Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Oct 15;216(1):203–206. doi: 10.1042/bj2160203

The effect of cholesterol on ubiquinone and tetrahymanol biosynthesis in Tetrahymena pyriformis.

D C Wilton
PMCID: PMC1152487  PMID: 6418144

Abstract

The biosynthesis of ubiquinone-8 from radioactive mevalonate by cultures of Tetrahymena pyriformis is demonstrated. Under normal conditions the incorporation of this radioactive precursor into ubiquinone and the triterpenoid alcohol tetrahymanol reflects the amounts of these two compounds in the cell. Growth of T. pyriformis in the presence of cholesterol results in a complete inhibition of incorporation of radioactive mevalonate into tetrahymanol while there is a corresponding increase of radioactive incorporation into ubiquinone. This increased incorporation of mevalonic acid into ubiquinone must reflect a reduced level of mevalonic acid in the cell under these conditions and is not due to increased ubiquinone biosynthesis, indicating tight regulation of the pathway prior to mevalonate formation.

Full text

PDF
203

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Beedle A. S., Munday K. A., Wilton D. C. Studies on the biosynthesis of tetrahymanol in Tetrahymena pyriformis. The mechanism of inhibition by cholesterol. Biochem J. 1974 Jul;142(1):57–64. doi: 10.1042/bj1420057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Conner R. L., Landrey J. R., Burns C. H., Mallory F. B. Cholesterol inhibition of pentacyclic triterpenoid biosynthesis in Tetrahymena pyriformis. J Protozool. 1968 Aug;15(3):600–605. doi: 10.1111/j.1550-7408.1968.tb02178.x. [DOI] [PubMed] [Google Scholar]
  4. Conner R. L., Landrey J. R. The steric requirements for sterol inhibition of tetrahymanol biosynthesis. Lipids. 1978 Oct;13(10):692–696. doi: 10.1007/BF02533747. [DOI] [PubMed] [Google Scholar]
  5. Faust J. R., Goldstein J. L., Brown M. S. Synthesis of ubiquinone and cholesterol in human fibroblasts: regulation of a branched pathway. Arch Biochem Biophys. 1979 Jan;192(1):86–99. doi: 10.1016/0003-9861(79)90074-2. [DOI] [PubMed] [Google Scholar]
  6. Nambudiri A. M., Ranganathan S., Rudney H. The role of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in the regulation of ubiquinone synthesis in human fibroblasts. J Biol Chem. 1980 Jun 25;255(12):5894–5899. [PubMed] [Google Scholar]
  7. Rogers J., Lee A. G., Wilton D. C. The organisation of cholesterol and ergosterol in lipid bilayers based on studies using non-perturbing fluorescent sterol probes. Biochim Biophys Acta. 1979 Mar 23;552(1):23–37. doi: 10.1016/0005-2736(79)90243-8. [DOI] [PubMed] [Google Scholar]
  8. Shepherd N. D., Taylor T. G., Wilton D. C. An improved method for the microbiological assay of available amino acids in proteins using Tetrahymena pyriformis. Br J Nutr. 1977 Sep;38(2):245–253. doi: 10.1079/bjn19770085. [DOI] [PubMed] [Google Scholar]
  9. VAKIRTZI-LEMONIAS C., KIDDER G. W., DEWEY V. C. UBIQUINONE IN FOUR GENERA OF PROTOZOA. Comp Biochem Physiol. 1963 Apr;9:331–334. doi: 10.1016/0010-406x(63)90168-3. [DOI] [PubMed] [Google Scholar]
  10. Volpe J. J., Obert K. A. Interrelationships of ubiquinone and sterol syntheses in cultured cells of neural origin. J Neurochem. 1982 Apr;38(4):931–938. doi: 10.1111/j.1471-4159.1982.tb05332.x. [DOI] [PubMed] [Google Scholar]
  11. Warburg C. F., Wakeel M., Wilton D. C. The role of squalene synthetase in the inhibition of tetrahymanol biosynthesis by cholesterol in Tetrahymena pyriformis. Lipids. 1982 Mar;17(3):230–234. doi: 10.1007/BF02535109. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES