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Mesenchymal stem cells (MSCs) are highly effective in the treatment of acute liver failure (ALF). The efficacy of MSCs is closely
related to the inflammatory environment. Therefore, we investigated the functional changes of MSCs in response to interleukin-33
(IL-33) stimulation. The results showed that bone marrow mesenchymal stem cells (BMSCs) pretreated with IL-33 had increased
CCR2 expression, targeted CCL2 in the injured liver tissue, and improved the migration ability. Under LPS stimulation, the NF-κB
pathway of BMDM was activated, and its phenotype polarized to the M1-type, while BMSCs pretreated with IL-33 inhibited the
NF-κB pathway and enhanced M2 macrophage polarization. The M2-type macrophages could further inhibit hepatocytes inflam-
mation, reduce hepatocytes apoptosis, and promote hepatocytes repair. These results suggest that IL-33 can enhance the efficacy of
BMSCs in ALF and provide a new strategy for cell therapy of liver diseases.
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1. Introduction

Hepatotoxic factors, such as hepatitis virus, drugs, and
immune damage, can lead to numerous liver cells death,
resulting in acute liver failure (ALF). The symptoms of
ALF include liver dysfunction, abnormal coagulation, and
an altered state of consciousness [1]. Common treatment
methods include artificial liver systems and liver transplan-
tation. Artificial liver can promote the elimination and
metabolism of toxins in the body, improve hepatic encepha-
lopathy, but cannot enhance survival rate [2, 3]. Liver trans-
plantation is a very effective strategy for treating ALF, but its
application is limited by various factors, such as scarce liver
sources, poor medical facilities, and graft rejection response

[4]. Using mesenchymal stem cells (MSCs) to treat ALF is a
new effective strategy that can avoid the limitations of the
abovementioned methods.

MSCs are multidirectional stromal cells that can be sep-
arated from tissues such as fat, bone marrow, umbilical cord,
and amniotic membrane [5]. Due to the lower immunoge-
nicity of MSCs, this greatly reduces the possibility of rejec-
tion after transplantation [6]. MSCs are highly migratory.
Chemokines, adhesion factors, and the extracellular matrix
expressed by MSCs regulate direct homing [7, 8]. Besides
regulating tissue repair, MSCs also participate in immune
regulation. They regulate many functions by interacting
with immune cells. In vivo, MSCs migrate to injured tissue,
inhibit inflammation, and promote tissue repair [9].
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Many researchers modified MSCs with genes, particles,
and chemicals to improve the efficacy. For example, over-
expressing c-Met in MSCs can increase their migration abil-
ity by targeting hepatocyte growth factor (HGF), which can
treat liver injury and significantly improve survival rate [10].
The efficacy of MSCs is also influenced by the inflammatory
microenvironment. When MSCs are exposed to low levels of
inflammation, their efficacy in promoting repair of injured
tissues is reduced, and they might even promote disease
progression [11]. Transforming growth factor β (TGF-β),
interleukin-17A, interferon γ (IFN-γ), and other inflamma-
tory factors, which are important mediators of the inflam-
matory response, can regulate the immune response [12–14].

A large majority of macrophages found in the human
body are liver macrophages, including liver-resident macro-
phages and infiltrating macrophages [15]. The main mem-
bers of infiltrating macrophages are bone marrow–derived
macrophages (BMDM), which are important to resupply and
regeneration after kupffer cells depletion [16]. Studies in
recent years have proven that macrophage polarization con-
tributes to the pathology of liver disease [17, 18]. With the
different liver diseases and the changes of tissue microenvi-
ronment, the role of macrophage polarization also var-
ies [19–21].

Interleukin-33 (IL-33) is a newly discovered cytokine
from the IL-1 superfamily that plays an important role in
inflammatory and immune responses [22]. It is involved in
organ transplantation, tissue repair by increasing the propor-
tion of Th2 and Treg cells [23]. However, few studies [24]
have used IL-33 to pretreat bone marrow mesenchymal stem
cells (BMSCs). In this study, we found that BMSCs pre-
treated with IL-33 (BMSCs-33) were more likely to migrate
to the damaged liver through the CCR2/CCL2 axis. Subse-
quently, cytokines secreted by BMSCs-33 promoted the
polarization of liver macrophages into M2 macrophages.
These M2 macrophages reduced hepatocytes apoptosis and
promoted the repair of hepatocytes.

