobust valueswere compared to Qtrue values.

Only participants with complete PM2:5 components and their
respective calculated uncertainties were included in the analysis
(n=11,165). To identify the optimal number of factors to retain,
multiple model runs were performed with factors ranging from 4
to 8. Model solutions were evaluated for best separation of sour-
ces into physically interpretable, realistic factors. The sources
were identified based on their loading profiles (F matrix) in rela-
tion to well-established literature and expert knowledge of their
characteristic tracers. For the final chosen number of sources, 100
base runs were completed, and the convergent solution was
selected per EPA PMF guidelines.72

Exposure and Outcome Analyses
To examine how mixtures of PM2:5 components and their sources
influence cognitive functioning in children 9–10 years of age, we

conducted three sets of analyses. First, we used a series of weighted
quantile sum (WQS) regressions to assess the associations between
the mixture of the 15 PM2:5 components and cognition. Second,
using the identified six sources from PMF to guide the groupings,
we implemented a grouped WQS regression to study how these
chemical components groups (representing the six sources) simulta-
neously are linked with cognitive performance. Lastly, as a comple-
mentary approach to the grouped WQS, we also conducted multiple
linear regressions examining how each of the six sources’ PMF-
derived contributions separately relate to cognition.

WQS regression with 15 PM2:5 components and cognition.
WQS regression analysis fits a generalized regression model49–51

that estimates the overall mixture effect of all PM2:5 component
exposures on the outcome(s) of interest (i.e., general ability, ex-
ecutive function and learning & memory) by constructing a
weighted index (i.e., which includes all of the PM components to-
gether), wherein the weights determine the relevant contribution
of each component to the relationship between this constructed
index and the outcome.

The generalized WQS regression expression takes the follow-
ing form:

gðlÞ=b0 + b1
X15

i=1
wiqi

� �
+ z0u, (4)

where i iterates through the 15 PM2:5 components, wi is the weight
for the ith component concentration, and qi is the quantile score for
that component concentration for that observation and z, indicating
the covariates included in the model. We performed this analysis in
two stages using a training (40%) and validation (60%) sample per
common practice using the ‘gwqs’ R package.78 First, WQS uses
the training data to fit a generalized regressionmodel with the quan-
tile PM2:5 component exposures along with the covariates to adjust
for in the model. Empirical weights are estimated from 1,000 boot-
strapped samples via a maximum likelihood optimization function,
which constrains the weights to sum to 1. By averaging across the
weights from each bootstrap, we then obtain theWQS index which is
a composite index inclusive of all the 15 PM2:5 component exposures,
represented as

P15
i=1 wiqj. Second, the constructedWQS index from

the training step is used to estimate the overall mixture effect on the
outcome by obtaining the regression coefficient for the index and test-
ing for significance of theWQS index using the remaining validation
dataset. WQS has an advantage over other mixture analysis methods
in that it can minimize the impact of collinearity between the compo-
nents or highly correlated components while identifying cumulative
associations.49,51 Additionally,WQS categorizes the mixture compo-
nents into quantile scores such that extreme values of component
exposures do not overpower theweight estimation.

For each of our three cognitive outcomes of interest (i.e., general
cognitive ability, executive function, and learning &memory), a sep-
arate WQS regression model was fit. To prevent imbalance between
the 21 different study sites, stratified randomization by site was per-
formed to generate the training and validation samples. We then
scored these values into deciles (to capture most of the PM2:5 compo-
nents’ nonnormal distribution variability) to make sure that the
extreme values have less impact on the weight estimation. One thou-
sand bootstrapped samples were included as an ensemble step to per-
form weight estimations of the exposure components in the mixture.
We expected only the negative or null associations between PM2:5
components and cognition. However, due to the presence of convo-
luted correlation structures between air pollutants and components,
we also allowed for the model to predict positive associations for
completeness. All results presented were adjusted for the previously
mentionedminimally sufficient set of confounders (e.g., site, sex, age,
race/ethnicity, overall household income, perceived neighborhood
safety, urban area, physical activity, and daily screen average hours).
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Source-relevant grouped WQS and cognition. Next, to deter-
mine if the associations seen were due to the particular mix of
components (which can have more than one source, but generally
tend to co-occur or correlate within a source) vs. the actual contri-
bution of the source itself, we performed grouped weighted quan-
tile sum (GWQS) to investigate mixture effects of components
within groups based on the PMF results, and without overlap, on
the cognitive outcomes of interest. Specifically, GWQS79 was
implemented by grouping the 15 PM2:5 components into six
groups that correspond to the six sources from PMFwith the con-
straint of no overlapping components as follows: ammonium
nitrates (NH+

4 , NO
−
3 ), industrial (Pb, Ni, Zn), traffic (EC, Cu, Fe),

coal-burning power plants (SO2−
4 , V), biomass burning (OC, K,

Br), and crustal (Ca, Si). Within these groups, the components
are scored into deciles that can be plausibly combined into an
index and are assigned a weight. The index weights in each
source group are empirically estimated and constrained to be
between 0 and 1 and sum to 1, which helps reduce potential issues
with collinearity and can reduce dimensionality through zero or
near-zero weights.79

Grouped WQS uses a mixture data with C components
(15 PM2:5 component exposures) split between j=1,. . ., J
groups (six source groups) with Cj components in the jth group.
The components are scored into quantiles (e.g., quartiles
0,1,2,3) within each J group, which can be combined into an
index and are assigned a weight.

For continuous outcome, the general GWQS regression model
is as follows:

gðlÞ= b0 +
XJ

j=1
bj

XCj

i=1
wjiqji

� �
+ z0/,

where g() is any monotonic and differentiable link that relates to
the mean l and the predictor variables as in generalized linear
models, wji represents the weight for the ith chemical component
qji, and the summation

PCj
i=1 wjiqji represents a weighted index

for the set of cj chemicals of interest within group j. The vector z
is a vector of covariates for which to adjust.

