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ABSTRACT
Biotic interactions are crucial for determining the structure and dynamics of communities; however, direct measurement of these 
interactions can be challenging in terms of time and resources, especially when numerous species are involved. Inferring spe-
cies interactions from species co-occurrence patterns is increasingly being used; however, recent studies have highlighted some 
limitations. To our knowledge, no attempt has been made to test the accuracy of the existing methods for detecting mutualistic 
interactions in terrestrial ecosystems. In this study, we compiled two literature-based, long-term datasets of interactions between 
butterflies and herbaceous plant species in two regions of Germany and compared them with observational abundance and pres-
ence/absence data collected within a year in the same regions. We tested how well the species associations generated by three 
different co-occurrence analysis methods matched those of empirically measured mutualistic associations using sensitivity and 
specificity analyses and compared the strength of associations. We also checked whether flower abundance data (instead of plant 
abundance data) increased the accuracy of the co-occurrence models and validated our results using empirical flower visitation 
data. The results revealed that, although all methods exhibited low sensitivity, our implementation of the Relative Interaction 
Intensity index with pairwise null models performed the best, followed by the probabilistic method and Spearman's rank corre-
lation method. However, empirical data showed a significant number of interactions that were not detected using co-occurrence 
methods. Incorporating flower abundance data did not improve sensitivity but enhanced specificity in one region. Further anal-
ysis demonstrated incongruence between the predicted co-occurrence associations and actual interaction strengths, with many 
pairs exhibiting high interaction strength but low co-occurrence or vice versa. These findings underscore the complexity of eco-
logical dynamics and highlight the limitations of current co-occurrence methods for accurately capturing species interactions.

1   |   Introduction

Mutualistic interactions between plants and animals such 
as pollination are the base that supports many terrestrial 
ecosystems (Bascompte and Jordano  2013; Mittelbach and 
McGill  2019). At the community level, interactions may in-
volve dozens or even hundreds of interacting species in 

complex ways. Therefore, to investigate them, studies should 
shift from a reductionist, individual-level to a more systemic, 
community-level approach. This is particularly relevant 
for mutualistic interactions, such as pollination, which are 
highly relevant not only for ecosystem functioning but also 
for humans. For instance, pollination is considered a vital 
ecosystem service valued at an estimated global annual cost 
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of 235–577 million USD (IPBES  2016). Interactions between 
species are typically observed directly from physical con-
tact between the species involved or, in the case of pollina-
tion, quantified from flower visitations (Börschig et al. 2013; 
Mittelbach and McGill  2019), which is time- and resource-
intensive, thereby limiting our ability to extensively study 
them. Therefore, recently, efforts have been taken to infer spe-
cies interactions from species co-occurrence patterns based 
on incidence or abundance matrices, using statistical methods 
(Faust and Raes  2012; Lane et  al.  2014; Borthagaray, Arim, 
and Marquet  2014; Harris  2016; Brazeau and Schamp  2019; 
Thurman et al. 2019).

Pattern analysis involves measuring the frequency of the co-
occurrence of two or more species among different spatial 
locations and evaluating whether those species show a posi-
tive (i.e., co-occur more often than expected, aggregated) or 
negative (i.e., co-occur less often than expected, segregated; 
Birkhofer, Wolters, and Diekötter  2011; Cazelles et  al.  2016) 
spatial association. A primary concern of co-occurrence anal-
ysis is understanding the extent to which biotic interactions 
translate into species co-occurrence patterns (aggregated or 
segregated), assuming that biotic interactions leave a spatial 
signal (Goberna and Verdú  2022). Recent studies have tested 
the capacity of current co-occurrence methods to infer trophic 
and non-trophic (commensalism and facilitation) interactions, 
including those between marine invertebrates, in rocky inter-
tidal ecosystems (Freilich et al. 2018; Barner et al. 2018), com-
petition in herbaceous plants in grassland ecosystems (Brazeau 
and Schamp 2019), competition and trophic interactions in am-
phibians in mountainous ecosystems (Thurman et  al.  2019), 
or plant–plant interactions in a semi-arid gypsum community 
(Delalandre and Montesinos-Navarro  2018). All these studies 
highlighted, to different degrees, the unreliability of the tested 
methods as proxies for these ecological interactions, but to our 
knowledge, none have specifically examined the effectiveness 
of these methods in detecting mutualistic interactions, such as 
pollination.

