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Aims: According to the gut–kidney axis theory, gut microbiota (GM) has bidirectional crosstalk with the development of diabetic
kidney disease (DKD). However, empirical results have been inconsistent, and the causal associations remain unclear. This study
was aimed at exploring the causal relationship between GM and DKD as well as the glomerular filtration rate (GFR) and urinary
albumin-to-creatinine ratio (UACR).
Materials and Methods: Two-sample Mendelian randomisation (MR) analysis was performed with inverse-variance weighting as
the primary method, together with four additional modes (MR–Egger regression, simple mode, weighted mode, and weighted
median). We utilised summary-level genome-wide association study statistics from public databases for this MR analysis.
Genetic associations with DKD were downloaded from the IEU Open GWAS project or CKDGen consortium, and
associations with GM (196 taxa from five levels) were downloaded from the MiBioGen repository.
Results: In forward MR analysis, we identified 13 taxa associated with DKD, most of which were duplicated in Type 2 diabetes
with renal complications but not in Type 1 diabetes. We observed a causal association between genetic signature contributing
to the relative abundance of Erysipelotrichaceae UCG003 and that for both DKD and GFR. Similarly, host genetic signature
defining the abundance of Ruminococcaceae UCG014 was found to be simultaneously associated with DKD and UACR. In
reverse MR analysis, the abundance of 14 other GM taxa was affected by DKD, including the phylum Proteobacteria, which
remained significant after false discovery rate correction. Sensitivity analyses revealed no evidence of outliers, heterogeneity, or
horizontal pleiotropy.
Conclusion: Our findings provide compelling causal genetic evidence for the bidirectional crosstalk between specific GM taxa and
DKD development, contributing valuable insights for a comprehensive understanding of the pathological mechanisms of DKD
and highlighting the possibility of prevention and management of DKD by targeting GM.
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1. Introduction

Approximately 40% of patients with diabetes clinically
develop diabetic kidney disease (DKD), one of the most com-
mon and severe microvascular complications, also known as
diabetic nephropathy. DKD is characterised by increased pro-

teinuria and decreased glomerular filtration rate (GFR) [1]
and is a major global health burden as the primary origin of
chronic kidney disease and end-stage kidney disease. More-
over, it is independently associated with cardiac events and
all-cause mortality [2, 3]. While intensive efforts to control
hyperglycaemia, hypertension, and dyslipidaemia can slow
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DKD progression, the percentage of patients progressing to
end-stage kidney disease continues to rise, highlighting the
need for sustainable treatment [4]. Thus, the identification of
novel potential pathogenic factors and therapeutic strategies
for DKD is urgently needed.

Recently, the gut–kidney axis has gained considerable
attention owing to accumulating evidence on the role of gut
microbiota (GM) in the pathogenesis of DKD. The GM con-
sists of approximately 1013–1014 microorganisms (bacteria,
fungi, viruses, and other microbial species) residing in the
intestinal tract, 98% of which are bacteria [5]. Dysbiosis of
the GM has been linked to nearly 95% of all health conditions,
particularly metabolic diseases such as diabetes [6]. Several
observational studies have revealed distinctions in the GM of
patients with DKD compared with that of healthy individuals,
including a decrease in the abundance of probiotics such as
Intestinibacter and Lachnospira and an enrichment of perni-
cious bacteria such as Coprobacillus and Desulfovibrio [7–9].
Additionally, increased proportion of Escherichia–Shigella
and reduced proportion of Prevotella_9 have been found in
stool samples of patients with DKD compared with those of
individuals with diabetes [10].Microbiota-associatedmetabolites
such as trimethylamine N-oxide (TMAO) and short-chain fatty
acids (SCFAs) are also involved in DKD development [11, 12].
However, the results have not been consistent across studies.
For example, Du et al. [13] reported that the richness and diver-
sity of theGM in patients withDKDwere significantly decreased
compared to those in healthy individuals, whereas Zhang et al.
[9] did not observe any changes in the diversity of GM in the
DKD group compared with that in the diabetes or healthy con-
trol groups.