Unlike the WQS, which treats all the mixture elements
belonging to one single index as having the same direction of
association with the outcome,51 the GWQS allows for grouping
the mixture elements within the model such that different magni-
tudes and directions of associations are possible for each group.79
In addition to estimating exposure effects on outcomes for multi-
ple component groups that reflect the PMF-derived sources, this
method also identifies important PM2:5 components within each
group contributing to the effect. These analyses were also
adjusted for the previously mentioned minimally sufficient set of
confounders (e.g., site, sex, age, race ethnicity, overall household
income, perceived neighborhood safety, urban area, physical ac-
tivity, and daily screen average hours).

PM2:5 sources and cognition associations. The previously
mentioned grouped WQS analysis explored how the mixture of
components that tend to correlate with each other highly because
they can be emitted or formed from a common source or common
process are associatedwith children’s cognition. However, to com-
plement this approach and understand whether it is the source con-
tribution itself driving these associations, we also examined the
potential unique (or independent) association between each PMF
source and children’s cognition. Thus, we implemented multiple
linear regression models using each source’s contributions as the
exposure of interest separately, while adjusting for all identified
confounding and precision covariates, as well as the fixed effect of
site. To address the issue of increased type I due to multiple com-
parisons for each outcome, we applied the Bonferroni correction
(a=0:05=6; p<0:008).

Results
The final sample characteristics for the current study are described
in Table 1. A comparison between the current analytic sample and
the larger ABCD study cohort can be found in Table S1.

Table 2 summarizes the 1-year annual 15 PM2:5 component
concentrations across the ABCDStudy participants at 9–10 years of
age. The Spearman correlations between PM2:5 components ranged
from−0:2 to 0.84 (Figure S2).Higher correlationswere seen among
several component groupings, including NO−

3 and NH+
4 ; trace ele-

ments Ni, Zn, and Pb; OC, EC, Cu, and Fe; and also Si and Ca
(Figure S2). OC had the highest mean annual concentration of 1.89
lg=m3 followed bySO2−

4 , NO−
3 , andECwithmean annual concen-

trations of 0:92lg=m3, 0:93lg=m3, and 0:52lg=m3, respectively.
Notable differences were seen in the concentrations of each compo-
nent across the 21 sites (Figure S3). Participants from the two study
sites within Los Angeles, CA [Children’s Hospital Los Angeles
(CHLA) andUniversity ofCalifornia LosAngeles (UCLA)] had the
highest concentrations of Br, Fe, andOC, whereas the highest levels
of Zn, Ni, and Pb were seen among participants from the study site
located in Pittsburgh, PA [University of Pittsburgh (UPMC)]. Ca
concentrations were higher among participants seen at the Utah
[University of Utah (UTAH)] and Oklahoma [Laureate Institute for
Brain Research (LIBR)] study sites. Cu, EC, and SO2−

4 concentra-
tionswere also found to be higher among participants from the study
sites within Los Angeles, CA and Pittsburgh, PA (CHLA/UCLA/
UPMC). NO−

3 concentrations were larger among study sites in the
West and Midwest regions. V concentrations were highest for most
of the participants from the southeastern study site locations. NH+

4
concentrations were largest for participants from the Los Angeles,
CA and Pittsburgh, PA study sites as well as sites within the
Midwest and southeastern US. K concentrations were highest for
participants from the two Florida study sites [Florida International
University (FIU) and University of Florida (UFL)] as well as many
of the study sites from the western regions. Si concentrations were
highest for participants from the Colorado [University of Colorado
Boulder (CUB)] andUtah (UTAH) sites.

The range for the general cognitive ability score was −3:17 to
3.04 (mean=0:024, standard deviation= 0:78, and median= 0:03),
the range for the learning & memory score was −2:22 to 2.22
(mean= − 0:01, standard deviation= 0:70, and median= 0:04),
and the range for the executive function score was −3:23 to 2.61
(mean= − 0:01, standard deviation= − 0:77, andmedian= 0:01).

Table 2. Annual average PM2:5 component estimates at the child’s residence
for 9- to 10-year-old participants from the ABCD Study cohort (n=8,589),
2016–2018.
PM2:5 components Mean SD IQR

Carbons and ions (lg=m3)
OC 1.90 0.46 0.57
EC 0.53 0.16 0.19
NO−

3 0.92 0.35 0.56
SO2−

4 0.92 0.28 0.42
NH+

4 0.30 0.12 0.19
Trace elements (ng=m3)
Br 2.58 0.59 0.57
Ca 47.93 21.08 31.82
Cu 4.65 1.67 2.28
Fe 65.83 24.51 30.79
K 63.08 9.77 13.34
Ni 0.84 0.26 0.26
Pb 4.54 1.24 1.36
Si 82.86 37.32 61.22
V 0.37 0.2 0.21
Zn 9.34 4.1 4.13

Note: Br, bromine; Ca, calcium; Cu, copper; EC, elemental carbon; Fe, iron; IQR, inter-
quartile range; K, potassium; NH+

4 , ammonium; Ni, nickel; NO−
3 , nitrate; OC, organic

carbon; Pb, lead; PM2:5, fine particulate matter with aerodynamic diameter ≤2:5 lm;
SD, standard deviation; Si, silicon; SO2−

4 , sulfate; V, vanadium; Zn, zinc.
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Chemical Profiles of PM2:5 Sources across the Nationwide
ABCD Study
PMF analysis decomposed the 15 PM2:5 components into six fac-
tors, which were conceptualized into potential sources based on the
components that largely loaded onto those factors and based on the
geographic trends in their contributions. Specifically, the identified
six major sources of PM2:5 based on the PMF analysis were crustal,
ammonium sulfates, biomass burning, traffic, ammonium nitrates,
and industrial (Figure 2). Figure 3 provides the estimated source
profiles, indicating the relative contribution of each PM2:5 compo-
nent to each source as well as the factor contribution distribution
(quantities) for each of the 21 study sites. The first factor was

deemed crustal because of high loadings of Ca and Si, which occur
due to resuspended dust particles in the air known to originate from
earth’s crust and soils.80 Moreover, the source contributions of
crustal were highest for coastal study sites as well as portions of the
study sites within the Southwest and western US. The second factor,
ammonium sulfates, was characterized by high loadings of NH+