2. Materials and Methods

2.1. Cell Isolation and Culture. Three-week-old male SD rats
were used for the collection of BMSCs. Rats were sacrificed,
and then, their femur and tibia were separated. Their bone
marrow cavity was rinsed with α-MEM. The cells were sus-
pended in 10% FBS and placed in a T25 culture flask after
centrifugation at 1000 rpm for 5min. Then, they were cul-
tured at 37°C and 5% CO2 in an incubator. BMSCs-33 were
pretreated with 10 ng/mL IL-33 for 24 h. In order to obtain
the BMDM, bone marrow was isolated from 8-week-old
male SD rats using the same methods described above and
then suspended in RPMI-1640 containing 10% FBS along
with 10 ng/ml GM-CSF.

2.2. Rat Models. SD rats (7-week-old male) were purchased
from Beijing Vital River Laboratory Animal Technology
company. During the experiment, all rats were kept in a
pathogen-free environment with stable temperatures (20
−25°C) and humidity (50%–60%). The animals were
grouped according to the random number method. In ALF

model, D-GalN and LPS were injected intraperitoneally at
850mg/kg and 10 μg/kg, respectively. All rats were sacrificed
using 150mg/kg sodium pentobarbital.

2.3. Flow Cytometry. The phenotypes of BMSCs were identi-
fied by flow cytometry (Beckman, USA). BMSCs or BMSCs-
33 were incubated with CD29, CD34, CD45, CD90, and
MHC II for 30min. Surface antigen staining has blocked
FCR, and isotype controls were made for all stains. All
data were analyzed by the FlowJo software. The antibodies
used are listed in Table S1.

2.4. Western Blotting Assay. The cells or liver tissue were lysed
using RIPA buffer (Beyotime Technology, China, P0013B) con-
taining 1mM PMSF (Beyotime Technology, China, ST506).
Equal amounts of proteins were electrophoresed on 10% or
15% SDS-PAGE gels (Epizyme Biotech, China, PG112/PG114)
and transferred onto a PVDF membrane. Blocking membranes
with 5% bovine serum albumin and incubating them overnight
with antibodies at 4°C. These membranes were incubated with
HRP-conjugated secondary antibodies for 2h after three washes
with TBST. Finally, the bands were observed using an ECL kit
(NCM, China, P10300). The antibodies used in these assays are
listed in Table S2.

2.5. Reverse Transcription-Polymerase Chain Reaction. Total
RNA was extracted using TRIzol (Thermo, USA, 15596–026)
and transcribed into cDNA using the Prime Script RT Mas-
ter Mix (TAKARA, Japan, RR036A). Then, RT-PCR was
performed using an ABI Stepone Plus PCR system (Applied
Biosystems, USA) and SYBR Green Master Mix (TAKARA,
Japan, RR820A). The primer sequences are listed in Table S3.

2.6. Transwell Migration Assay. The transwell migration
assay was conducted in a transwell chamber with 8-µm pores
(Corning, USA, 3422). Serum-starved BMCSs-33 or BMSCs
(1× 104 cells/well) were seeded in the upper chamber, and a
serum-free medium containing CCL2 (100 ng/mL; Abcam,
USA, ab283927) was added to the lower chamber. After 24 h,
the chamber was placed in crystal violet and stained at room
temperature for 30min. Then, the cells were washed with
PBS after removing crystal violet. The cells were then dried
and photographed under a fluorescence microscope (LEICA,
Germany, DMI3000B). The number of cells in each field was
recorded.

2.7. In Vivo Imaging for Cell Migration. BMSCs in each group
were treated with 5 µmol/L DiR (AAT Bioquest, USA) for
20min and subsequently washed twice with DMEM contain-
ing 10% FBS. 1× 106 cells from each group were injected into
ALF rats through the tail veins. After 24 h, the in vivo imaging
instrument was performed on BMSCs that had migrated to
the liver area (PerkinElmer, USA, IVIS Spectrum Series), and
the fluorescence intensity was analyzed by living image.