At the community level, mutualistic interactions are normally 
highly heterogeneous (i.e., the set of interacting species dif-
fers across locations) and nested in space (i.e., the species set 
at one location is a subset of the set at another location), and 
species interactions are typically weak and asymmetric (i.e., 
the benefits exchanged between species are not necessarily 
equal) (Bascompte and Jordano  2013). Regarding the inter-
actions between plants and butterflies, different species of 
adult lepidopterans have been shown to pollinate herbaceous 
plants (Andersson et al. 2002) and crops (Rader et al. 2016) in 
exchange for nectar retribution, in which species from both 
guilds benefit from each other. Many butterfly species are gen-
eralists who visit the flowers of different plant species, but some 
develop more plant-specific relationships with only one or two 
species of plants, such as in Brandenburg (Germany), Pyrgus 
alveus (Hübner, 1803), Leptidea sinapis (Linnaeus, 1758), and 
Maculinea alcon (Denis & Schiffermüller, 1775) (Richert and 
Brauner  2018). In Germany, some states conduct long-term, 
annual surveys of butterfly-plant visitation, which allow these 
observed interactions to be compared with the associations 
predicted by co-occurrence methods. Given the nature of mu-
tualistic interactions, they should be exclusively detected via 

positive associations obtained from co-occurrence analysis, 
and because co-occurrence analyses tend to better infer pos-
itive than negative interactions (Freilich et  al.  2018; Araújo 
and Rozenfeld 2014), we would expect co-occurrence analyses 
to perform well when exclusively analyzing mutualistic inter-
actions, such as pollination. Conversely, the low specificity of 
some butterfly species interactions would reduce the signal 
strength and hinder the ability of co-occurrence methods to 
correctly detect associations, providing an opportunity to test 
the effectiveness of these methods in this common application 
scenario. For example, co-occurrence association analysis has 
been used to find species interactions for which functional 
or trophic information is lacking a priori (e.g., Lima-Mendez 
et al. 2015). In this study, we tested how well the species as-
sociations generated by three different co-occurrence analysis 
techniques matched those of empirically measured mutual-
istic interactions between herbaceous plants and day-active 
lepidopteran species in agricultural grassland ecosystems. 
For this, we compiled two long-term datasets of butterfly and 
plant species interactions from literature collected in two 
regions of Germany, namely, Brandenburg (northeast) and 
Baden-Württemberg (southwest), and compared them with 
observational abundance and presence/absence data col-
lected within a year in the same regions. Given that the ex-
tent of the sampling area largely covers the distribution area 
of the analyzed species (as recommended by Goberna and 
Verdú 2022), and that co-occurrence methods are better suited 
to detect positive interactions (Freilich et al. 2018; Araújo and 
Rozenfeld 2014), we expected a high level of interaction detec-
tion using co-occurrence methods. We also checked whether 
using flower abundance data (instead of just plant abundance 
data) increased the accuracy of the co-occurrence models and 
used additional flower visitation data to validate our results. 
We further checked the strength of the interaction signals in 
the empirical data by correlating them with the co-occurrence 
association strength.

2   |   Materials and Methods

2.1   |   Occurrence Data

To calculate co-occurrences, we used existing field datasets 
from BExIS (https://​www.​bexis.​uni-​jena.​de/​), the informa-
tion system of the Biodiversity Exploratories (BEs) program 
(DFG Priority Program 1374), and a large-scale and long-term 
biodiversity research project in three regions of Germany. We 
focused on two regions: the Swabian Jura (Schwäbische Alb; 
ALB) in Baden-Württemberg (southwest) and Schorfheide-
Chorin (SCH) in Brandenburg (northeast), both of which are 
biosphere reserves. Both regions had a higher proportion of 
semi-natural habitats than those typically found in most areas 
in Germany. The two regions (ALB vs. SCH) have different 
geological substrates (loess on calcareous bedrock vs. glacial 
till often covered by glacio-fluvial or eolian sand), main soil 
types [Leptosols (in steep slopes) and Cambisols vs. Histosols 
(drained) and Luvisols], historical management practices 
[military training area (in parts) vs. intensive agricultural 
use], and other climatic and environmental parameters, for 
example, annual rainfall (700–1.000 vs. 480–580 mm) and 
elevation (460–860 vs. 3–140 m.a.s.l.). Nevertheless, they are 
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managed with similar current management practices and in-
tensities, as described in detail by Fischer et  al.  (2010)). We 
selected 89 sites (EPs) in total, 46 in ALB and 43 in SCH, for 
which we found overlapping field and literature data. Each 
site was 50 m × 50 m.