4
and SO2−

4 , which are secondary inorganic aerosols typically formed
from photochemical reactions occurring with long transport and
aging of air masses, from precursors including SO2 gas commonly
emitted by coal combustion and to a lesser extent diesel and other
heavy fuel burning.81–83 Moreover, the ammonium sulfates source
contributions were highest for eastern andMidwest study sites, areas

Figure 3. Factor contributions for the six source factors for 9- to 10-year-old participants from each of the 21 ABCD Study sites (n = 11,156) from 2016 to
2018. Plots display the distributions of participant factor contribution scores by study site for each of the six source factors (i.e., crustal, ammonium sulfates,
biomass burning, traffic, ammonium nitrates, and industrial/residual fuel oil burning). Study sites are ordered and color coded by geographical region. Note:
CHLA, Children’s Hospital of Los Angeles; CUB, University of Colorado Boulder; FIU, Florida International University; LIBR, Laureate Institute for Brain
Research; MUSC, Medical University of South Carolina; OHSU, Oregon Health and Science University; ROC, University of Rochester; SRI, SRI
International; UCLA, University of California, Los Angeles; UCSD, UC San Diego; UFL, University of Florida; UMB, University of Maryland Baltimore;
UMICH, University of Michigan; UMN, University of Minnesota; UPMC, University of Pittsburgh; UTAH, University of Utah; UVM, University of
Vermont; UWM, University of Wisconsin—Milwaukee; VCU, Virginia Commonwealth University; WUSTL, Washington University in St. Louis; YALE,
Yale University. Numeric data for Figure 3 can be found in Excel Tables S3.

Figure 2. Profiles of the six source factors identified based on PM2:5 component exposures at the residences of 9- to 10-year-old participants from the ABCD
Study cohort (n = 11,156) from 2016 to 2018. Results from PM2:5 source apportionment analysis using positive matrix factorization. Graph depicts the relative
contribution of each PM2:5 component in percentages (values ranging from 0 to 100) to each of the identified six source factors as shown by stacked segments
in each bar. Six source factors include the following: crustal (Ca, Si), ammonium sulfates (NH+

4 , SO
2−
4 ), biomass burning (OC, K, Br), traffic (EC, OC, Fe,

Cu), ammonium nitrates (NH+
4 , NO

−
3 ), and industrial/residual fuel oil burning (Pb, Zn, Ni). Note: Br, bromine; Ca, calcium; Cu, copper; EC, elemental carbon;

Fe, iron; K, potassium; NH+
4 , ammonium; Ni, nickel; NO−

3 , nitrate; OC, organic carbon; Pb, lead; PM2:5, fine particulate matter with aerodynamic diameter
≤2:5 lm; Si, silicon; SO2−

4 , sulfate; V, vanadium; Zn, zinc. Numeric data for Figure 2 can be found in Excel Tables S2.
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known to be impacted by long range transport of emissions from
Clean Air Act grandfathered coal power plants in the Midwest. The
third factor had high loadings of OC, K, and Br and was labeled bio-
mass burning, which corresponds with combustion sources such as
residential wood burning, forest fires, and open burning of agricul-
tural residues.84,85 The source contributions to biomass burning were
especially high forWest Coast study sites. The fourth factor was con-
sistent with traffic with high loadings of EC and OC and trace ele-
ments like Fe and Cu that are known to originate from both exhaust
and nonexhaust emissions like tire wear, brake wear,86,87 and tail-
pipe.39 Traffic source contributions were highest for the two Los
Angeles study sites (CHLA,UCLA).Thefifth factorwas ammonium
nitrates, given the high loadings of NH+

4 and NO−
3 , and it corre-

sponds with secondary inorganic aerosol formation from reactions
occurring between precursors emitted primarily from agricultural or
farming activities (ammonium)88 aswell as nonagricultural vehicular
or other emissions (i.e., nitrogen oxides, etc.) under cooler tempera-
tures.89 The largest contributions for ammonium nitrates were seen
at study sites near farming and agricultural areas across the eastern,
Midwest, and portions of theWest, with higher contributions seen in
the West as compared to the eastern US. Lastly, the sixth factor was
deemed industrial/residual fuel oil burning, as it was characterized
by high loadings of the trace elements Pb, Zn, and Ni that are emitted
from industrial processes (Pb, Zn) and heavy residual fuel oil com-
bustion (Ni).90,91 In addition, the contribution was highest for the
Pittsburgh study site, which is a known industrial city.

PM2:5 Component Mixture Associations with Cognition
The mixture of 15 PM2:5 components was negatively associated
with neurocognitive performance at ages 9–10 years old (Table 3).
Weights of each component contributing toward this cumulative
negative association with each of the three outcomes are shown in
Figure 4. For general cognitive ability, we observed a significant

cumulative negative association (indicating the cumulative effect
of the mixture of 15 components) with larger weight contributions
fromK, NH+

4 , Si, and Zn. For learning &memory, NO3, NH+
4 , and

Ca were the major contributors to the negative association
observed. The mixture effect for executive function showed a cu-
mulative negative association driven by Ca, K, Si, and NH+

4 . There
were no significant positive mixture effects seen for any measures
of neurocognitive performance (all p>0:05).