Inconsistent findings in traditional observational studies
may have resulted from inherent issues such as reverse
causation, selection bias, and environmental confounders.
Additionally, observational studies cannot establish causal-
ity. Recently, Mendelian randomisation (MR) has offered a
novel approach to access the causal effect of risk factors on
disease development by integrating genomic data into con-
ventional observational studies [14, 15]. By relying on
genetic variants being passed down randomly at conception,
reverse causality and environmental bias are minimised. In
this study, the causal link between host genetic components
contributing to the relative abundance of each GM taxa and
DKD development was explored through a bidirectional
two-sample MR analysis.

2. Materials and Methods

2.1. Study Design. Figure 1 displays the methodology
flowchart of our study. We utilised summary-level genome-
wide association study (GWAS) statistics from public data-
bases for this MR analysis. Initially, the study established
GM as the exposure and DKD as the outcome in a forward
MR analysis to assess the role of GM in promoting or prevent-
ing DKD development. To investigate the changes in the GM
among patients with DKD, we performed a reverse MR
analysis, with GM as the outcome and DKD as the exposure.
The STROBE-MR guidelines (https://www.strobe-mr.org/)
[16, 17] were followed for both forward and reverse MR

analyses. The details are listed in Supporting Information 5:
Table S1.

2.2. Data Sources. For single-nucleotide polymorphisms
(SNPs) associated with human GM, we downloaded the
summary-level data from a meta-analysis of 24 GWAS
cohorts focusing on GM conducted by the MiBioGen team.
The study involved 18,340 individuals mainly from Europe.
The microbiota compositions of human faecal samples were
assessed using 16S rRNA sequencing and classified into five
categories: 9 phyla, 16 classes, 20 orders, 35 families, and 131
genera, excluding 12 unknown genera and 3 unknown fam-
ilies. More detailed information is available in the literature
[18, 19].

For DKD, GWAS summary data of 3283 European cases
and 181,704 European controls were extracted from the IEU
Open GWAS project. The ICD-10 (code: N08.3∗) criterion
was used as the definition for DKD in this cohort. We also
extracted GWAS data on Type 1 (1206 cases and 183,185
controls) and Type 2 (963 cases and 183,185 controls) diabe-
tes with renal complications from the FinnGen biobank. All
of the participants in these cohorts were Europeans. From
the CKDGen consortium, we obtained GWAS summary-
level data on urinary albumin-to-creatinine ratio (UACR)
of 5825 European patients with diabetes [20]. GWAS sum-
mary data for GFR in individuals with diabetes were down-
loaded from another IEU Open GWAS project (GWAS ID
ebi-a-GCST003373), which included 11,522 European indi-
viduals [21]. The details are listed in Supporting Information
5: Table S2.

2.3. Selection of Eligible Instrumental Variables (IVs). SNPs
were identified as eligible IVs in both forward and reverse
MR analyses with the same criteria: (1) SNPs must be
strongly related to the levels of exposure (a genome-wide
significant threshold of p < 1 × 105 as per previous studies);
(2) SNPs must be independent, defined as having a low link-
age disequilibrium threshold (r2 < 0 001, kb = 10,000) in the
European population; and (3) significant associations with
the outcome were excluded to ensure that SNPs were related
to outcomes only by way of exposure. The PhenoScanner
tool [22] was used to assess and exclude the effects of con-
founders, such as age, sex, smoking, and body mass index.
F statistic was computed, and IVs with high F statistics
(> 10) were extracted.

2.4. Statistical Methods and Sensitivity Analysis. The Two-
SampleMR package (0.5.7) in R was used for all MR-
related analyses. We used five methods to explore the caus-
ative linkages between exposure and outcome, with the
inverse-variance-weighted (IVW) mode as the major
method and four other modes (MR–Egger regression, simple
mode, weighted mode, and weighted median) as supplemen-
tary methods.