2.8. ELISA. By following the manufacturer’s instructions,
ELISA kits were used to detect the levels of IL-6, IL-10,
and PGE2 in the supernatant of the BMSC culture and
also detect the levels of IL-1β and IL-6 in the serum of rats.
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The absorbance was measured at 450nm with a microplate
reader (Thermo, USA).

2.9. Histology and Immunohistochemistry. After being fixed
in 4% paraformaldehyde for 3 days, the liver tissue was
dehydrated and embedded in paraffin, which was later cutted
into slices (4 μm thick) and stained with hematoxylin and
eosin (H&E). For immunohistochemical staining, the slices
were first deparaffinized, rehydrated, and their binding sites
were blocked nonspecifically. Then, these slices were incu-
bated in antigen retrieval buffer (Roche) at 37 °C for 30min
and incubated with primary antibodies at 4°C overnight. The
following day, these slices were incubated with secondary
antibodies for 1 h, exposed to DAB for 5min, and finally,
counterstained with hematoxylin. These slices were scanned
and analyzed using image scope software at 40× magnifica-
tion. The antibodies used in this assay are listed in Table S2.

2.10. Immunofluorescence Assay. The cells were fixed with
4% paraformaldehyde for 20min and permeabilized with
0.5% TritonX-100 for 15min. Then, the cells were blocked
with a blocking buffer (Beyotime Technology, China, P0260)
for 30min and incubated with antibodies at 4°C overnight.
Next, the secondary antibodies were added, and the cells
were incubated for 1 h at room temperature. Finally, the
nuclei were stained with DAPI. The immunofluorescence
images were observed under a confocal microscope (Leika,
Germany). The antibodies used in this assay are listed in
Table S2.

2.11. Statistical Analysis. All quantitative experiments were
performed in triplicate. The data were statistically analyzed
using SPSS 26.0 and expressed as the meanÆ standard devi-
ation. Transwell number statistics and the EdU fluorescence
ratio analysis were performed using the ImageJ software. The
GraphPad Prism 8.0 software was used for mapping. The
Shapiro–Wilk test was used to evaluate whether the samples

adhere to a normal distribution. In the two-sample comparison,
the t test was used to analyze the samples conforming to the
normal distribution, and the Mann–Whitney U test was used to
analyze the samples not conforming to the normal distribution.
The differences among multiple groups were determined by
performing one-way ANOVA, and all differences among and
between groups were considered to be statistically significant
at p<0:05.

3. Results

3.1. Comparison of the Inflammatory Cytokines and
Chemokine Receptors Between BMSCs and BMSCs-33. The
BMSCs were extracted and cultured to the third generation.
In the flow cytometry assay, CD29 and CD90 were positive,
while CD34, CD45, and major histocompatibility complex II
(MHC II) were negative (Figure 1A). Also, the stem cell char-
acteristics of the BMSCs were preserved after they were pre-
treated with 10ng/mL IL-33 for 24h (Figure 1A). We then
compared the proliferation ability between the groups of cells
and found there is no difference (Figure 1B,C). To determine
whether IL-33 influences the paracrine effect of BMSCs, we
compared cytokines expression in the BMSCs and BMSCs-33
groups by PCR array. The results showed that the levels of IL-
10, IL-6, CSF1, and COX-2, and chemokine receptors, such as
CCR2, CCR4, and CXCR2, increased (Figure 1D). We
screened again and found that the levels of CCR2 in chemo-
kine ligands increased significantly (Figure 1E), and the levels
of IL-6, IL-10, and PGE2 also increased (Figure1F–H).