Mixture Effects of PM2:5 Component Groups Related to
Major Sources on Cognition
Using the PMF identified six sources (i.e., crustal, ammonium sul-
fates, biomass burning, traffic, ammonium nitrates, and industrial)
and its loadings, we grouped the components here without overlap
to investigate mixture effects of components within each source
group on the cognitive outcomes of interest. The results derived
from grouped WQS regression are shown in Table 4. The corre-
sponding weight contributions of each component toward each sig-
nificant grouped WQS index is reported in Figure S4. We found a
significant negative association between general ability and themix-
tures of components related to both crustal and industrial sources,
which were mainly driven by Si and Zn, respectively (Figure S4A).
Surprisingly, we also found a positive association between the mix-
ture of traffic-related components and general ability with Cu load-
ing the highest. A significant negative association was also found
between components related to ammonium nitrates with learning &
memory, and these were driven by NO−

3 (Figure S4B). In terms of
executive function, a negative association was observed between
traffic-related groups of components and executive functioning,
with the largest effects driven by Cu followed by Fe and EC, respec-
tively (Figure S4C). In addition, an unexpected significant positive
association was found between the mixture of components related
to biomass burning and executive functioning performance, with
the strongest effects driven by OC followed by K and Br, respec-
tively (Figure S4C).

PM2:5 Sources and Cognition Associations
To complement quantifying mixture effects of source groupings,
linear modeling aimed to further quantify the independent associ-
ation between each PM2:5 source derived from PMF and child-
ren’s cognitive performance. We found a significant negative
association between ammonium nitrates and learning & memory
performance (Table 5). Exposure to higher crustal and traffic
sources were also found related to poorer executive function,
whereas higher exposure to ammonium sulfates was positively
associated with executive functioning; albeit these did not pass
multiple comparison correction.

Figure 4. Individual PM2:5 component weights from the mixture effects on neurocognitive performance in 9- to 10-year-old participants from the ABCD Study
cohort (n=8,589) from 2016 to 2018. Bar charts indicate weights of components contributing to the overall WQS mixture index for the three cognitive outcomes:
(A) general cognitive ability, (B) learning & memory, and (C) executive function. Results fromWQS regression models of the 15 PM2:5 components, adjusting for
age, sex, race/ethnicity, overall household income, perceived neighborhood safety, urbanicity, physical activity, and daily screen average hours and site. Note: Br,
bromine; Ca, calcium; Cu, copper; EC, elemental carbon; Fe, iron; K, potassium; NH+

4 , ammonium; Ni, nickel; NO−
3 , nitrate; OC, organic carbon; Pb, lead; Si, sili-

con; SO2−
4 , sulfate; V, vanadium;WQS, weighted quantile sum; Zn, zinc. Numeric data for Figure 4 can be found in Excel Tables S4–S6.

Table 3.Weighted quantile sum (WQS) regression results examining the
mixture of 15 PM2:5 components on neurocognitive performance in 9- to 10-
year-old participants from the ABCD Study cohort (n=8,589), 2016–2018.
Outcome Estimatea Standard error p-Value

General cognitive ability −3:510× 10−2 1:17× 10−2 0.003**

Learning & memory −4:506× 10−2 1:381× 10−2 0.001**

Executive function −3:109× 10−2 1:445× 10−2 0.031*

Note: PM, particulate matter.
aEstimates are per 1-unit increase in the WQS index, reflected as an ∼ 1 decile increase
in all PM components. WQS regression models of the 15 PM components, adjusting for
age, sex, race/ethnicity, overall household income, perceived neighborhood safety,
urbanicity, physical activity, and daily screen average hours and site. Significance levels:
*indicates p<0.05; **indicates p< 0.01.
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Sensitivity Analyses
Two of the six sources that we identified in the PMF analysis are
considered secondary, meaning they are formed by chemical reac-
tions between primary emissions (precursors) under specific
weather conditions and with long range transport and aging of the
air pollution plume. Since these same conditions can lead to ozone
gas formation through photochemical reactions, we conducted a
sensitivity analysis for our source factor related models, where we
additionally adjusted for annual average ozone to test whether our
findings were sensitive to potential confounding by ozone expo-
sure.92 Our results remained the same (Tables S3 and S4). Lastly,
our analytic approach used an a priori DAG to determine a mini-
mally sufficient set of variables tominimize potential confounding,
which included the socioeconomic variable of total household
income. Nonetheless, to reduce concern of additional residual con-
founding of potential socioeconomic impacts on our results, we
also conducted an additional set of sensitivity analyses that
included our minimally sufficient set as well as further adjusting
for highest parental education. The sample size for this sensitivity
analysis was n=8,580 given parental education information was
missing for nine participants (including the one subject in which
source contributions were not available). Our results were nearly
identical in direction and magnitude (Tables S5–S7), with the
exception of the WQS effects of the 15 PM2:5 components (WQS
index of −1:84× 10−2 as compared to −3:51× 10−2) as well as

grouped WQS effects of industrial-based components (i.e., Pb, Ni,
Zn) (WQS index of −1:34× 10−2 as compared to −1:91× 10−2) on
general cognitive ability, which were reduced and no longer
deemed significant.

Discussion
The current study incorporated mixture modeling and source
apportionment to examine how annual exposure to 15 PM2:5
components and their major contributing sources is related to
individual differences in cognitive performance in more than
8,000 children ages 9–10 years old from a nationwide cohort
across the US. Mixture modeling revealed cumulative negative
associations between chemical components of PM2:5 and child-
ren’s cognitive performance across all three cognitive domains,
with the greatest contributions from ammonium, nitrates, potas-
sium, silicon, and calcium (Figure 5). We then performed data-
driven source apportionment on these 15 chemical components
into source factors via positive matrix factorization, revealing six
sources: crustal, ammonium sulfates, biomass burning, traffic,
ammonium nitrates, and industrial sources. Next, we used two
complementary approaches, including grouped mixture modeling
(grouped components by source) and linear mixed effect model-
ing directly with the PM sources, to further understand how the
six identified sources contribute to these overall mixture effects.
Two main findings emerged that supported our interpretation of

Table 4. Grouped weighted quantile sum (WQS) results showing cumulative associations between groups of PM2:5 components, based on six identified source
factors, and neurocognitive performance in 9- to 10-year-old participants from the ABCD study cohort (n=8,589), 2016–2018.
Outcome WQS mixture group membership Estimatea Standard error p-Value