The total abundance and richness of butterfly imagines 
(Lepidoptera: Papilionoidea) were measured during field obser-
vations between the beginning of May and mid-August 2008 
at all sites, including three surveys, with 300 m long transects 
per survey, with each transect comprising six intervals of 50 m 
(BExIS dataset 12,526; Börschig and Krauss  2016). We pooled 
the data by first summing the abundances over all intervals, 
that is, the total abundance per species and survey. Then, the 
summed abundances were averaged across surveys, that is, 
the total abundance for the entire year per species and site. 
Species names and synonyms were checked using Lepiforum 
(Rennwald and Rodeland  n.d.; https://​lepif​orum.​org/​) and 
the Global Lepidoptera Index (Beccaloni et al. 2022). Leptidea 
sinapis, L. reali, and L. juvernica were considered as L. sinapis 
complex according to Dincă et al. (2011). Pyrgus alveus, P. trebev-
icensis, and P. accrete were considered as the P. alveus complex 
according to Tshikolovets (2011, pp. 40-69).

Vegetation abundance was measured at all sites between May 
and June 2008 as the percentage cover of each species relative 
to one 4 m × 4 m sampling plot per site (BExIS dataset 23,586; 
Schäfer  2018). We considered only herbaceous flowering 
plants and excluded species identified only at the genus level 
as well as unidentified observations, trees, shrubs, and fern 
species. Species names and synonyms were checked using the 
International Plant Names Index (IPNI 2023) and the Plants of 
the World Online Database (POWO 2023). A table with all but-
terfly and plant species names and synonyms for both regions 
can be downloaded from BExIS (dataset 31,733).

2.2   |   Ecological Interactions Data

Data on the interactions between herbaceous flowering plants 
and lepidopteran imagines were collected from long-term sur-
veys of flower visitation from the literature for the region ALB 
(Ebert 2005) and SCH (Richert and Brauner 2018). Data from 
ALB were collected by the Baden-Württemberg State Institute 
for Environmental Protection and the State Museum for 
Natural History in Karlsruhe, mainly between 1975 and 2005, 
but also included previously published data. The SCH data 
covers a period from 1960 to 2018 and includes regional works 
by different authors, data from the InsectIS Brandenburg da-
tabase that was evaluated, critically checked, and compared 
with Gelbrecht et al. (2016, pp. 30-311), and personal observa-
tions of the authors, specially, the work from 2002 to 2005 by 
F. Gottwald in SCH (Stein-Bachinger et al. 2010). Interactions 
were defined as visits per butterfly species to nectar plants re-
gardless of their local abundance or rarity status. We coded 
the interactions on a categorical scale from zero to one, by 
adapting the scale of Ebert  (2005, p. 273), with 0 represent-
ing no interaction (i.e., no flower visits), 0.2 representing ei-
ther single observation or observation without evaluation, 
0.4 representing single observation (but the butterfly exhibits 
flower constancy), 0.6 representing several times observation, 

and 0.8 representing frequent to very frequent observation, 
and 1 representing a strong interaction (i.e., many visits and 
nectar plant of paramount importance). For region SCH, after 
discussing with the author of the original work, we excluded 
the levels 0.4 and 0.8 (Oliver Brauner, personal communica-
tion); therefore, the final scale included only 0: no interac-
tion; 0.2: single or few/occasional observation(s), with the 
butterfly exhibiting flower constancy in some of the observa-
tions: 0.6: observed multiple times or frequently; and 1: ob-
served frequently to very frequently or regularly (Richert and 
Brauner 2018, 194). The value categories in the above lists are 
minimum values based on multiple observations, so in many 
cases, greater significance may be possible (Figures  S1 and 
S2). We filtered the interaction dataset only for those species 
present in the occurrence dataset and calculated the number 
of interactions; therefore, the total interactions per species did 
not strictly represent the full range of interactions per species 
described in the literature. For practical purposes, Medicago x 
varia Martin is considered a synonym of Medicago sativa aggr. 
Only in Ebert  (2005), both plants were listed, and whenever 
a butterfly had an interaction with M. x varia Martin and M. 
sativa aggr., the highest interaction strength was considered. 
Valeriana officinalis included all subspecies and aggregations, 
and Vicia sativa aggr. includes all subspecies of V. sativa. that 
appeared in both books. Also in this case, when a butterfly 
had an interaction with any of these plants, the highest in-
teraction strength was considered. Initial evaluation of the 
overlap in species interactions between the two regions re-
vealed that approximately 36% of the interactions were shared 
between both regions and 64% were exclusively present in one 
region. Consequently, we conducted separate analyses for the 
two regions.