3.2. BMSCs Pretreated With IL-33 Increased Their Homing to
the Damaged Liver Through the CCR2/CCL2 Axis. When
liver inflammation occurs, it secretes a large number of cyto-
kines, including various chemokines. These chemokines
drive immune cells, such as macrophages and lymphocytes,
to migrate to liver by binding to corresponding receptors.
We found that the expression of CCR2 increased in BMSCs
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FIGURE 1: Comparison of inflammatory cytokines and chemokine receptors between BMSCs and BMSCs-33. (A) A flow cytometry assay was
performed to identify BMSCs without treatment, and BMSCs pretreated with 10 ng/mL IL-33. CD29 and CD90 were positive, while CD34,
CD45, and MHC II were negative. (B) The CCK-8 assay was performed to compare the proliferation ability of the BMSCs group and the
BMSCs-33 group. (C) The EdU assay was performed to compare the proliferation ability of the two groups of cells. (D) The difference in the
level of cytokines between the BMSCs and BMSCs-33 groups was detected by PCR array. (E) The comparison between the levels of CCR1,
CCR2, CCR4, CXCR2, and CSF1 proteins in the BMSCs and BMSCs-33 groups. (F–H) IL-6, IL-10, and PGE2 levels in the cell supernatant of
the BMSCs and BMSCs-33 groups were detected by performing ELISA. ∗p<0:05, ∗∗p<0:01, and ∗∗∗p<0:001.
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pretreated with IL-33. Therefore, we speculated that the che-
mokine factor ligands in the liver that bind to CCR2 might
increase, which might facilitate BMSCs migrate to liver. To
test our hypothesis, we measured the chemokine ligand levels
in the liver of rats with ALF and found that CCL2 were
significantly elevated (Figure 2A). Further examinations con-
firmed that CCL2 was significantly elevated in rats with liver
failure (Figure 2B). Based on these results, we hypothesized
that high levels of CCR2 could bind more effectively to
CCL2, which in turn might promote the migration of
BMSCs. First, we knocked down the expression of CCR2
in BMSCs and confirmed that the knockdown was successful
by performing PCR (Figure 2C) and western blotting assays

(Figure 2D). Then, we examined the migration capacity of
BMSCs by performing a transwell assay in vitro. We added
100ng/mL of CCL2 in the lower compartment. The number
of migrated cells in the NC-BMSCs, siCCR2-BMSCs, NC-
BMSCs-33, and siCCR2-BMSCs-33 was 81.00Æ 4.30, 45.80Æ
7.09, 123.40Æ 9.13, and 50.00Æ 8.63, respectively (Figure 2E).
To determine how IL-33 affects the homing ability of BMSCs, we
performed tracer experiments in vivo. The BMSCs were stained
by DiR in advance to make them fluorescent. According to the
results, rats with ALF injected with NC-BMSCs-33 displayed the
highest level of fluorescence in their livers. This effect was signif-
icantly suppressed after CCR2 was knocked down (Figure 2F).
These results showed that IL-33 can increase the expression of

Re
la

tiv
e e

xp
re

ss
io

n 
(fo

ld
 ch

an
ge

) 60
50
40
30
20
10

8
6
4
2
0

CX
CL

1
CX

CL
2

CX
CL

5
CX

CL
6

CX
CL

10
CX

CL
12

CX
CL

16
CC

L2
CC

L3
CC

L4
CC

L1
7

CC
L1

9
CC

L2
1

ðAÞ

CCL2
Tubulin

15 KD
55 KD

Control

Co
nt

ro
l

ALF

A
LF

Re
la

tiv
e e

xp
re

ss
io

n 
(C

CL
2/

tu
bu

lin
)

2.0

1.5

1.0

0.5

0.0

∗∗

ðBÞ

CC
R2

 m
RN

A
 ex

pr
es

sio
n 

0.0

N
C

Si
CC

R2

0.5

1.0

1.5

∗∗∗∗

ðCÞ

N
C

Si
CC

R2

N
C

Si
CC

R2

0.0

0.5

1.0

1.5

CCR2

Tubulin

42 KD

55 KD

Re
la

tiv
e e

xp
re

ss
io

n
(C

CR
2/

tu
bu

lin
)

∗∗

ðDÞ

NC siCCR2 NC siCCR2

BMSCs BMSCs-33

100 μm 100 μm100 μm100 μm

Ce
ll 

nu
m

be
r/

fie
ld

siCCR2 – – ++
+IL-33 – – +

150

100

50

0

∗∗∗∗

∗∗∗∗

ðEÞ

NC NCsiCCR2 siCCR2
2.5

×107

4.0
×107

BMSCs BMSCs-33
siCCR2 – – +

IL-33 – – ++
+

Ra
di

an
t e

ffi
ci

en
cy

0

5×108

1×109

1.5×109 ∗

∗∗

ðFÞ
FIGURE 2: IL-33 increased BMSCs’ ability to migrate to the damaged liver through the CCR2/CCL2 axis. (A) Comparison of chemokine ligands
in ALF rats’ liver. (B) Protein levels of CCL2 in the liver of normal rats and those with ALF. (C, D) The knockdown efficiency of CCR2 in
BMSCs was determined. (E) A transwell assay was performed to determine the migration ability of BMSCs to CCL2 in each group. (F) In vivo
imaging was performed to observe the homing of BMSCs in rats with ALF. n= 3 per group. ∗p<0:05, ∗∗p<0:01, and ∗∗∗∗p<0:0001.