General cognitive ability Ca, Si (crustal) −2:51× 10−2 1:18× 10−2 0.0327*

SO2−
4 , V (portion of ammonium sulfatesb) −1:59× 10−3 9:44× 10−3 0.8663

OC, K, Br (biomass burning) −4:65× 10−3 1:02× 10−2 0.6471
EC, Cu, Fe (traffic) 2:39× 10−2 7:42× 10−3 0.0013**

NH+
4 , NO

−
3 (ammonium nitrates) −1:19× 10−2 1:11× 10−2 0.2798

Pb, Ni, Zn (industrial) −1:90× 10−2 8:83× 10−3 0.0318*

Learning & memory Ca, Si (crustal) −1:49× 10−2 1:18× 10−2 0.2075
SO2−

4 , V (portion of ammonium sulfatesb) 9:12× 10−3 8:84× 10−3 0.3026
OC, K, Br (biomass burning) 9:49× 10−3 9:81× 10−3 0.3357
EC, Cu, Fe (traffic) −4:15× 10−3 9:44× 10−3 0.6599
NH+

4 , NO
−
3 (ammonium nitrates) −3:35× 10−2 1:10× 10−2 0.0025**

Pb, Ni, Zn (industrial) −6:26× 10−3 9:41× 10−3 0.5062
Executive function Ca, Si (crustal) −1:90× 10−2 1:31× 10−2 0.1488

SO2−
4 , V (portion of ammonium sulfatesb) −7:85× 10−4 8:48× 10−3 0.9263

OC, K, Br (biomass burning) 2:95× 10−2 1:16× 10−2 0.0108*

EC, Cu, Fe (traffic) −2:23× 10−2 1:08× 10−2 0.0397*

NH+
4 , NO

−
3 (ammonium nitrates) −1:70× 10−2 1:24× 10−2 0.1686

Pb, Ni, Zn (industrial) −4:69× 10−4 1:04× 10−2 0.9639

Note: Br, bromine; Ca, calcium; Cu, copper; EC, elemental carbon; Fe, iron; K, potassium; NH+
4 , ammonium; Ni, nickel; NO−

3 , nitrate; OC, organic carbon; Pb, lead; PM2:5, fine par-
ticulate matter with aerodynamic diameter ≤2:5 lm; PMF, positive matrix factorization; Si, silicon; SO2−

4 , sulfate; V, vanadium; Zn, zinc.
aEstimates are per 1-unit increase in the grouped WQS index, interpreted as an ∼ 1 decile increase in source factor groups. Results from grouped WQS regression models wherein the
15 PM components grouped into six source factors, adjusting for age, sex, race/ethnicity, overall household income, perceived neighborhood safety, urbanicity, physical activity, and
daily screen average hours and site.
bPMF-identified ammonium sulfates components (SO2−

4 , V, and NH+
4 ) were reduced to SO2−

4 , V (likely reflecting coal-burning power plants) to reduce overlap of NH+
4 in grouped

QWS analysis. Significance levels: *indicates p < 0.05; **indicates p < 0.01.

Table 5. Associations between each PM2:5 source factor and cognitive outcome in 9- to 10-year-old participants from the ABCD Study cohort (n=8,588),
2016–2018.

General cognitive ability Learning & memory Executive function

PM2:5 source factor b Standard error p-Value b Standard error p-Value b Standard error p-Value

Crustal −2:66× 10−2 2:67× 10−2 0.3202 −2:66× 10−2 2:70× 10−2 0.8947 −5:67× 10−2 2:98× 10−2 0.0570
Ammonium sulfates 6:19× 10−3 4:61× 10−2 0.8932 6:19× 10−3 4:65× 10−2 0.1459 1:16× 10−1 5:14× 10−2 0.0237
Biomass burning −8:65× 10−3 4:90× 10−2 0.8599 −8:65× 10−3 4:95× 10−2 0.6586 2:92× 10−2 5:47× 10−2 0.5937
Traffic 1:31× 10−2 2:69× 10−2 0.6272 1:31× 10−2 2:72× 10−2 0.2193 −6:00× 10−2 3:00× 10−2 0.0458
Ammonium nitrates −5:11× 10−2 3:39× 10−2 0.1324 −5:11× 10−2 3:42× 10−2 0.0002* 2:04× 10−3 3:79× 10−2 0.9570
Industrial 7:65× 10−3 3:75× 10−2 0.8381 7:65× 10−3 3:78× 10−2 0.5484 −3:84× 10−2 4:18× 10−2 0.3575

Note: Linear regression models, adjusted for age, sex, race/ethnicity, overall household income, neighborhood safety, urbanicity, physical activity, daily screentime average hours, and
site. Estimates include unstandardized beta coefficients (b), standard errors, and p-values. Asterisk sign(*) reflected models passing Bonferroni correction (p≤ 0:008). PM2:5, fine par-
ticulate matter with aerodynamic diameter ≤2:5 lm.
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the PM sources driving the initial mixture effects: Higher expo-
sure to mixtures of crustal and industrial components were related
to poorer general cognitive ability, whereas exposures to ammo-
nium nitrates were associated with worse learning & memory
scores (Figure 5). Both traffic and biomass source mixtures were
related to general cognitive ability and executive function, albeit
these findings were less robust to analytic methods employed
(Figure 5). Building upon a decade of research suggesting that
PM2:5 exposure is detrimental to cognition,93 this work links
childhood exposure to PM2:5 source mixtures to individual differ-
ences in cognition at 9–10 years of age.