The heterogeneity among the various causal effects was
assessed with Cochran’s Q statistic. If heterogeneity existed
with p < 0 05, the random-effect mode of the IVW was
employed. MR–Egger regression was utilised to explore plei-
otropy. The “leave-one-out” analysis was also employed for
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sensitivity analysis. Outliers were explored using the global
test of MR-PRESSO.

Results of our MR analyses are displayed as odds ratio
(OR) together with corresponding 95% confidence interval
(CI). Results with p < 0 05 were defined as significant, and
then, the p value was adjusted by false discovery rate (FDR)
correction. A p < 0 05 without correction (p‐FDR ≥ 0 05) sig-
nified a nominal association, whereas p‐FDR < 0 05 indicated
a significant causal association. All analyses were performed in
R 4.3.1.

2.5. Ethical Approval. We used summary-level GWAS data
from public databases for the MR analyses in our study.
No ethical approval was needed.

3. Results

3.1. Causal Effect of GM on DKD Development.We identified
potential IVs for GM phenotypes based on the selection cri-
teria. The range of SNPs for each tested GM phenotype was
4–26 (Supporting Information 5: Table S3). Using the IVW
method, we initially identified 13 bacterial taxa causally
associated with DKD development (Figure 2; Supporting
Information 5: Table S4). At the phylum level, both
Bacteroidetes (OR = 1 32, 95% CI 1.02–1.72, p = 0 0373) and
Verrucomicrobia (OR = 1 43, 95% CI 1.04–1.97, p = 0 0272)
were found to nominally associate with increased risk of DKD.
For Bacteroidetes, Bacteroidia at the class level (OR = 1 33,
95% CI 1.02–1.74, p = 0 0366) and Bacteroidales at the order
level (OR = 1 33, 95% CI 1.02–1.74, p = 0 0366) had causal
effects on DKD. For Verrucomicrobia, Verrucomicrobiae at

the class level (OR = 1 28, 95% CI 1.00–1.64, p = 0 062),
Verrucomicrobiales at the order level (OR = 1 28, 95% CI
1.00–1.64, p = 0 0262), Verrucomicrobiaceae at the family
level (OR = 1 28, 95% CI 1.00–1.64, p = 0 0263), and
Akkermansia at the genus level (OR = 1 28, 95% CI 1.00–
1.64, p = 0 0261) were causally associated with DKD
development. For the phylum Bacillota, one taxa at the family
level (Peptostreptococcaceae, OR = 1 39, 95% CI 1.13–1.73,
p = 0 0022) and two taxa at the genus level (Hungatella,
OR = 1 22, 95% CI 1.01–1.49, p = 0 0401; Marvinbryantia
OR = 1 31, 95% CI 1.00–1.70, p = 0 0474) were associated
with an increased risk of DKD, whereas Erysipelotrichaceae
UCG003 (OR = 0 76, 95% CI 0.61–0.94, p = 0 0126) and
Ruminococcaceae UCG014 (OR = 0 80, 95% CI 0.64–1.00,
p = 0 0473) showed a protective effect against DKD
development. However, none of them remained significantly
associated with DKD development after FDR correction. All
four supplementary MR methods revealed the same direction
of influence as IVW, except for all four taxa belonging to the
phylum Verrucomicrobia from the class to genus levels
(class Verrucomicrobiae, order Verrucomicrobiales, family
Verrucomicrobiaceae, and genus Akkermansia) in the MR–
Egger mode (Supporting Information 1: Figure S1).

For a more in-depth analysis of the effect of GM on
DKD development, we analysed the renal complications in
two types of diabetes separately. Most causal relationships
identified above (10/13) were validated in Type 2 diabetes
with renal complications. None of them were significant in
Type 1 diabetes with renal complications.

Increased proteinuria and decreased GFR are the clinical
characteristics of DKD. We also explored the causal effect of

Te forward MR analysis Te reverse MR analysis
(2) ⨯ (2) ⨯

(3) ⨯
(3) ⨯

(1) √ (1) √

Confounders
(BMI)

?

?

Gut
microbiota

Diabetic
nephropathy

Intrumental variables:
SNPs related to DKD

Intrumental variables:
SNPs related to microbial taxa

Data sources: MR analysis: Data sources:
DKD: GWAS summary data
including 3283 European cases
and 181,704 European controls

Type 1 diabetes with renal
complications: 3283 European
cases and European 181,704
controls
Type 2 diabetes with renal
complications: 1,296 European
cases and European 183,185
controls
GFR in diabetics: 11,522
European patients
UACR in diabetic: 5,825
European patients

Sensitivity analysis

Microbiome GWAS conducted
by the MiBioGen consortium
with 18,340 individuals from 24
cohorts

Inverse variance weight
MR Egger

Weighted median
Simple mode

Weighted mode

MR Egger
Cochran Q test
MR-PRESSO
leave-one-out

Relevance: SNPs robustly associated with exposure
Independence: SNPs not associated with confounders
Exclusion restriction: SNPs only associated with outcome
through exposure

(1)
(2)
(3)

Figure 1: Flowchart of the bidirectional MR study to explore the causal crosstalk between GM and diabetic nephropathy development. BMI:
body mass index; DKD: diabetic kidney disease; GFR: glomerular filtration rate; GM: gut microbiota; GWAS: genome-wide association
study; MR: Mendelian randomisation; SNPs: single-nucleotide polymorphisms; UACR: urinary albumin-to-creatinine ratio.
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the GM on the UACR and GFR in patients with diabetes.
For UACR, Ruminococcaceae UCG014 (OR = 1 53, 95% CI
1.02–2.29, p = 0 0394) was initially identified to be causally
associated with the UACR through IVW, together with three
other taxa that were not significant in the MR analysis of
GM and DKD. For GFR, Erysipelotrichaceae UCG003
(OR = 0 93, 95% CI 0.87–0.99, p = 0 0474) was initially iden-
tified to be causally linked with GFR by IVW, together with
six other taxa that were not significant in the MR analysis of
GM and DKD (Supporting Information 5: Table S5).

3.2. Causal Effect of DKD on GM. For DKD as the exposure,
25 SNPs were selected as IVs (Supporting Information 5:
Table S6), and none of them were related to potential
confounders in the PhenoScanner tool. Fourteen bacterial
taxa were initially identified to be causally associated with
the GM by IVW (Figure 3; Supporting Information 5:
Table S7). For the phylum Actinobacteria, decreased
proportions of Actinobacteria species at the phylum level
(OR = 0 96, 95% CI 0.93–0.99, p = 0 0232) and increased
proportions of Adlercreutzia species at the genus level
(OR = 1 05, 95% CI 1.00–1.11, p = 0 0496) were found in
patients with DKD. For the phylum Proteobacteria,
Proteobacteria at the phylum level (OR = 1 05, 95% CI 1.02–
1.09, p = 0 0037), Alphaproteobacteria (OR = 1 07, 95% CI
1.02–1.12, p = 0 0035) and Betaproteobacteria (OR = 1 04,
95% CI 1.00–1.08, p = 0 0488) at the class level,
Rhodospirillales at the order level (OR = 1 06, 95% CI 1.01–
1.12, p = 0 0122), and Rhodospirillaceae at the family level

(OR = 1 07, 95% CI 1.01–1.12, p = 0 0110) were positively
associated with DKD. For the phylum Bacillota, one taxa at
the family level (Christensenellaceae, OR = 1 04, 95% CI
1.00–1.08, p = 0 0332) and three taxa at the genus level
(Lachnospiraceae NC2004, OR = 1 07, 95% CI 1.00–1.13,
p = 0 0398; Lachnospiraceae UCG010, OR = 1 05, 95% CI
1.01–1.09, p = 0 0137; and Turicibacter, OR = 1 05, 95%
CI 1.00–1.10, p = 0 0488) showed a positive association
with DKD development, while one taxa at the genus level
(Eubacterium rectale group, OR = 0 95, 95% CI 0.92–0.98,
p = 0 0035) showed a negative association with DKD
development. In addition, the proportion of the family
Bacteroidales S24.7 group belonging to the phylum
Bacteroidota (OR = 1 06, 95% CI 1.01–1.11, p = 0 0276)
and that of the genus Family XIII UCG001 belonging to
the phylum Firmicutes (OR = 0 95, 95% CI 0.90–0.99, p =
0 0203) were also nominally influenced by DKD. Only the
effect of DKD on the proportion of Proteobacteria species
remained significant after FDR correction (p‐FDR = 0 0185).
All four supplementary MR methods revealed the same
direction of influence as IVW, except for Rhodospirillales
members at the order and Rhodospirillaceae members at the
family level in the simple mode analysis (Supporting
Information 2: Figure S2).

3.3. Sensitivity Analysis. In both forward and reverse MR
analyses, we did not identify any indication of outliers,
heterogeneity, or horizontal pleiotropy in MR-PRESSO,
Cochran’s Q test, or MR–Egger regression (Supporting
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Figure 2: MR-estimated causal effect of gut microbiota and diabetic kidney disease development using the IVW statistical model. IVW:
inverse-variance weighted; Nsnp: number of single-nucleotide polymorphisms selected as instrumental variables.
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Information 5: Tables S4 and S7). The “leave-one-out”
analysis showed that the results were not significantly
changed by the removal of any single SNP (Supporting
Information 3: Figure S3 and Supporting Information 4:
Figure S4). All these results confirmed the robustness and
reliability of our MR analysis.

4. Discussion

To the best of our knowledge, this is the first study to utilise
MR analysis to explore the causal crosstalk between the GM
and DKD development. We used publicly available GWAS
data with large cohorts and confirmed a bidirectional inter-
action between GM and DKD. Genetic signatures contribut-
ing to the relative abundance of some specified GM taxa
causally associated with DKD were different between Type
1 and Type 2 diabetes. Moreover, our study introduces novel
evidence indicating a potential causal effect of host genetic
components contributing to several GM taxa on the UACR
and GFR.

Accumulating evidence has unveiled a bidirectional
crosstalk between the gastrointestinal tract and kidneys,
which is defined as the gut–kidney axis. In essence, patho-
physiological alterations in the kidneys or gastrointestinal
tract may affect or impair the other side [23]. Herein, we
provide genetic causal evidence for the bidirectional interac-
tion between specific GM taxa and DKD development from
MR analyses. In brief, 11 GM taxa contributed to a high risk
of DKD, whereas 2 were related to a decreased risk of DKD.

Additionally, DKD has a discernible effect on the abundance
of 14 GM taxa. Most of these associations are in accordance
with the findings of observational studies; however, the
directions of the effects were not distinguished from each
other previously. For example, Wang et al. [24] reported
abnormal relative abundances of Akkermansia and Lachnos-
piraceae in patients with DKD. In our study, Akkermansia
might have contributed to the development of DKD, but
the abnormal abundance of Lachnospiraceae NC2004 and
Lachnospiraceae UCG010 might be a consequence of
DKD. In addition, we found that the abundance of the phy-
lum Proteobacteria could be affected by DKD. The marked
increase in the abundance of this phylum in patients with
DKD compared to the non-DKD group reported by He
et al. [25] might thus be a result, not a cause, of DKD.