6 Stem Cells International



CCR2 in BMSCs, and CCR2 can target CCL2 released by dam-
aged hepatocytes, which in turn can improve the homing ability
of BMSCs.

3.3. BMSCs Pretreated With IL-33 Enhanced the Polarization
of M2 Macrophages. Macrophage is an important type of
immune cell in the liver, and its classification is closely asso-
ciated to disease progression [25]. Our results showed that
BMSCs pretreated with IL-33 increased the levels of PGE2,
IL-10, and IL-6, which could promote the M2-type polariza-
tion of macrophages [26–28]. Therefore, we established a
coculture system of BMSCs and macrophages (Figure 3A).
Except for the control group, the other three groups were
treated with 100 ng/mL LPS for 24 h to polarize M1 macro-
phage. The BMDM were then cocultured with BMSCs or
BMSCs-33 for 48 h. The protein CD68 represented total
BMDM, Arg–1 and CD163 were M2-type BMDM markers
and iNOS and IL-6 were M1-type BMDM markers [29–31].
The results indicated that Arg–1 and CD163 levels in the LPS
group were the lowest. Coculture with BMSCs increased
Arg–1 and CD163 levels in BMDM, and BMSCs-33 further
increased these changes (Figure 3B). The immunofluores-
cence assay showed similar results. The fluorescence level
of CD163 increased, while the fluorescence level of iNOS
and IL-6 decreased significantly in the BMDM that were
cocultured with BMSCs-33 (Figure 3C,D).

3.4. The NF-κB Pathway Is Crucial for BMSCs-33 to Polarize
M2 Macrophages. In previous studies, toll-like receptor (TLR)
4, which is on the surface of macrophages, was found to be the
major receptor for LPS [32, 33]. LPS binds to TLR4 and
activates NF-κb through the myd88-dependent pathway,
thereby altering the phenotype of macrophages [34]. There-
fore, we speculated that BMSCs might affect macrophage
polarization through the NF-κB pathway. Our results showed
that p-p65 and p-IκBα levels in BMDM increased significantly
after LPS stimulation, suggesting that the NF-κB pathway was
activated. After BMDM were cocultured with BMSCs pre-
treated with IL-33, p-p65 and p-IκBα levels in the BMDM
decreased significantly (Figure 4A). To confirm the effect of
the NF-κB pathway on macrophage polarization, we applied
the NF-κB activator phorbol 12-myristate 13-acetate (PMA)
to the BMDM. Under sustained activation, the BMSCs-33-
PMA group showed higher protein expression of iNOS and
IL-6, as well as lower expression of CD163 and Arg–1 than the
BMSCs-33 group (Figure 4B). By performing immunostain-
ing of CD163 and iNOS among different groups, we found
that BMSCs-33 significantly increased the fluorescence inten-
sity of CD163, while iNOS fluorescence intensity decreased.
However, this effect could be reversed by PMA (Figure 4C,D).
These results indicated that BMSCs-33 inhibited the NF-κB
pathway of BMDM, thus inducing M2 polarization.

3.5. M2 Macrophages Reduced the Apoptosis of the Rat
Hepatocyte Line BRL-3A. To determine whether macrophage
polarization can affect the apoptosis of rat hepatocytes, we
cocultured BMDM with the rat hepatocyte line BRL-3A
(Figure 5A). The control group included normal BRL-3A cells,
and the other three groups were treated with 2mg/mL D-GalN