Much of the existing literature concerning neurocognitive
impacts of PM2:5 and other pollutants in children has focused on
prenatal exposures.93–95 A few previous studies have assessed dif-
ferences in cognition related to specific components of PM2:5. In
four European birth cohorts from Holland, Germany, Italy, and
Spain, worse fine motor functioning in children 1–9 years of age
(n=7,246) was linked to greater prenatal exposure to iron but not
to seven other elemental components (i.e., Zn, V, Si, Cu, K, Ni,
S).96 Further, attention problems have been linked to childhood
copper exposure at 7–11 years of age (n=2,492), depending on
polymorphisms in a copper transporting gene,97 and to both child-
hood and prenatal elemental or black carbon exposure, which are
characteristic of diesel and traffic emissions.24,28,98 However, air
pollution effects on neurodevelopment during later childhood and
adolescence is emerging as an imperative research area that war-
rants further study.11,93,99

Among studies of the cognitive impacts of childhood exposure
to total PM2:5 mass, there is some inconsistency among findings,
which could largely be due to the heterogeneity in PM2:5 composi-
tion across these studies.44 For example, several large-scale studies
from Europe, the UK, and the US have found no association
between total PM2:5 exposure and cognitive functioning during
childhood,23,100 even in the current ABCD Study cohort of 9–
10 year olds.22 Our current study highlights that the chemical com-
position of PM2:5 may play a vital role in the neurodevelopmental
effects of air pollution, which may help to explain conflicting find-
ings in the extant literature. Using mixture modeling to assess 15
chemical components of PM2:5, we found that greater exposure to
the overall mixture was linked to worse performance across the
three cognitive domains (i.e., general cognitive ability, learning &
memory, executive function). The negative association between
PM2:5 mixture and general cognitive ability was largely driven by
exposure to potassium, ammonium, silicon, and zinc, whereas the
mixture effects on learning & memory was driven by exposure to
nitrate, ammonium, and calcium. Similar components also contrib-
uted to the mixture effect seen with executive function, with

highest contributions seen from calcium, potassium, silicon, and
ammonium. Thus, it seems that these three aspects of cognition are
differentially impacted by the chemical composition of PM2:5, but
exposure to ammonium (NH+

4 ), silicon (Si), and calcium (Ca) con-
tribute substantially to worse cognitive outcomes that span multi-
ple domains. These findings suggest that PM2:5 mixture effects on
cognition at 9–10 years old seem to be differentially impacted by
the chemical composition of PM2:5, building upon the known het-
erogeneity in PM2:5 health effects that are widely documented in
the literature.47,101–103

Given the nature of the cognitive domain scores (i.e., principal
components with medians= 0:01–0:04, ranges: 4.44–6.21; unit-
less), it is useful to consider themixture effects in context of the rela-
tive age-related differences seen in each model. A 1-month increase
in age from 9–10 years old was associated with 0.24, 0.09, and
0.23 increases in general cognitive abilities, learning & memory,
and executive functioning performance, accordingly. By using these
expected age-related increases in cognition as context and compar-
ing the relevant standardized coefficients from each model (i.e.,
bmixture=bage), PM2:5 mixture effects translate to approximately a
one-third reduction of the estimated monthly age-related improve-
ments in general ability (bmixture=bage: −0:08=0:24= − 0:33) and
executive function (bmixture=bage: −0:07=0:23= − 0:32), as well as
a 1.4-fold decrease in themonthly age-related improvements seen in
learning & memory (bmixture=bage: −0:13=0:09= − 1:45) from
ages 9–10 years old in the current study. Although these are rela-
tively small individual-level effects from a 1-year annual exposure,
it is feasible they could translate to a large effect on children’s cogni-
tion at a population level and/or at an individual-level if such expo-
sure effects are cumulative over time.

Differences in PM2:5 composition are, in part, due to the many
sources of outdoor PM2:5, anthropogenic and otherwise, which may
vary geographically across the US. For example, PM2:5 from wind-
blown dust is more prevalent in the dry and dusty American West
and Southwest, comparedwith PM2:5 from heavy industry, which is
more prevalent in the American Midwest and Northeast. Thus, in
addition to quantifying mixture effects, identifying which common
source(s) are responsible for potential adverse childhood cognitive
and health effects across the US may provide pertinent to helping
guide decisions of both parents and policymakers. It can also inform
additional source-specific emissions reduction regulations. In the
current study, we used multisite, geographically diverse data to
identify shared source categories of PM2:5 components across all
participants from the 21 ABCD research sites to capture major
source factors that have the most overall importance, and allow
direct comparability of exposures, across the entire child population
of interest here.104 This revealed six commonly sharedmajor source

Figure 5. Visual synthesis of results using WQS, grouped WQS, and linear regression to quantify the associations between PM2:5 components, the six identi-
fied source factors, and neurocognitive outcomes in 9- to 10-year-old participants from the ABCD Study cohort (n=8,589) from 2016 to 2018. Created with
Biorender.com. Numeric data for Figure 5 can be found in Excel Tables S7. Note: Br, bromine; Ca, calcium; Cu, copper; EC, elemental carbon; Fe, iron; K,
potassium; NH+

4 , ammonium; Ni, nickel; NO−
3 , nitrate; OC, organic carbon; Pb, lead; PM, particulate matter; PMF, positive matrix factorization; Si, silicon;

SO2−
4 , sulfate; V, vanadium; WQS, weighted quantile sum; Zn, zinc. Due to unavailable source contribution data for one participant, regression models reflect

n=8,588.
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factors across all 9- to 10-year-old participants within the ABCD
Study cohort, including crustal (e.g., resuspended dust, soil; largely
Ca and Si), ammonium sulfates (e.g., secondary inorganic aerosols;
largely NH+

4 and SO2−
4 ), biomass burning (e.g., from wood fires,

restaurants, forest fires; largely OC, K, and Br), traffic (e.g., exhaust,
tire/brake wear; largely EC, OC, Fe, and Cu), ammonium nitrates
(e.g., secondary aerosols related to agricultural fertilizer; largely
NH+