2.3   |   Co-Occurrence Analysis

All analyses were conducted in R version 4.1.2 (R Core 
Team  2021). To test how well co-occurrence data between 
plants and butterflies predicts mutualistic interactions, we 
used three pairwise methods for species association (co-
occurrence methods), testing against empirical interaction 
data. We have chosen these because, of the pairwise methods 
available, they are currently the most widely used and tested 
in the literature (Barner et al. 2018; Lavender et al. 2019). Of 
these, two were based on the presence/absence (P/A) data and 
one on the abundance data. We first filtered the interaction 
data to include only the species present in the occurrence 
data. For the P/A data, we transformed the abundance data 
into Boolean (0/1) and then calculated associations using two 
different techniques: the RII index (Armas, Ordiales, and 
Pugnaire  2004) and the probabilistic method proposed by 
Veech  (2013, 2014) using the cooccur package in R (Griffith, 
Veech, and Marsh 2016, pp. 1-12). The RII is an index used to 
compare the intensity of plant interactions. RII ranges from 
−1 to 1, is symmetrical around zero, and has a negative value 
for competition and a positive value for facilitation but can be 
calculated for any type of net interaction. RII also exhibits log-
arithmic behavior, asymptotic to the y-axis lines 1 and − 1 as 
a sigmoid function. To derive the RII, we first calculated the 
observed co-occurrences (i.e., the number of sites with both 
species present) and the expected co-occurrences through 
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probability theory, following Bowers and Brown  (1982) and 
Veech  (2006), and then calculated the species associations 
(RII) using the formula described by Armas, Ordiales, and 
Pugnaire (2004) (Formula S1).

To select the significant pairs, we developed a pairwise 
implementation of null models using the “curveball algo-
rithm” or sim9 in the R package EcoSimR (Gotelli, Hart, and 
Ellison  2015; Strona et  al.  2014). We used 1000 randomiza-
tions and 5 N for the number of swaps, following the rule of 
thumb of > 4 N (more than four times the total number of links 
in the network; Maslov and Sneppen 2002; Neal et al. 2023). 
p-values were obtained by calculating the upper and lower tail 
probabilities by taking the average number of times that the 
RII of the observed matrix was higher or lower than the RII in 
1000 random matrices. For the probabilistic method, we used 
effect sizes standardized by the number of sites as a measure 
of co-occurrence intensity. The probability of co-occurrence 
at a frequency greater than the observed frequency was used 
as a measure of significance and calculated analytically using 
the hypergeometric distribution (Formula S2). In addition to 
the RII method, we chose the probabilistic method because 
it was found to be more effective than other pairwise co-
occurrence tests in a recent study that used simulated data 
(Lavender et al. 2019).

We calculated pairwise scores for plant and butterfly abundance 
data using Spearman correlation, a rank-based non-parametric 
test, that relaxes the normality assumption made by Pearson 
correlation at the cost of losing information, but that has been 
shown to perform slightly better than Pearson correlation 
for mutualistic interactions (Weiss et  al.  2016). To reduce the 
false discovery rate, p-values were adjusted for multiple test-
ing using the Benjamini–Hochberg method (Benjamini and 
Hochberg 1995).

2.4   |   Accuracy Analysis

To compare the different methods, we calculated the sensitivity 
and specificity ratios of the co-occurrence algorithm results ob-
tained at different significance cutoff values (0.05, 0.1, 0.2, and 
0.5). For this, we first classified pairs of plants and butterflies as 
true positives (TP), that is, the number of ecological interactions 
that showed a positive spatial association; true negatives (TN), 
the number of non-interactions that did not show a significant 
spatial association; false positives (FP), the number of interac-
tions that did not show a significant spatial association; and false 
negatives (FN), the number of non-interactions that showed a 
significant spatial association (Figures  S3 and S4). Then, we 
calculated the sensitivity, which is defined as the probability of 
detecting a true link and is calculated as TP/(TP + FN), whereas 
specificity was defined as the TN rate and was calculated as 
TN/(TN + FP). Both sensitivity and specificity ranged from 0 to 
1, with higher values indicating a higher likelihood of discrim-
inating between true and false interactions. The significance 
level for the sensitivity and specificity is represented by ⍺ and β, 
respectively. To compare the methods, we chose a significance 
level of 0.2, because it was a good compromise between high 
sensitivity and acceptable specificity (Figure 1) and because our 
main goal was to maximize the detected interactions. At this 