and 1 µg/mL LPS for 24 h, which damaged hepatocytes. The
BRL-3A cells were then cocultured with BMDM, where
BMDM were cocultured with BMSCs or BMSCs-33 for 48 h
in advance. First, we measured the expression of cytokines in
each group. When the hepatocytes were damaged, IL-1β and
IL-6 levels increased significantly. After the BRL-3A cells were
cocultured with M2-type macrophages, their level of inflam-
matory cytokines decreased, and this trend became more
prominent as the proportion of M2 increased (Figure 5B,C).
Then, the apoptotic protein levels were also measured in four
groups. Bax andC-caspase 3 promote apoptosis, while Bcl-xL is
anti-apoptotic. We found that Bax and C-caspase 3 in the
BMSCs-33-BMDM group decreased significantly, and the level
of Bcl-xL increased, which indicated that when hepatocytes
were damaged and destroyed,M2-typemacrophages decreased
further apoptosis (Figure 5D). Finally, flow cytometry assays
were performed to detect the late apoptotic cells in Q2. The
results demonstrated that the percentage of Q2 cells was lower
in the BMSCs-33-BMDM group (Figure 5E).

3.6. BMSCs Pretreated With IL-33 Enhanced M2Macrophage
Polarization and Reduced Hepatocyte Apoptosis in Rats With
ALF. We performed in vivo experiments to determine the
efficacy of BMSCs pretreated with IL-33. The rats were
divided into four groups, which included the control group,
PBS group, BMSCs group, and BMSCs-33 group, with 10
rats in each group. The rats in the control group were not
treated, but those in the other three groups were intraperito-
neally injected with 850mg/kg D-GalN and 10 µg/kg LPS to
induce ALF. After 24 h, 1mL PBS was injected into the tail
vein of the rats in the PBS group, and BMSCs or BMSCs-33
were injected into the tail vein of the rats in the BMSCs and
BMSCs-33 groups at a dose of 1× 107 cells/kg (Figure 6A).
First, we performed the typing of macrophages in the rat
liver by immunohistochemistry (Figure 6B). The CD68-pos-
itive rate of rats in the PBS, BMSCs, and BMSCs-33 groups
was significantly higher than that in the rats of the control
group (Figure 6B). This indicated that a large number of
macrophages infiltrated the liver due to inflammation. We
compared the positive rate of CD163 in the macrophages of
the rats from each group and found that the positive rate of
CD163 in the rats of the BMSCs-33 group was higher, while
that in the rats of the PBS group was the lowest. This indi-
cated that BMSCs pretreated with IL-33 increased the M2
polarization of intrahepatic macrophages in rats with ALF
(Figure 6B). We also compared the levels of inflammatory
factors in the liver tissues of each group, and the results
showed that BMSCs pretreated with IL-33 significantly
reduced IL-1β and IL-6 levels in liver (Figure 6C,D). We
also measured the apoptotic proteins in the liver tissue and
found that the Bcl-xL protein level increased, and the C-
caspase 3 and Bax protein levels decreased in the liver tissue
of the BMSCs-33 group (Figure 6E). The results of the
immunohistochemical analysis revealed that the positive
rate of C-caspase 3 decreased and the positive rate of Ki67
increased in the liver of the BMSCs-33 group (Figure 6F).
These results indicated that BMSCs pretreated with IL-33
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significantly inhibited the apoptosis of hepatocytes and pro-
moted their regeneration.

3.7. BMSCs Pretreated With IL-33 Decreased Liver Pathological
Scores and Biochemical Indices in Rats With ALF. After 48h of
treatment, we collected rat livers for H&E staining. Although the
livers in the PBS group showed large areas of necrosis and
hepatic cord destruction, those in the BMSCs-33 group only
had a small area of hepatocyte spotty necrosis and lesser infil-
tration of inflammatory cells (Figure 7A). Along with several
indicators of hepatic sinusoidal congestion, hepatocyte necrosis,
and inflammatory cell infiltration, we estimated the HAI score
for liver pathology. The results indicated that the HAI score of
BMSCs-33 group was significantly lower than PBS and BMSCs
groups (Figure 7B). Then, we analyzed the levels of inflamma-
tory factors and biochemical indicators in rat serum. The results
showed that the serum levels of IL-1β and IL-6 in PBS group
increased with time, while BMSCs and BMSCs-33 could reduce
the levels of IL-1β and IL-6, and the effect of BMSCs-33 was
more significant (p<0:05, Figure 7C,D). In the control group,
PBS group, BMSCs group, and BMSCs−33 group, alanine
aminotransferase (ALT) levels were 36.33Æ 3.60, 11,669.75
Æ 976.93, 3270.82Æ 96.01, and 602.20Æ 246.01U/L, respec-
tively, and aspartate aminotransferase (AST) levels were
168.17Æ 40.71, 11,966.48Æ 2381.60, 7622.17Æ 216.51, and
2354.48 Æ755.30U/L, respectively. ALT and AST levels in
the BMSCs-33 group decreased significantly (p<0:05,
Figure 7E,F). Finally, survival rates were determined for
each group of rats. All rats in the PBS group died 4 days after
treatment, and the 7-day survival rate of the rats in the BMSCs

