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SUMMARY
Treatments for cancer patients are becoming increasingly complex, and there is a growing desire from clini-
cians and patients for biomarkers that can account for this complexity to support informed decisions about
clinical care. To achieve precision medicine, the new generation of biomarkers must reflect the spatial and
temporal heterogeneity of cancer biology both between patients and within an individual patient. Mining
the different layers of ’omics in a multi-modal way from a minimally invasive, easily repeatable, liquid biopsy
has increasing potential in a range of clinical applications, and for improving our understanding of treatment
response and resistance. Here, we detail the recent developments and methods allowing exploration of
genomic, epigenomic, transcriptomic, and fragmentomic layers of ’omics from liquid biopsy, and their inte-
gration in a range of applications. We also consider the specific challenges that are posed by the clinical im-
plementation of multi-omic liquid biopsies.
INTRODUCTION

The recent and rapid expansion of targeted and immunotherapy

options across multiple cancer types has been associated with

improved patient outcomes. In parallel, there is growing interest

in tools that can guide treatment decisions in an increasingly com-

plex therapeutic landscape, enabling physicians to tailor aspects

of treatment such as choice of drug and schedule to an individual

patient and the patient’s cancer. Biomarkers that provide prog-

nosticand/orpredictive informationareessential toguidesuchde-

cisions. Understanding tumor biology in an individual patient is

often based on tissue biopsy samples which can be analyzed for

a range of genetic, transcriptomic, epigenomic, proteomic, and

metabolomic biomarkers. There are limitations of tissue-based

biomarkers including a failure to capture heterogeneity when

only small biopsies are used and the challenges of longitudinal tis-

sue sampling while on treatment. ‘‘Liquid biopsies,’’ where the

biomarker can be present in a more readily and repeatedly acces-

sible biological fluid, overcome some of these barriers.

A wide range of liquid biopsy analytes are evaluable, including

cell-free DNA (cfDNA), cell-free RNA (cfRNA), circulating tumor

cells (CTCs), extracellular vesicles, proteins, lipids, tumor

educated platelets, mitochondria, and neutrophil extracellular

traps1–5 (Figure 1). The biogenesis and potential application of

these analytes differ, with for example CTCs being implicated

in development of metastases, thus being both a potential

biomarker and a therapeutic target.6,7 Liquid biopsy research

has focused on blood-based biomarkers, but there is also

growing interest in alternative bio-fluids such as urine, cerebro-

spinal fluid (CSF), saliva, and tears.8 Nucleic acid-based liquid
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biopsies in particular are able to generate large amounts of

’omic data through next-generation sequencing (NGS) ap-

proaches.9 The distribution of nucleic acids in the different blood

analytes can be variable and remains to be fully characterized;

for example, there is conflicting evidence regarding the content

and nature of nucleic acids in extracellular vesicles.10–12 This re-

view will focus on evaluating the challenges and opportunities

multi-omic analyses of cell-free nucleic acids (cfNAs) from

plasma can offer for improving our understanding and manage-

ment of cancer.

cfNAs are fragments of DNA (cfDNA) or RNA (cfRNA) existing

outside of cells in a bio-fluid. cfNA can be found in healthy indi-

viduals and individual with cancers or other pathologies.13–16

Circulating tumor DNA/RNA (ctDNA/RNA) refers to cfNAs

derived from tumor cells. The majority of cfNAs are derived

from hematopoietic cells; this is an important consideration

when designing experiments and developing assays for clinical

use, as assay sensitivity will be impacted by the tumor fraction

and intended clinical application.13,14,17,18

ANALYZING ‘‘OMICS’’ LAYERS FROM LIQUID BIOPSY

Genomic analysis of cfDNA
There are an increasing number of approaches for studying

cfNAs (Table 1). Initial focus was on analyzing the genomic con-

tent of ctDNA, including mutations at specific genes using PCR

and sequencing-based approaches. Digital PCR (dPCR) and

digital droplet PCR (ddPCR) are sensitive and fast techniques

for detection and quantification of mutant DNA copies down to

variant allele frequencies (VAFs) as low as 0.01%.19–21 This
ber 17, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. The potential of multi-omic liquid analytes
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sensitivity and simplicity of use led to studies using ddPCR to

monitor minimal residual disease (MRD), for example, the early

detection of melanoma relapse post-surgery.20,22 However,

ddPCR cannot inform on unknown variants, intra-tumor hetero-

geneity, or tumor evolution.

Sequencing techniques provide information ranging from point

mutations to copy-number alterations, and large structural

changes (e.g., aneuploidy, whole-genome duplication, or struc-

tural variations).23 Whole-genome sequencing (WGS) enables de

novo discovery of mutations implicated in tumorigenesis or resis-

tance from within both coding and non-coding regions of the

genome. Due to the genome size with increasing read depths,

there is a significant cost associated with WGS at sufficiently

high depth to accurately detect rare variants which is a disadvan-

tage in the context of cfDNA where VAF can be minimal. The vast

quantity of data generated by WGS also requires substantial pro-

cessing power and storage. Lower-depthWGS can, however, still

be very effective for identifying copy-number alternations (CNAs),

as well as cfDNA biological features such as fragment length or

ending.24

Whole-exome sequencing (WES) limits sequencing to the pro-

tein coding genome through hybridization enrichment and is

more sensitive in detecting low VAF on a genome-wide scale

than WGS.25 However, it is uninformative on non-coding regions

such as enhancers which, when mutated, can still have signifi-

cant biologic consequences. Targeted sequencing panels

involve selective enrichment of a small number of genes/

genomic regions (�50–1,000) prior to sequencing and can

achieve high read depths at a moderate cost.26 Deep targeted

sequencing can increase sensitivity for selected variants present

at low VAF.27 This is however limited by the choice of genes in a

particular panel and therefore less suited for de novo discovery

of novel mutations/resistance mechanisms, or for assessment

of large structural changes.