Akkermansia, a member of the phylum Verrucomicro-
bia, showed an adverse link with DKD development in our
study. Several studies have suggested detrimental effects of
Akkermansia. A meta-analysis including 578 patients with
DKD and 444 controls from 16 studies found enrichment
of Akkermansia in DKD [24]. Additionally, Akkermansia
abundance was elevated in DKD mice, and this correlated
with renal damage indicators and could be mitigated with
herbal medicines used for treating DKD [26, 27]. However,
Akkermansia, particularly Akkermansia muciniphila, has
been recognised as a probiotic and negatively related to Type
2 diabetes, obesity, and hypertension in other studies
[28–31]. Supplementation with A. muciniphila in humans
or mice may improve metabolic parameters and reverse
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Figure 3: MR-estimated causal effect of diabetic kidney disease on the gut microbiota using the IVW statistical model. IVW: inverse-
variance weighted; Nsnp: number of single-nucleotide polymorphisms selected as instrumental variables.
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diet–induced disorders [32, 33]. These findings highlight the
complexity of the role of Akkermansia and warrant further
investigation.

In our MR analysis, we observed a causal association
between Erysipelotrichaceae UCG003 and both DKD and
GFR. Similarly, Ruminococcaceae UCG014 was found to be
simultaneously associated with DKD and UACR. Both taxa
have been implicated in renal injury as per prior studies.
Erysipelotrichaceae UCG003 has been related to chronic
kidney disease [34], while a study by Vaziri et al. [35] has
highlighted an association between Ruminococcaceae and
estimated GFR in a population-based cohort. Meanwhile,
both Erysipelotrichaceae and Ruminococcaceae are known
butyrate-producing bacteria that belong to the phylum
Firmicutes [36, 37]. Butyrate serves as a preferred energy sub-
strate for colonic epithelial cells and is crucial for the mainte-
nance of intestinal barrier integrity. Experimental rodent
models have shown that butyrate can inhibit NF-κB activa-
tion, ameliorate hyperglycaemia and insulin resistance, and
protect against renal damage [38]. Furthermore, the restora-
tion of butyrate levels has also been shown to be beneficial
for hypertension. As reported by Wang et al. [39], sodium
butyrate has the potential to mitigate hypertension induced
by angiotensin II and improves the associated renal injury,
encompassing urinary albumin excretion, glomerulosclerosis,
and renal fibrosis.

Interestingly, when we separately analysed renal complica-
tions in the two main types of diabetes, we found that most
causal relationships identified between GM and DKD were
valid in Type 2 diabetes with renal complications, but not in
Type 1 diabetes with renal complications. Given the higher
prevalence of Type 2 diabetes, this disparity may be attributed
to the predominance of Type 2 diabetics in the studied cohort
for DKD. Although the GM of patients with renal complica-
tions and different types of diabetes has not been reported, dif-
ferences in GM structure and composition between the two
main types of diabetes have been demonstrated in our previ-
ous study [40] and several other studies [41–43]. Notably,
adult-onset Type 1 diabetes was characterised by a significant
reduction in SCFA-producing bacteria, which is linked to islet
autoimmunity and pancreatic beta-cell dysfunction [44].

Our study had several limitations that may have affected
the depth of our analysis. First, we employed a relatively flexible
IV screening criterion (p < 1 × 10−5), which may have reduced
the statistical power of the MR analysis. To mitigate potential
false positives, we applied FDR correction. Second, although
the majority of the participants in this study were Europeans,
a small percentage (<17.7%) of the participants of different
races was included in the MiBioGen project, which might have
resulted in a population stratification bias. However, we faced
constraints as large GMGWAS data for the same racial groups
are unavailable. Third, our MR analysis was based on
summary-level data rather than individual-level data. Lastly,
we could only obtain data at the genus level from theMiBioGen
project, which lacks species- or strain-level information.

Collectively, our findings in this study provide further
evidence for the bidirectional causality between GM and
DKD, using an MR approach for the first time. We identified

not only specific bacterial taxa that might contribute to the
pathogenesis of DKD but also other microbial taxa, the
abundance of which might be altered by DKD. Our results
offer novel clues for potential mechanistic research and
treatment targets for DN, with a future focus on the GM.
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