and BMSCs-33 groups was 37.5% and 62.5%, respectively.
The BMSCs pretreated with IL-33 significantly increased
the survival rate of the rats with ALF (p<0:05, Figure 7G).

4. Discussion

The onset of ALF is rapid, and its clinical manifestations
include abnormal biochemical indicators, coagulation dys-
function, and even hepatic encephalopathy [35]. ALF
patients most commonly die from systemic complications
caused by the cytokines storm and damage-related molecular
patterns of necrotic hepatocytes, endothelial cells, and white
blood cells [36, 37]. MSCs promote hepatocyte regeneration
and reduce liver damage; thus, they might be effective in the
treatment of ALF. MSCs can differentiate into hepatocytes
[38] and also interact with immune cells to regulate the
immune capacity of the body [39, 40]. However, MSCs under
different inflammatory states show different therapeutic
effects. The inefficient migration of BMSCs to the damaged
liver also limits their effectiveness. In this study, we found
that IL-33 improved the homing and immunosuppression
abilities of BMSCs and enhanced the efficacy of BMSCs in
ALF rats.

The pro-inflammatory factor IL-33 strongly influences
the innate and adaptive immune systems. It acts as an endog-
enous warning molecule and is usually released by damaged
cells [41, 42]. We found that BMSCs pretreated with IL-33
retained their pluripotency and low immunogenicity [13].
Thus, BMSCs pretreated with IL-33 might not cause strong
rejection when transplanted in vivo.
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Hepatocytes and liver macrophages release high levels of
CCL2 in response to liver damage [43]. CCL2, also known as
monocyte chemotactic protein 1 (MCP-1), preferentially
binds to its receptor CCR2 and recruits immune inhibitory

cells [44]. We evaluated the changes in cytokines in BMSCs
after pretreatment with IL-33, and the results indicated that
CCR2 expression increased significantly (Figure 1E). The
binding of CCR2 and CCL2 considerably improved the
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ability of BMSCs to migrate to damaged hepatocytes. This
increased the utilization of BMSCs and enhanced their effec-
tiveness in the damaged liver.

Macrophages are an essential component of innate immu-
nity [45]. They help in maintaining liver homeostasis and pro-
moting acute or chronic liver damage [43]. They limit the
potential of host cells to secrete inflammatory mediators by
eliminating activated host cells, which is an important mecha-
nism for regulating immunity and reducing indirect injury to
host cells and tissue decomposition [46]. Macrophages have
different phenotype, including M1 type and M2 type. The
M1-type macrophages secrete IL-1β, iNOS, TNF-α, and other
pro-inflammatory factors, while the M2-type macrophages
secrete anti-inflammatory components such as IL-10 and
TGF-β to promote tissue repair [47]. MSCs can polarize M2
macrophages, which can reduce liver inflammation [48, 49]. In
this study, BMDM was polarized to the M1 type by LPS, and
then, cocultured with BMSCs. The results showed that BMSCs-
33 significantly promoted the polarization of BMDM from
M1-type to M2-type. This occurred because BMSCs pretreated
with IL-33 can secrete more cytokines, such as PGE2, IL-10,
and IL-6, which polarize M2 macrophages [15, 50]. Previous
studies have shown that PGE2 can also improve ALF by reduc-
ing hepatocyte apoptosis and promoting hepatocyte regenera-
tion [49, 51]. As a pro-inflammatory factor, IL-6 is usually
increased in response to liver inflammation, and it is generally
considered to be a harmful cytokine. However, there is increas-
ing evidence that IL-6 can promote cell proliferation, angiogen-
esis, and metabolism, which are very important for liver
injury [52].

The ubiquitous transcription factor NF-κB is involved in
inflammatory regulation and immune response. Normally, the
IκB protein masks the nuclear localization signal of NF-κB and
prevents it from entering the nucleus [53]. In response to TLR4
and the TNF-α receptor (TNFR), IκB is phosphorylated and
degraded, followed by the release of the NF-κB dimer, which
activates the pathway [54]. Blocking TLR4 and TNFR1 pro-
motes the LPS-induced transformation of M1-type macro-
phages into M2-type macrophages [55]. Saffron alleviates
LPS-induced anxiety and depression by inhibiting the NF-κB
pathway and promoting M2-type polarization of macrophages
[56].We found that BMSCs pretreated with IL-33 inhibited the
expression of the p-IκBα and p-p65 proteins in BMDM
(Figure 4A), which in turn led to M2-type polarization of
BMDM. To further evaluate the effect of the NF-κB pathway
on macrophage polarization, we treated BMDM with the NF-
κB activator PMA, which can phosphorylate IκB and thus acti-
vate the NF-κB pathway. The results showed that BMSCs-33
alone could induce the polarization of M2 macrophages, but
this effect decreased significantly when PMAwas added. These
findings suggested that the ability of BMSCs-33 to polarize M2
macrophages was strongly inhibited upon sustained activation
of the NF-κB pathway. These results indicated that the NF-κB
pathway of BMDM was activated via LPS stimulation, and its
phenotype polarized toward the M1-type. BMSCs pretreated
with IL-33 can inhibit the expression of the NF-κB pathway in
BMDM, leading to the M2-type polarization of BMDM.

Almost all hepatocytes in the normal liver are in the G0
phase, but the death and compensatory proliferation of hepa-
tocytes occur when the liver experiences inflammation [57].
In ALF, dead hepatocytes cover a large area, and apoptosis
plays a key role in cell death [58]. Thus, inhibiting hepatocyte
apoptosis can reduce the damage to liver tissue and decrease
the rate of progression of the disease. In this study, BMDM
were cocultured with the rat hepatocyte line BRL-3A. The
results showed that BMDM cocultured with BMSCs-33
decreased the damage to BRL-3A cells. These cells showed
lower mRNA levels of IL-1β and IL-6 (Figure 5B,C), lower
levels of the C-caspase 3 protein, and higher levels of the Bcl-
xL protein (Figure 5D). The results of the flow cytometry
assay were consistent with the abovementioned results. Our
findings suggested that M2-type BMDM could reduce the
apoptosis of injured hepatocytes. In the animal experiments,
we found that BMSCs-33 significantly improved the bio-
chemical and prognosis of rats.

Studies on the pretreatment of BMSCs with IL-33 are
limited, and the relationship between BMSCs-33 and other
immune cells also needs further investigation. Conducting
more studies on these aspects can promote the medical appli-
cation of MSCs.

5. Conclusion

To summarize, we found that BMSCs pretreated with IL-33
enhanced the homing ability through the CCR2/CCL2 axis
and promoted M2-type polarization by inhibiting the NF-κB
pathway of BMDM. The M2-type macrophages inhibited
liver inflammation, reduced the apoptosis of hepatocytes,
and promoted liver tissue repair (Figure S1). These data
provided strategies to improve the homing ability of MSCs
to damaged liver tissues for better utilization of the clinical
potential of MSCs. Meanwhile, this study showed the immu-
nomodulatory mechanism of BMSCs after IL-33 pretreat-
ment, which can be expected to further develop MSCs-
based therapy for liver diseases.

Nomenclature

MSCs: Mesenchymal stem cells
ALF: Acute liver failure
BMSCs: Bone marrow mesenchymal stem cells
IL-33: Interleukin-33
BMSCs-33: BMSCs pretreated with IL-33
BMDM: Bone marrow–derived macrophages
MHC II: Major histocompatibility complex II
HGF: Hepatocyte growth factor
TGF-β: Transforming growth factor β
IFN-γ: Interferon γ
ALT: Alanine aminotransferase
AST: Aspartate aminotransferase
TLR: Toll-like receptor
MCP-1: Monocyte chemotactic protein 1
TNFR: TNF-α receptor.
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