For mutation-based analysis of cfDNA, it is important to distin-

guish true tumor-derived mutations from those arising from
2 Cell Reports Medicine 5, 101736, September 17, 2024
clonal hematopoiesis of indeterminate potential (CHIP).28,29

Ideally this is achieved through parallel sequencing of either tu-

mor or white blood cell DNA although this impacts cost and prac-

ticality and in the case of the former is limited to callingmutations

that are present in the initial tumor biopsy sample.

cfDNA methylome profiling
The number of mutations in a cancer cell can be limited in some

malignancies, whereas the number of altered methylated sites

can be higher and occur early in cancer development, increasing

the chances to detect tumor signal or infer more complex infor-

mation from liquid biopsies with this additional layer of omics

data.30

DNAmethylation is the transfer of amethyl group onto a nucle-

otide, which occurs most commonly at a cytosine residue adja-

cent to a guanine residue (CpG site) to form 5-methylcytosine

(5-mC).31,32 This epigenetic modification can regulate gene

expression by affecting transcription factor binding and by influ-

encing chromatin structure.33 Methylation patterns in healthy

differentiated cells are generally stable and cell type spe-

cific.13,34 Global hypomethylation is a feature of many malig-

nancies and can result in nuclear disorganization and loss of

gene silencing of genes involved in cellular proliferation.35

Conversely, hypermethylation at specific sites (commonly within

regions with high frequency of CpG sites) involving promoters

and transcription factor binding sites (TFBSs) of key tumor sup-

pressor genes may silence those genes.32

Methylation profiles therefore can be used to determine the

tissue of origin of cfDNA, classify between cancer and non-can-

cer, and classify cancer subtypes.13,14,36–38 Methylation

changes are often an early step in tumorigenesis and can be

more numerous across the genome than genetic alterations

Therefore sensitivity of methylation-based methods can be

greater than that of mutation-based techniques, which may be

particularly important in settings such as early cancer

detection.30,32,39



Table 1. Comparison of different analytical approaches for study of cfDNA

Coverage Output

Turnaround

time from

taking sample

Suggested

minimum

cfNA input

Relative complexity

of analysis and

clinical interpretation

Relative

cost £-££££

Fragment

information

preserved?

Genomic analyses

ddPCR 1 mutation hotspot/assay VAF (quantitative) 2–5 days 0.1 ng/well Low £ No

Targeted NGS Up to 1000 genes Base pair sequence 1–2 weeks 10 ng Medium ££ At selected regions

only for hybrid

capture-based

methods

WES All protein coding regions

(�1.5% genome)

Base pair sequence,

copy-number changes

2 weeks 10 ng Medium-High £££ At exome only

WGS Whole genome Base pair sequence,

copy-number changes

2–3 weeks 10 ng High ££££ Yes

Methylation analyses

Bisulfite conversion

based sequencing

Up to whole methylome

but loss of 84–96% DNA

Methylation status at

base pair level.

2 weeks 10 ng,

ideally

more for

WGBS

High ££-£££a At regions covered

Methylation capture-

based enrichment

Genome-wide methylation Methylation status at

fragment level (5-mC

only)

2–3 weeks 1 ng High £££ Only for enriched

methylated regions

Enzyme-based methylation

(e.g., EM-seq, TAPs)

Up to whole methylome Methylation status at

base pair level.

2–3 weeks 10 ng High £££-££££a Yes

Combined genomic and methylation analyses

5/6 letter sequencing (Duet) Up to whole methylome/

whole genome

5-mC/5-hMC status

at base pair level.

Preserves base pair sequence.

2–3 weeks 5 ng High £££- ££££a Partially, dependent

on read length

Native DNA sequencing

e.g., nanopore

Up to whole methylome/

whole genome

5-mC/5-hMC status at

base pair level. Preserves

base pair sequence.

Sequences longer fragments

24–48 h 5 ng High £££-££££a Yes

Transcriptomic analyses

ddPCR 1 gene/assay VAF (quantitative) 2–5 days 0.1 ng/well Low £ No

Targeted panel Up to 1000 genes Base pair sequence, fusions 1–2 weeks 10 ng Medium ££ n/a

RNA-seq (whole exome/

whole transcriptome)

All protein coding (exome)/

transcribed regions

Base pair sequence,

copy-number changes

2 weeks 10 ng Medium-High £££ n/a

VAF, variant allele frequency; ddPCR, digital droplet polymerase chain reaction; NGS, next-generation sequencing; WGS, whole-genome sequencing; WES, whole-exome sequencing.
aCost varies dependent on sequencing coverage and depth.
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Several techniques exist for studying methylation (in both

cfDNA and other analytes) (Table 1). These include methods

based on conversion of unmethylated cytosines to uracil, either

by bisulfite treatment or by enzymatic methods, prior to PCR

amplification and sequencing.37,40–43 An alternative approach

is capture-based enrichment where methylated cytosine binding

antibodies or proteins enrich for methylated DNA frag-

ments.30,36,44 One caveat of capture-based methylation work-

flows is that they produce a stronger signal for differentially hy-

permethylated regions than hypomethylated regions which

may be important for determining cfDNA tissue of origin, or de-

convoluting the cell of origin of cfDNA.13

Methods that could provide bothmethylation and genomic an-

alyses from a single workflow would be attractive in the context

of amulti-omic liquid biopsy study. A recently developedmethod

uses enzymatic conversion methods but preserves accurate

sequencing of the underlying nucleotide sequence, enabling

genomic and methylation analyses from a single workflow,

although there is limited data on its use on cfDNA.45 Oxford

Nanopore sequencing negates the requirement for conversion

or enrichment steps by directly sequencing the native molecule

without PCR amplification based on changes in electrical signal

as it passes through a nanopore. This technology can distinguish

unmethylated cytosine from 5-mC and provide genomic and

methylation data from a single sequencing run. This has been

used successfully in cfDNA to identify cancer-specific methyl-

ation profiles although there are challenges in optimizing nano-

pore technology for cfDNA fragment size and lower inputs.46,47

cfDNA fragmentomics
The described methods preserve to a varying extent the cfDNA

structural features, which can be altered in cancer, offering po-

tential for adding an additional ‘‘omic’’ layer to analyses of data

from sequencing workflows. Fragmentomics refers to the

concept of inferring biological information such as gene expres-

sion, cell of origin, and mechanism of cell death using the struc-

tural properties of cfDNA.48 There are differences between tu-

mor- and non-tumor-derived cfDNA fragment size profiles.49,50

The majority of cfDNA originating from both healthy and cancer

cells is released during apoptosis, although other sources

include necrosis and active secretion by cancer cells.51,52Where

chromatin is tightly wrapped or ‘‘closed’’ as in hematopoietic cell

apoptosis (source of the majority of cfDNA), cfDNA cleavage

mainly occurs through cell death nuclease-induced cleavage

within the 20 bp DNA linker region, while the 147 bp DNA wrap-

ped around the histone is protected. Hence, fragmentation is

non-random and generates the 167 bp peak seen in cfDNA

from healthy control subjects.53 In cancer cells, there is often a

greater degree of transcriptional activity (with associated global

hypomethylation) and consequentially more open chromatin

cleavage with more sites accessible for cleavage. This enriches

the cfDNA profile for shorter fragments, with periodic 10 bp

peaks related to the repeating structural unit of the DNA double

helix.49,50,54 Moreover, recent works have highlighted the

sharp presence of ultrashort cfDNA fragments (around 50 bp) us-

ing single-stranded DNA sequencing,55 and a large proportion of

tumor-derived cfDNA fragments >300 bp using Nanopore

sequencing.56
4 Cell Reports Medicine 5, 101736, September 17, 2024
Fragmentomics approaches can be applied to sequencing

data from either genomic or methylation-based studies offering

the potential for integration of multiple omics layers from a single

experiment in a multi-modal way. Examples of fragmentomic

features include fragment lengths, fragment-end motifs, frag-

ment-end positions, jaggedness, and fragment orientation

(Table 2).54,57–61 Tumor-specific fragment properties can be inte-

grated with genomic information to improve sensitivity of exist-

ing liquid biopsies. For example, the size profile can discriminate

between tumor- and non-tumor-derived cfDNA and aid with

filtering of CHIP variants.54,62–64 Furthermore, transcriptional ac-

tivity can be inferred based on patterns of fragmentation around

transcription start sites (TSSs) and TFBSs. These data can in turn

be informative about cfDNA tissue of origin (both tumor- and

non-tumor-derived cfDNA) and characterize different cancer

subtypes with distinct transcriptional programming.59,65–67 A

small number of studies have successfully used enzymatic-

based methylation sequencing to obtain methylation and frag-

ment length profiles which were integrated to develop cancer

detection and tissue-of-origin classifiers.37,68,69 The perfor-

mance of such approaches to infer the tissue of origin compared

to methylation-based assays remains to be demonstrated. As

transcriptional activity is a dynamic process that can change

over time with associated epigenetic modification, a fragmen-

tomic approach may be able to track changes in gene expres-

sion patterns longitudinally within a single patient, providing

insight into both relative subclone prevalence and the develop-

ment of non-genetic resistance mechanisms. An additional layer

of information on gene expression could be provided by analysis

of cfRNA.

cfRNA analyses
cfRNA is a distinct analyte that can be isolated in parallel with

cfDNA. Only a small fraction (�2%) of extractable RNA is

messenger RNA (mRNA) with non-coding, ribosomal, and mito-

chondrial RNA representing �95% of cfRNA molecules,

although, by isolating extracellular vesicles, the relative fraction

of mRNA can increase up to�20%.18,72,73 Although theoretically

more abundant than cfDNA due to multiple copies of mRNA per

cell, unbound RNA in the circulation is potentially more vulner-

able to degradation by RNases.18 As with cfDNA, cfRNA is

released by dying cells but in addition can be actively secreted

with extracellular vesicles which can protect RNA from degrada-

tion.74 cfRNA may also be protected from RNases by binding to

proteins (e.g., microRNAs bound to RNA-induced silencing

complex proteins) or lipoproteins.75,76 The active secretion of

RNA means that it may be theoretically more abundant than

cfDNA in certain situations such as tumors that are smaller or

with slower turnover where the quantity of cfDNA released in

cell death is limited, although this has not to date been

demonstrated.

Different blood preservation tubes and processing conditions

can significantly impact RNA stability leading to challenges in

reproducibility.77 There are also challenges relating to the lack

of standardized approaches for normalization of cell-free

mRNA and reference genes datasets which limit reproducibility

of existing methods. Nevertheless, cfRNA represents a distinct

analyte able to discriminate patients with cancer from



Table 2. Selected studies utilizing different fragmentomics approaches

Study Fragment feature Application Technology Key findings and limitations

Mouliere et al. 201854 Fragment size difference between cancer

and healthy on a global level, 10 bp

oscillations on subnucleosomal level

Cancer diagnosis (pan tumor) Shallow WGS, WES,

size selection enrichment

AUC 0.91–0.99 depending on cancer type.

Low sequencing depth (0.4x). Sensitive at

low MAFs (after size specific enrichment.

Only late-stage cancers

Cristiano et al. 201961 Fragment size difference between cancer

and healthy on a regional level

Cancer diagnosis (pan-tumor) Delfi (WGS) AUC 0.94 (Sens 57–99%, Spec 98%)

supervised model, non-age matched

controls

Ulz et al. 201959 Coverage at TFBS and TSS Prostate cancer subtyping

and early detection

WGS High tumor fraction required

Snyder et al. 201665 Fragment endpoints, coverage near TFBS

and near TSS

Cell of origin Windowed protection

score – WPS (WGS

inc single strand)

Single strand sequencing enriched shorter

fragments. Small sample numbers, high

sequencing depth required (�100x).

Esfahani et al. 202270 Fragment length diversity at promoter

regions ‘promoter fragment entropy’,

coverage at regions near TSS

(‘‘nucleosome depleted regions’’)

Diagnosis and subtype

classification (lung cancer,

diffuse large B cell lymphoma)

EPIQ-Seq (Targeted

sequencing, also

used WGS/WES)

Composite model of PFE/NDR, Lung

cancer from healthy AUC 0.91 (training),

0.83 (validation), NSCLC subtype AUC 0.9,

DLBCL from healthy AUC 0.92 (training)

AUC 0.96 (validation). Requires disease

specific panels for EPIC-seq, less sensitive

at early stage

De Sarkar et al. 202366 Coverage at TFBS and TSS, nucleosome

phasing (periodicity of nucleosome

positions)

Prostate cancer phenotyping Keraon, ctdPheno (WGS) AUC 0.96 (90.4% sensitivity, 97.5%

specificity) for phenotyping. Lower limit of

8% and 3% tumor fraction required.

(ctDPheno/Keraon respectively)

Sun et al. 201957 Strand orientation HCC diagnosis and tissue

of origin

Orientation-aware

cfDNA fragmentation-

OCF (WGS)

67% sensitivity, 93.8% specificity for HCC.

Lower tissue fraction required than some

approaches e.g., �5%. Based on known

open chromatin regions with limited

independent validation.

Jiang et al. 202058 End-motif frequency Cancer diagnosis (mainly HCC) WGS, WGBS AUC 0.86 for HCC. Accurate at 4% tumor

fraction. Requires deep sequencing for

accuracy. Limited independent validation.

Doebley et al. 202271 TFBS coverage by fragment midpoint Cancer detection (pan-tumor),

breast cancer subtyping.

Griffin (WGS) Ultra-low-passWGS (0.1x). Cancer vs. non-

cancer: AUC 0.89 for 0.1x coverage. AUC

0.92 for breast cancer subtyping. Mainly

existing cohorts, limited independent

validation.

WGS, whole-genome sequencing; WES, whole exome sequencing; WGBS, whole genome bisulfite sequencing; TSS, transcription start site; TFBS, transcription factor binding site; HCC, he-

patocellular carcinoma; NSCLC, non-small cell lung cancer; VAF, variant allele frequency; PFE, promoter fragment entropy; NDR, nucleosome depleted regions; AUC, area under the curve.
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non-cancer patients and those with precancerous lesions.18,78–80

One study applied whole-transcriptome sequencing to detect

distinct gene signatures present in plasma from patients with

lung and breast cancer that were absent from non-cancer

controls.18 Repetitive, non-coding RNA sequences such as

transposable elements may also be enriched in cfRNA of cancer

patients, with characteristic cancer type-specific profiles, and

may be another source of ‘omic information that could be inte-

grated in cancer detection and tissue of origin classifiers.81

cfRNA could also present advantages compared to cfDNA for

the detection of fusions as the large intronic regions that can

have multiple different breakpoints are not present in the RNA

transcript simplifying the design of targeted panels for specific

fusions.82

Cell-free transcriptomic data have also been integrated with

genomic and epigenomic data in patients with gastrointestinal

cancers and healthy controls. Notably, the correlation between

gene expression data and genomic/epigenomic data in plasma

was lower than that in previously published datasets from

tissue/cell-lines, likely as a consequence of the distinct cellular

origins of cfDNA and cfRNA.83 The authors demonstrated that

the different ‘omic layers were complementary when

applied to detection of cancer-specific genetic mutations,

with variants being detected with greater sensitivity in cfRNA

than cfDNA.

Liquid biopsies have been studied in a range of clinical settings

at different time points (Figure 2). We now consider specific ex-

amples where multi-omic analyses may be applied both to

directly influence patient management and to improve under-

standing of tumor biology and therapeutic resistance.
6 Cell Reports Medicine 5, 101736, September 17, 2024
CIRCULATING TUMOR NAs AS A BIOMARKER FOR
CLINICAL DECISION MAKING

Cancer detection and diagnosis
A challenge for developing liquid biopsy screening tests is the

lower levels of cfNAs in earlier stage disease. The initial testing

of the Galleri bisulfite methylation test in 4,077 patients (cancer,

n = 2,823; non-cancer, n = 1,254) reported an overall sensitivity

of 51.5%, but for stage I and II disease it was only 27.5%

compared to 90.1% in stage IV.84 This was further validated

in the SYMPLIFY study which detected a positive predictive

value of 75.5% (95% confidence interval 70.5–80.1), negative

predictive value of 97.6% (97.1–98.0), sensitivity of 66.3%

(61.2–71.1), and specificity of 98.4% (98.1–98.8) of the Galleri

test in patients presenting with symptoms suggestive of can-

cer.85,86 The SEPT9 methylation bisulfite-PCR-based assay is

Food and Drug Administration (FDA) approved for colorectal

cancer (CRC) screening, although meta-analysis has suggested

in an asymptomatic population that it is inferior to existing fecal

immunohistochemical assays and it has not yet been widely

implemented outside of research studies.87,88 More recently,

the ECLIPSE clinical trial (NCT04136002) examining a commer-

cial cfDNA test incorporating methylation, genetic, and frag-

ment features in 7,861 patients undergoing colonoscopy

screening showed 83% sensitivity for CRC, 90% specificity

for advanced neoplasia, and 13% sensitivity for advanced pre-

cancerous lesions.85 Fragmentomic- and RNA-based assays

have also demonstrated potential for detection of early-stage

cancers but have not yet been evaluated in prospective

studies.18,89

http://clinicaltrials.gov/show/NCT04136002
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Liquid biopsy may also have a role in the diagnostic process

once a cancer has been identified; the tissue specificity of ctDNA

methylation patterns is particularly suited to this role. Examples

include the use of a pan-cancer enrichment-based methylation

assay for diagnosis of cancers of unknown primary cause, a dis-

ease where tissue material may be limited or exhausted from

initial immunohistochemistry-based testing.38 Brain tumors

also pose a diagnostic challenge where obtaining tissue via bi-

opsy is technically difficult. CSF sampling via a lumbar puncture

offers a complementary source of information and in the context

of brain tumors has been shown to have greater sensitivity than

plasma for ctDNA detection.90,91 Applying methylation profiling

using nanopore sequencing to CSF-derived cfDNA from patients

with brain tumors, the correct diagnosis was obtained in 22/110

cases (50/110 with detectable ctDNA by copy-number

profiling).92

The diagnostic process may be augmented by risk stratifica-

tion prior to proceeding with invasive investigations. The exoso-

mal RNA-based ExoDx test in prostate cancer can provide infor-

mation to help patients and clinicians make informed decisions

about whether to proceed with a tissue biopsy. This urine test

can classify patients with a prostate lesion considering biopsy

into ‘‘low’’- or ‘‘high’’-risk groups for higher-grade prostate can-

cer; in a randomized trial, informing patients and clinicians of the

score led to a significant reduction in biopsy rates without

compromising safety.93,94

MRD and molecular progression monitoring
In the early disease setting, ctDNA-based assays can be been

used to guide adjuvant treatment decisions through monitoring

for MRD. The observational GALAXY study of 1,039 patients

with resectable stage II–IV CRC identified post-surgical ctDNA-

positive status was able to identify which patients would benefit

from adjuvant chemotherapy (hazard ratio 6.59, p < 0.0001).95

In the DYNAMIC study, 455 patients with stage II CRC were

randomized in a ratio of 2:1 to ctDNA-guided treatment or stan-

dard of care (SOC), with omission of adjuvant chemotherapy in

patients with negative ctDNA post-surgery. In the ctDNA-guided

arm, rates of adjuvant chemotherapy were 15% compared to

28% in the SOC arm; ctDNA-guided management showed

non-inferior 2-year recurrence-free survival (93.5% and 92.4%

in the two arms, respectively).96 The phase 2 c-TRAK TN study

in triple-negative breast cancer used ctDNA to monitor for

MRD in 161 patients with randomization to either commence

immunotherapy or continue observation if ctDNA became

detectable. Although this study demonstrated the technical

feasibility of such an approach, there was a disappointingly

high rate of radiologically evident metastatic disease at the

time of ctDNA detection (72%, 23/32 patients randomized to

intervention), highlighting the importance of selecting the right

patient cohort and timing of assays if ctDNA monitoring for

MRD is to succeed.97

Informing treatment selection
The most established clinical use for cfDNA is as a companion

diagnostic for detection of targetable driver mutations in multiple

cancer types including lung (EGFR, ALK), ovarian (BRCA1/2),

and breast (PIK3CA). FDA-approved tests include both
PCR-based and targeted NGS-based assays.98 Implementation

of these tests in parallel with tissue pathology processing may

streamline the identification of actionable mutations that allow

access to a targeted therapy or provide ameans of testing where

insufficient tissue of suitable quality is available. This can facili-

tate implementation of precision medicine approaches. In the

plasmaMatch platform trial, ctDNA testing (by both ddPCR and

a targeted panel) was used in a pre-treated cohort of patients

with advanced breast cancer.99 Of 1,034 patients who under-

went testing, 357 had a mutation for which a treatment arm

was available, although only 136 patients entered a targeted

treatment within the trial and only 2 out of 4 treatment arms

achieved their target response rates.

CtDNA-based detection of driver mutations is also being as-

sessed in the context of assigning patients who have exhausted

SOC therapies to matched molecularly targeted trial treatments.

The TARGET study enrolled patients referred for consideration of

early-phase trials who underwent ctDNA and matched tumor

molecular profiling.100 In the first 100 patients, there was good

concordance between tissue- and ctDNA-identified mutations,

and 41% had an actionable mutation identified. This has now

been expanded to the TARGET National study aiming to recruit

6,000 patients which will use the FoundationOne Liquid CDx

ctDNA test to profile 324 cancer-related genes.101 Results will

be discussed in a national molecular tumor board where avail-

able patients will be assigned to a clinical trial of a matched

therapy.

Tracking response and resistance in advanced disease
Increasingly, there is also interest in how the ease of repeat sam-

pling may be exploited to use ctDNA for more precise clinical de-

cision-making throughout a patient’s treatment, such as through

tracking of disease status or identifying emerging resistance

mechanisms. In the APPLE study in EGFR mutant non-small

cell lung cancer (NSCLC), ctDNA detection while on gefitinib of

the EGFR T790Mmutation (which confers resistance to gefitinib)

enabled 17% patients to switch therapy to osimertinib (which

T790M mutant NSCLC retains sensitivity to) prior to radiological

progression.102

Levels of ctDNA reflect disease status and tumor burden while

on treatment for a variety of cancers.103–105 In melanoma there is

evidence that ctDNA changesmay be detectable ahead of radio-

logical or biochemical (LDH) change, giving an early indicator of

treatment efficacy or of disease progression.106–108 In the

CAcTUS clinical trial, a BRAF V600 ddPCR assay was used to

guide a switch from targeted to immune therapy when ctDNA

VAF had fallen byR80% to provide preliminary data on whether

response to an initial run-in of mitogen-activated protein kinase-

targeted treatment resulted in improved outcomes for patients

with advanced melanoma; final results are awaited.109. The up-

coming DyNAMic trial (unrelated to DYNAMIC colorectal study)

of adaptive vs. continuous targeted therapy in BRAFmutantmel-

anoma will use the same assay to guide timing of adaptive ther-

apy treatment intervals (ISRCTN14643179).110 Adaptive therapy

involves tailoring treatment windows to an individual’s tumor

burden; therefore this strategy requires a biomarker that is a dy-

namic and accuratemarker of tumor activity, hence the choice of

a ddPCR ctDNA assay to guide treatment decisions.111,112
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Choice of cfDNA assay for clinical applications
The short turnaround and relative cost-effectiveness of ddPCR

testing make it particularly suited to a clinical trial setting

where treatment decisions require quantified data to be available

in a short time window.109 An obvious limitation of ddPCR-

based assays for clinical decision making is the requirement

for a pre-determined single base pair mutation. Deep targeted

sequencing of a panel of genes relevant to the cancer type is

an alternative, potentially very sensitive approach. Even deep

targeted sequencing can have limited sensitivity when a muta-

tion at the target loci is very low, as may occur in cfDNA. Indeed,

a comparison of a targeted panel approach with ddPCR did not

show additional benefit for post-operative detection of ctDNA in

CRC.113

One approach to improve sensitivity of cfDNAmutation calling

with targeted sequencing is the integration of variant reads

across hundreds to thousands of loci which individually would

not meet the threshold of variant calling. This approach was

applied in melanoma for longitudinal tracking of cfDNA tumor

fraction in advanced melanoma and assessing sensitivity for

MRD in a high-risk early-stage cohort of 38 patients from the

AVAST-M clinical trial.114 In the latter, cfDNA post-surgery was

positive in 40% of patients who subsequently relapsed, results

which were consistent with a previous study on a cohort from

the same trial using ddPCR for cfDNA detection.20 These studies

relied on a personalized capture panel based on variants de-

tected in tissue samples; while this tumor-informed approach

can improve sensitivity, it also increases the cost and challenges

of implementation in a clinical setting.

An alternative is to employ WGS which does not require pa-

tient-specific panels to be developed and may therefore be

amenable to translation to clinical laboratories used to standard-

ized WGS methods. One approach to overcome the limited

sensitivity of WGS for variant calling at low VAFs in cfDNA is to

exploit the breadth of sequencing through genome-wide variant

integration.62 This detects and combines tumor mutations

across the genome, rather than on the limited number of loci as-

sessed by a targeted panel, resulting in a higher probability of

capturing tumor signal. Tumor-specific mutations showed a

shorter average fragment size profile, enabling integration of

fragment length information into the model to improve perfor-

mance for tumor fraction detection.115 This approach was

applied for longitudinal monitoring of treatment response to im-

mune checkpoint inhibitors in melanoma in 37 patients with and

early drop in cfDNA tumor fraction corresponding with progres-

sion-free survival (PFS) and overall survival (OS) to a greater

extent than radiologic disease assessment.115 cfRNA is an alter-

native tumor naive biomarker. An unsupervised analysis of exist-

ing melanoma tissue gene expression data identified 4 candi-

date mRNAs which when quantified in plasma cfRNA using

ddPCR were significantly higher in melanoma patients than in

healthy donors.116 In an expansion cohort of 100 patients, cfRNA

level of these mRNAs correlated with stage and tumor burden.

Higher baseline mRNA levels were predictive of worse PFS/

OS, and increasing levels while on therapy corresponded with

radiological disease progression. These results suggest cfRNA

may offer a pan-melanoma biomarker for disease monitoring

that can be used in those who lack defined hotspot mutations.
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While individually the cfNA-based tests are showing promise

in specific clinical settings, there has been limited attempt to

integrate across multiple ‘omic layers. The sensitivity of cancer

detection assays (used for screening or MRD monitoring) where

the tumor fraction is expected to be low can be improved by add-

ing additional ‘omic layers.24,37,85,117 In one study, integrating

fragment-end-motif/length information with copy-number aber-

rations obtained from shallow WGS improved cancer detection

sensitivity compared to either metric alone.24 A further example

is the integration of cancer-specific methylation signatures and

fragment length score obtained from an enrichment-based

methylation assay in patients from a pan-cancer phase 2 study

of pembrolizumab.118 Early changes in these metrics were

both independently and jointly predictive of OS. Although the

combined score correlated well with a mutation-based score in

this study and an early decrease was predictive of OS, its perfor-

mance was not directly compared to either methylation or frag-

ment length scores alone.118

These studies illustrate the potential power ofmulti-omic liquid

biopsies; however, the additional complexity of both performing

multi-omic assays and translating the results into a clinically

interpretable metric remains a significant barrier to multi-omic

tests being translated into clinical practice.

TRACKING TUMOR BIOLOGY WITH MULTI-OMICS
LIQUID BIOPSY

Importantly, the potential of multi-omics liquid biopsy can also

be realized in the additional layers of insight it offers into the un-

derlying cancer and cell biology. Understanding the dynamic

behavior of tumors and the immune system during therapy re-

quires more frequent and comprehensive sampling than would

be feasible from tissue biopsies. The minimally invasive nature

of blood cfNA offers an alternative approach for tracking

changes in sub-clonal tumor cell populations and the cfNA con-

tributions of different cell populations over time (Figure 2).

Tracking tumor subclones
The administration of therapeutic agents exerts selective pres-

sures that favor resistant sub-clonal populations, including those

carrying previously ‘‘neutral’’ alterations that confer an advan-

tage only in the presence of a therapeutic agent. Clinical resis-

tance may arise through expansion of pre-existing resistant

sub-clonal populations.119–122 It is also possible for resistant

subclones to arise de novo, through acquiring alterations at

either the genomic or transcriptomic level.123,124

Multiple studies have leveraged genomic cfDNA analyses to

track sub-clonal populations, with clinical correlation with meta-

static spread and therapeutic resistance.120,122,124,125 In CRC,

the emergence of KRAS mutant alleles were detectable only af-

ter initiation of the EGFR inhibitor cetuximab (which KRASmuta-

tions confer resistance to).126 In gastrointestinal tumors

combining WES of cfDNA, biopsies and autopsy specimens

identified resistance mechanisms in 76% patients’ post-pro-

gression cfDNA, with more than half exhibiting multiple validated

resistance mechanisms, suggesting heterogeneity in acquired

resistance.124 The TRACERx consortium performed longitudinal

tracking of mutations identified in resected NSCLC tissue in
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cfDNA.125 They were able to identify distinct subclone popula-

tions and found that subclones identified in metastatic disease

were significantly more expanded in pre-operative plasma than

non-metastatic subclones.

In melanoma, resistance mutations in genes such as NRAS

and PIK3CA emerge in cfDNA during targeted therapy, although

most studies have not specifically examined the parallel exis-

tence of sensitive and resistant sub-clonal populations.123,127

Clonal dynamics on therapy were investigated in a patient with

KIT mutant mucosal melanoma and a mixed clinical response

to the cKit inhibitor imatinib: using WES and subsequent tar-

geted sequencing to track ctDNA mutation profiles over

time.121 Two distinct sub-clonal populations were identified

which could be tracked with discordant changes in VAF on mul-

tiple lines of therapy.

In a significant proportion of cases, there is a not a clear ge-

netic driver underpinning therapeutic resistance; purely genomic

studies would not identify these mechanisms, and in these pa-

tients additional ‘omic layers could be valuable.128–130 A recent

study in SCLC (small cell lung cancer) utilized reduced represen-

tation bisulfite sequencing and identified a switch in methylation

profile at the time of progression compared to baseline samples,

with a large proportion of patients exhibiting changes in immune-

related gene promoter methylation that shifted toward amore in-

flamed phenotype.131

A study in prostate cancer patients integrated cfDNA fragment

information with WGS data122: one patient exhibited a clonal

switch in dominant population at the time of androgen inhibitor

resistance where parallel fragment-based inferred gene expres-

sion analysis at androgen receptor binding sites demonstrated

commensurate loss of downstream androgen receptor

signaling. This demonstrates proof of principle that combining

genomic and transcriptomic analyses can elucidate clonal evo-

lution with a correlated change in the patient’s developing clini-

cally evident resistance.Moremulti-omic longitudinal studies are

needed to further unravel the complexity of how clinical resis-

tance emerges through changes at different ‘omic levels.

Tracking cfNAs cell of origin
The contribution of cfNA in the blood by tumor, immune, and

normal cells can be affected by many factors that influence as-

pects of cell biology including cell death and cell turnover; this

is therefore a potential avenue to infer information about disease

processes, and the cell of origin of cfNA. The role of DNA

methylation in cellular differentiation means that the methylation

pattern of cell/tissue types can be used to deconvolute the

cell type from which cfDNA is derived. This can inform on not

just tumor-derived cfDNA but also cfDNA derived from immune

cells and from normal tissues as a result of treatment-related

toxicity.14,17,132–134 This approach was demonstrated in 2015

when methylation markers identified from 14 tissues were

applied to cfDNA patients with hepatocellular carcinoma,14 re-

porting the detection of liver-derived cfDNA. A number of

methylation ‘‘atlases’’ have been developed based on methyl-

ation profiles of individual cell/tissue types.13,34,133 These data

are used to develop algorithms that can deconvolute from a

cfDNA sample the contributing proportion of specific cell or tis-

sue types. When applied to cfDNA in patients with cancer, an in-
crease in tissue fraction from the cancer tissue of origin has been

observed, with a correlation of increased fraction with cancer

stage.133 It has been shown in a small number of patients that in-

creases in renal and liver-derived cfDNA post-immunotherapy

treatment correlated with biochemical markers, indicating this

could also be a marker of treatment-related toxicity.133

An alternative approach to cfDNA cellular deconvolution is

based on cell-type-specific gene expression profiles. This can

either be assessed directly through cfRNA sequencing, or indi-

rectly though fragmentomic analyses that infer gene expres-

sion.67,135,136 A fragment-coverage-based deconvolution

method was able to develop cell-type signatures that were pre-

dictive of disease and able to correctly differentiate patients with

a range of cancer types from controls, including early-stage dis-

ease.65,136 A deconvolution algorithm applied to cfRNA from pa-

tients with cancer indicated downregulation of CD8+ cytotoxic

T cells, B cells, and natural killer cells that was seen in the paired

tumor tissue but not paired PBMCs, indicating plasma cfRNA

may be a tool to characterize the tumor immune microenviron-

ment.83 This work also demonstrated distinct patterns of

immune pathway downregulation, e.g., downregulation of cyto-

toxic T cell and activation and upregulation of the immunosup-

pressive PD-L1,83 indicating the potential complementary power

of cfRNA-based studies to explore gene expression.

Individually, these distinct approaches to cfNA cellular decon-

volution (methylation, fragmentomic, and RNA-based) offer po-

tential for use in cancer diagnosis, determining tissue of origin

and tracking changes in immune/normal tissue contribution

throughout therapy that may indicate response or toxicity.

What has not yet been shown is whether combining these

different, potentially complementary ‘omic deconvolution

methods can improve their resolution.

INTEGRATION OF MULTI-OMIC DATA FROM LIQUID
BIOPSY: POTENTIAL AND CHALLENGES

Liquid biopsy multi-omics approaches generate large amounts

of complex data. While integrating these data can offer new

biological insights and strengthen development of predictive/

prognostic models, careful consideration of how to achieve

this is required. The strength of combining data types from

cfDNA and other analytes has been demonstrated in a number

of studies.69,118,137,138 Some of the studies discussed here

have performed multiple ‘omic analyses and explored the utility

of the different ‘omic layers, e.g., cancer detection or subtype

prediction without directly integrating the analysis.68,122 A de-

gree of integration can be achieved by building scores or clas-

sifiers based on individual ‘omic layers and then combining the

scores or classifier outputs to make an overall predic-

tion.24,69,118 For example, methylation and fragment features

from a single cfDNA workflow were used to build three ‘omic-

specific classifiers and a cancer diagnosis prediction was

made based on the class with highest average.69 Another

approach for integrating ‘omic-specific classifier outputs is to

use ensemble classifiers.37,63,117,137 In one study, regularized

logistic regression was used to predict the probability of cancer

based on the scores output from four ‘omic-specific classifiers,

each based on either methylation or fragmentation features.
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The classifier outperformed any of the individual scores with

higher AUC and lower limit of detection.37

An alternative approach is direct integration at the level of the

‘omic data features.54,63,137,138 Fragment features are well suited

to this; as the size and end-motif profiles of cancer-derived cfDNA

are distinct from non-tumor-derived cfDNA, these features can be

used to weight genomic features (e.g., copy-number variant

[CNV]/single-nucleotide variants [SNVs]) within classifiers for can-

cer detection based on how likely a fragment is to be tumor/non-

tumor derived.54,63 The Lung-CLiPmodel is an ensemble classifier

for early lung cancer detection that integrates SNV and CNV

models.63 The SNV model incorporates features based on both

mutations and fragment length, which improves sensitivity by ac-

counting for the shorter average fragment size of tumor-derived

fragments. Another recent study obtaineddata on five distinct fea-

tures from combined targeted methylation sequencing and low-

pass 0.553 WGBS: methylation changes at target regions,

genome-wide methylation, fragment length, copy-number

changes, and end motifs from several hundred patients with

early-stage cancer and healthy controls.137 In addition to using

anensembleclassifier for cancerdetection, integrating theoutputs

from individual ’omic-specific classifiers, the authors also tried

integrating multi-omic data at the level of the features themselves

before feeding the combined data into machine learning algo-

rithms. Interestingly, the ensemble ‘‘SPOT-MAS’’ classifier outper-

formed all single-feature prediction models whereas the models

built directly on combined data were all inferior to both the

ensemble classifier and the end-motif single-feature model. This

highlights the complexities and nuances of determining the

optimal approach to feature integration.

There are a number of challenges when integrating multi-

omics data in supervised machine learning models.139,140 Prob-

lems with missing data, which can inevitably occur when dealing

with clinical samples and complex assays, may be exacerbated

if different data types are missing for different individuals or time

points across a cohort. The amount of training and validation

data available across the different data types can often be a

limiting factor, with model overfitting and generalizability of

models to new datasets being a potential issue. For ensemble

classifier approaches, there is a risk of losing specificity when

integrating outputs frommultiple ‘omic-specific classifiers, while

for approaches that integratemulti-omics featureswithin a single

model, there can be the challenge of integrating features of

different data types (e.g., continuous and categorical variables)

and the number of potential features can differ by orders of

magnitude across the different layers. Multi-omic integration in

the liquid biopsy setting brings the additional challenge that

the tumor-related signal often forms only a small fraction of the

total data, which may exacerbate the aforementioned issues.

An issue with any unsupervised integration of heterogeneous

multi-omics data is interpretability in terms of deriving the under-

lying factors that represent sources of variation between sam-

ples. Multi-omics factor analysis (MOFA) is one example of a

framework that overcomes this issue by inferring hidden ‘‘fac-

tors’’ that capture major sources of variation across samples141

and then linking these factors back to the specific molecular fea-

tures that contributed to them.MOFA can disentangle howmuch

each factor is unique to a single modality or shared across mul-
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tiple modalities, highlighting where different ‘omic layers have

either synergized or produced distinct sources of variation.

Neither MOFA nor other similar multi-omics approaches142

have yet been applied to liquid biopsy, and their utility in this

setting remains to be demonstrated.

An important consideration of multi-omics liquid biopsy as-

says is the possibility of integrating additional clinical, patholog-

ical (e.g., biochemistry), and radiological data at multiple time

points (Figure 1). This multi-modal data could be used to create

a dynamic profile for predicting outcomes (e.g., anticipating ther-

apy resistance or toxicity) which can be refined over time. One

such approach to ‘‘dynamic risk profiling’’ involved the creation

of a continuous individualized risk index (CIRI) using a Bayesian

proportional hazards approach.143 These models are disease

type specific, combining knowledge of existing clinical/patho-

logical risk factors with serial ctDNA levels. The CIRI-diffuse

large B cell lymphoma model produced a personalized predic-

tion of PFS and OS at any given time point throughout the dis-

ease course which outperformed existing response assessment

tools (e.g., interim positron emission tomography-computed

tomography scans). Similarly CIRI models in chronic lympho-

cytic leukemia and breast cancer performed well.143 CIRI selects

a small number of existing risk factors to limit the number of pre-

dictors and has potential in the longitudinal setting.

CONCLUSIONS

Understanding the complex factors that determine treatment

response and the timing and mechanisms of therapy resistance

will be key to make further improvements in the outcomes of pa-

tients with cancer. Studies of tumor biology based on limited bi-

opsy samples and time points may not be able to fully capture

the temporal dynamics of tumor evolution resulting in tumor het-

erogeneity and differential responses to therapy. Multi-omics

liquid biopsy offers a tractable, alternative route to both predict

and monitor treatment responses and the acquisition of treat-

ment resistance. Although beyond the scope of this review,

cfNA-based liquid biopsies could combine with proteins, tu-

mor-educated platelets, and lipids, alongside integration with ra-

diomic, pathological, and clinical data. Current methods for

‘omic analyses face limitations in terms of clinical applicability

due to cost, specialist sample and data handling requirements,

and turnaround time. Although novel approaches have increased

sensitivity of ctDNA-based detection, there is still a limit to this

that may be a barrier for its use in monitoring MRD, as the time

window between molecularly and clinically detectable relapse

must be sufficient to be clinically meaningful. One recently pro-

posed technique to enhance cfDNA assay sensitivity is the use

of in vivo ‘‘priming’’ agents which transiently reduce the rate of

cfDNA clearance; these agents are, however, some way from

deployment in humans.144

For assays to be implemented in clinical laboratories, a range

of variables at both the pre-analytical (e.g., sample collection

tube, storage, and processing) and analytical stages require

standardization and technical validation.145,146 Academic insti-

tutions where a lot of these tests are initially developed can

have varied practices and access to accredited laboratories

(ISO 15189/FDA accredited) for analytical validation can be
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costly/require commercial investment. A further challenge if

‘omic liquid biopsies are clinically utilized as predictive or prog-

nostic biomarkers is the necessity for robust, validated bioinfor-

matics pipelines that can account for pre-analytical variation and

that produce an output that is clinically meaningful and under-

standable for clinicians and their patients when making treat-

ment decisions. The advantages of adding ‘omic layers that pro-

vide additional information will need to be balanced against the

requirements for outputs that can be straightforwardly and

consistently applied to clinical decision-making and assessed

within the structure and regulatory requirements of a prospective

clinical trial. Developing regulatory roadmaps for the robust

assay validation required for clinical implementation represents

another challenge for these complex multi-omic liquid biopsies.

Some of the more complex techniques and approaches dis-

cussed may be more relevant for understanding the biological

underpinnings of tumor biology and emergence of resistance

than being directly applied in the clinic. Finally, for any assay to

be used in the clinic, it must first demonstrate that it can improve

outcomes for patients preferably within a prospective phase 3

clinical trial.

While therapeutic advances over the past decade have trans-

formed cancer outcomes, clinicians, researchers and patients

are searching for ways to improve outcomes for those who do

not respond to therapy or who develop resistance, as well as

avoiding unnecessary overtreatment and associated toxicities.

The breadth of data that ‘omic liquid biopsies can provide at mul-

tiple time points throughout a patient’s journey with cancer can

be used to aid diagnosis, refine treatment decisions, and under-

stand the mechanisms by which resistance develops in order to

improve patient outcomes in the future.
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