4 and NO−
3 ), and an industrial source factor (e.g., heavy fuel oil

and combustion; largely with Pb, Zn, and Ni). After investigating
the effects of the overall PM2:5 components as one mixture, we then
implemented complementary analyses using the six identified
source factors. First, we investigated potential unique mixture
effects of each set of components related to a particular source on
cognition using grouped weighted quantile sum regression (where
the groups are guided by the sources). Second, we investigated
the direct, specific association of each source with differences in
cognition using linear mixed-effects modeling. These approaches
detected that greater annual exposures to certain source categories
were related to poorer neurocognitive performance at 9–10 years of
age. Both approaches found greater exposure to ammonium nitrate,
as a source and as its mixture of components, was associated with
worse learning & memory performance. To our knowledge, this is
thefirst study to link ammoniumnitrates exposure in PM2:5 to differ-
ences in learning & memory performance in childhood. However,
our findings are in linewith prior aging literature linking ammonium
and, to a more modest degree, nitrates to increased risk of demen-
tia.105 Excessive ammonium levels have also been noted in brains of
those affected by Alzheimer’s disease.106 Moreover, a study com-
paring different exposure sources found PM2:5 attributable to agri-
culture (i.e., including ammonium) and wildfires robustly
associated with dementia risk in the US.107 In the same study, expo-
sure to traffic and coal combustion were also related to dementia
risk, although effects were sensitive to adjustment of co-exposure to
other sources.107

Beyond ammonium nitrates, we found worse general cogni-
tive abilities in late childhood were related to higher levels of
PM2:5 mixtures of crustal and industrial-related pollutants (i.e., as
seen in the WQS of 15 components and grouped WQS of source
mixtures). These findings are congruent with previous studies
linking silicon to poorer cognitive capabilities, decreased mem-
ory recognition, and cognitive decline in aging populations.108,109

Lastly, we found that exposure to traffic-related components,
driven primarily by copper, was linked to worse executive func-
tion. These findings are similar to previous findings from the
Spanish BREATHE cohort, which found greater exposure to traf-
fic sources of PM2:5 at school (measured twice annually) related
to reduced attention and working memory performance over time
in children.110

While further study is needed to understand mechanisms
underlying differential neurocognitive impacts of exposure to
PM2:5 components and sources, extant literature can help contextu-
alize these findings by elucidating the pathways and mechanisms
by which PM2:5 exposure impacts the brain. Ambient air pollution
is believed to directly impact the brain via the olfactory bulb and
indirectly impact the brain by instigating peripheral inflammatory
responses.111,112 In the brain, exposure can cause neuroinflamma-
tion, oxidative stress, and blood-brain-barrier damage, resulting in
neuron loss, diminished synaptic function, impaired neurogenesis,
metal dyshomeostasis, and neurodegenerative pathologies.3,45 We
propose that our findings, linking ammonium nitrate exposure with
worse learning and memory performance, may be explained, in
part, by impacts of ammonium on the hippocampus and its central
role in learning and memory. A recent study of chronic ammonium
exposure in mice uncovered olfactory system damage and damage
to the hippocampus,105 while another revealed that even short-term

exposure to low levels of ammonium can depolarize hippocampal
neurons with potential downstream neurotoxic effects.113 Conversely,
both our component and source mixture models found that general
cognitive ability was negatively associated with exposure to crustal
materials and industrial fuel burning, whereas executive function
was negatively associated with different components across the
two mixture models (i.e., Ca, K, NH4

+, vs. traffic). Here, general
cognitive ability reflects reading, vocabulary, list-sorting, and spa-
tial reasoning, whereas executive function includes inhibitory con-
trol, attention, and set shifting,59 all of which would engage
regions from large-scaled systems throughout the brain. Such a
decentralized neural substrate suggests more diffuse impacts of ex-
posure, such as systemic inflammation and physiological stress.114

Moreover, postnatal inhalation exposure studies in animals show
that concentrated ambient ultrafine particles, which include the
elements that we identified, increase the levels of metals, such as
calcium, in the developing brain, which may ultimately contribute
to brainmetal dyshomeostasis.115,116

Beyond the expected negative associations, the current study
also identified a few unexpected positive associations with source
mixtures and the studied outcomes, including exposure to traffic
with general cognitive ability as well as biomass burning with ex-
ecutive function. Some PM2:5 sources may be inversely correlated
with each other due to chemical reactions in the air (e.g., primary
traffic emissions, which act as precursors for ozone, may decrease
as secondary particle formation increases under conditions that
promote ozone formation), potentially leading to these unexpected
positive associations. Thus, we ran additional sensitivity analyses
to adjust for ozone co-exposure. Further, we included parental edu-
cation in these sensitivity analyses to examine potential residual
confounding of socioeconomic effects. These analyses identified
smaller negative effects between PM2:5 and source-based mixtures
on general cognitive ability (i.e., highest loadings of Toolbox
Picture Vocabulary and Oral Reading Test performance). This is
likely due to parental education having a stronger effect on tests of
crystalized intelligence as compared to fluid intelligence and other
cognitive domains.117 However, all other results, including the
positive associations, remained unchanged. As such, it is likely
that atmospheric chemistry contributes to the counterintuitive posi-
tive effects identified here, due to anticorrelations between compo-
nent concentrations as a result of how different sources are emitted
or formed in the air.47,103,118 Furthermore, these unexpected posi-
tive associations and disparate findings between methods may be
due to correlations between the sources themselves and/or the fact
that each chemical component likely originates from more than
one source. As grouped mixture modeling only included unique
chemical components that loaded highly onto each source factor in
separate groups, and all source factors were included in a single
grouped WQS model, potentially spurious positive effects in
these models may arise from anticorrelations between sources.
Alternatively, the linear models captured the individual contribu-
tions of each source factor, each in its own model (i.e., their inde-
pendent effects, not adjusted for other sources) and would be
unaffected by anticorrelations or overlap in components between
source factors. The linear source models also do not fully capture
any given component’s impact on the outcome, but rather the total
contribution of all the components as they exist within a source as
it pertains to the outcome. Thus, linear modeling estimates the total
association of each PM source factor with cognition (without
adjusting for other sources), while grouped WQS estimates the
mixture effects of source groupings of chemical components on
cognition, while simultaneously accounting for all other mixture-
cognition associations. Regardless of each analytical strength and
weakness, both mixture models revealed the potential importance
of crustal and industrial-related particles to general cognitive
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ability, whereas all approaches suggest higher ammonium nitrate
levels might be harmful to learning andmemory in late childhood.

Strengths and Limitations
This work contributes vital information, from a large and geo-
graphically diverse cohort, regarding cognitive impacts of outdoor
source-specific PM2:5 exposure. Specifically, we made use of a
rare and rich data resource (i.e., nationwide spatiotemporally
resolved exposure estimates for 15 chemical components of
PM2:5) to derive source factors of outdoor air pollution, which pro-
vides directly actionable policy evidence on these poorly under-
stood neurocognitive and developmental phenomena. Importantly,
our six identified source factors reaffirm prior source apportion-
ment studies, such as those identifying and quantifying sources of
PM2:5 in the Atlanta, GA US metropolitan area from 1998 to
2002,33,119 and amore recent US-wide source apportionment study
using data from 2001 to 2014.120 This alignment of our identified
source factors with the literature is especially important, as it sug-
gests our source-based findings may have greater external validity
in capturing shared and prominent source-category impacts on
child development in the US. By focusing both on chemical com-
ponents and source factors of PM2:5, we provide detailed insight to
inform future, mechanistic studies of the neurobiology underlying
exposure–cognition associations, as well as actionable insight for
policymakers to regulate, where possible, the anthropogenic sour-
ces that contribute to PM2:5. Further, addressing sources of PM2:5
is likely more interpretable and actionable for caregivers investi-
gating how they can best avoid pollution that may impair their
children’s cognitive function and development.

Several limitations should also be noted about the current study.
Source apportionment in the current study was not based on meas-
ured concentrations of outdoor PM2:5 components but rather on an-
nual average predictions assigned to residential addresses using
novel hybrid spatiotemporal models. While models may not be able
to perfectly reproduce the variability of observed measurements,
these are state-of-the-art, sophisticated models that provide com-
plete spatial coverage of the US, especially where measurements
lack since PM2:5 speciationmonitoring stations are relatively sparse
nationwide. Another consideration is our use of geographically
diverse multisite data to conduct the source apportionment
(i.e., analyzing all sites in the ABCD Study representing most of the
US in one factor analysis), which has both strengths and weak-
nesses.104 This multisite approach intrinsically detects or derives
common sources that contributed in more major ways to air pollu-
tion levels at all 21 sites and assumes their source profiles are com-
mon across sites when there could be variations (within a source).
As such, our findings here reflect the cognitive effects of the com-
mon and average source factors seen across the ABCD Study popu-
lation. While this approach will not be able to confidently resolve
more minor sources that could be impacting fewer sites, deriving
common exposure sources allows us to compare their impacts
across the entire study population. Thus, with this approach, we can
further investigate the effects of air pollution from specific source
categories on children recruited nationwide for the largest long-term
study of adolescent development conducted in the US (i.e., the
ABCD Study).104 Since we also adjusted for study site as a fixed
effect in our analyses as an important design variable, and some of
the sources we identified have large, regional spatial gradients
across the US (especially the secondary ones, ammonium sulfates
and ammonium nitrates), it is feasible that the site adjustment could
be capturing or diluting some of these specific sources’ effects.

It is also important to acknowledge that the source names
assigned to each factor are not based on certainty. That is, while
extensive information exists in the air quality literature to date on
the typical spatial patterns and chemical profiles of many emission

sources of PM2:5 (e.g., biomass burning), the chemical profiles for
the same “source” can also be widely variable across areas and
over time.104,121,122 As such, expert knowledge combined with lit-
erature review of earlier work were used to label the statistically
derived factors from PMF as specific “source factors” of air
pollution based on widely agreed upon naming conventions.40

However, a certain degree of subjectivity remains in naming these
factors, and it is important to recognize that a “biomass burning”
source identified in our study for example may chemically resem-
ble but not be identical to a “biomass burning” source identified in
another study. Both will share similar chemical profiles and char-
acteristics and will generally represent this category of sources
emitting PM2:5, but they may be capturing impacts of different
types of biomass or different woods burning in each study or area.

Another limitation of the current study is that it did not assess ex-
posure estimates for locations where children may spend their time
outside of the home, such as schools. The data explored in this study
were cross-sectional (i.e., average annual exposure in 2016 and cog-
nitive performance at 9–10 years of age), limiting this work’s
capacity to make causal inferences or to assess developments in
exposure–cognition associations over time or investigatemore acute
effects. Although we aimed to be mindful about both choosing and
adjusting for key confounders and used high-resolution daily spatio-
temporal models, we cannot rule out the possibility of residual con-
founding. The selection of 1-year average concentrations examined
here were based on residential data availability of participants in the
ABCD Study55 and the spatiotemporal resolution of the exposure
models.48 However, these initial geospatial linkages of air pollution
have laid the groundwork for future possibilities of understanding
how air pollution impacts adolescent health in the US. While PM2:5
component exposure data are only currently available for the ABCD
consortium as a 1-year estimate at this single wave of data collec-
tion, future data releases from the ABCDStudy are expected to con-
tain full lifetime histories of air pollution exposure. This will
eventually allow us to build upon this foundational work to deter-
mine the longitudinal impacts of air pollution on cognitive develop-
ment. Moreover, given that the ABCD Study is an ongoing, 10-year
longitudinal study, we hope to build on the findings reported here
and eventually assess temporality and cumulative effects of expo-
sure from childhood into early adulthood.

Conclusions
Using a nationwide cohort with residential estimates of annual
exposure to 15 chemical components and six derived source fac-
tors of PM2:5 and cognitive assessments from more than 8,500
youths 9–10 years of age, we identified several source factors and
overall PM2:5 component mixture effects on cognition. Our find-
ings imply different profiles of exposure–cognition associations
that shared overlap in detrimental effects of ammonium, nitrates,
silicon, calcium, and zinc. Regardless of analytic approach, the
most robust finding was that higher levels of ammonium nitrates
were linked to worse learning & memory performance.
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