significance level, the final numbers of TP and TN achieved 
with each method were compared using Pearson's chi-squared 
test of independence (X2). This test assumes that cases are ran-
domly sampled from the population and that non-occurrences 
are included; therefore, we also used FN in the test. Due to the 
nature of mutualistic interactions, only significant positive asso-
ciations were considered, and negative associations were consid-
ered zero. Additionally, we calculated the number of potential 
interactions (total number of species on the lower taxa times the 
total number of species on the higher taxa), realized interactions 
(number of TP at the selected ⍺ level), and connectance (relative 
number of interactions over the maximum number of potential 
interactions) for each of the methods. All scripts for analyses 
can be found in the repository https://​doi.​org/​10.​5281/​zenodo.​
10931678.

2.5   |   Flower Availability Data and Data Validation

To control for possible phenological mismatches between plants 
and Lepidoptera and ensure that flowers and pollinators were 
active at the same time, we calculated co-occurrences with 
Spearman's rank correlation method using the abundance of 
Lepidoptera with the “abundance” of flowers (i.e., flower avail-
ability), instead of just vegetation abundance, therefore allowing 
only for interactions between flowers and pollinators (instead of 
plants and pollinators) and compared them (Figure 2). We used 
flower availability datasets from BExIS (datasets 4981 and 4964; 
Weiner, Linsenmair, and Blüthgen  2019a, 2019b). Flower data 
were gathered between April and September 2008 by recording 
all flowering plant species and by counting or estimating the 
number of flowering units per species. A flower unit was de-
fined as one or more flowers that demanded insects to fly from 
one unit to another. To prepare the data, we calculated the av-
erage flowering units for each species and site across all dates. 
We then checked and removed the NAs (i.e. sites where either 
plants or butterflies were not sampled) and subsets of plants that 
did not occur in the occurrence and ecological interaction data-
sets. We also log(x + 1)-transformed the flower numbers to avoid 
a high range of values. We used the correlation coefficients to 
select the positive correlations and corrected the p-values using 
the Benjamini–Hochberg method to retain only significant 
associations.

In addition to the occurrence data obtained from empirical 
surveys and ecological interaction data obtained from the liter-
ature, we extracted flower visitation data from BExIS to vali-
date our results. These data were recorded between April and 
August 2008 (BExIS dataset 10,160; Weiner et al. 2016). Flower 
visits were recorded over 6 h on a 600 m2 transect (subdivided 
into smaller intercepts) around each grassland plot. Only insects 
sitting directly in the center of flowers that appeared to feed on 
pollen or nectar were caught. Insects resting on petals were not 
sufficient for inclusion. We removed family- and genus-level 
observations and calculated the total sum of butterfly flower 
visits per plant species and region across all sites, dates, and in-
tercepts. Using only the pairs of plants and butterflies for which 
we had flower visitation data, we checked the following: (1) the 
number and percentage of negative co-occurrences found by 
any of the association methods (Table S1), (2) the correlation be-
tween the number of flower visits and the positive association 
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values obtained with each co-occurrence method using simple 
linear models for each method (Tables  S2 and S3; Figure  S5), 
and (3) the correlation between flower visits and species interac-
tions of plants and butterflies using Spearman's rank correlation 

(Table S4). For 1 and 2, we used a significance value of 0.2 to 
consider co-occurrence as significant because we wanted to find 
as many pairs of species as possible and because this was the 
cutoff found to be sufficient in our accuracy analysis.

FIGURE 1    |    Sensitivity (a–c) and specificity (d–f) per region at different significance values for the three tested co-occurrence methods: Plant 
correlation, Probabilistic, and RII null models. Sensitivity (a–c) was transformed to a percentage and appears in parentheses within the “detected” 
orange bar (blue/green bars represent the undetected known interactions). It represents the probability of detecting a true link and is calculated 
as TP/(TP + FN). The known links are the 1 s (links) in the interaction matrix. Specificity (d–f) was transformed into a percentage and appears in 
parentheses within the “detected” orange bar (blue/green bars represent the undetected known non-interactions). Specificity was defined as the true 
negative rate and was calculated as TN/(TN + FP). Known non-links are the 0 s in the interaction matrix. Abbreviations: ALB = region Swabian Jura; 
FN = false negatives; FP = false positives; Plant correlation = Spearman's rank correlation with Benjamini–Hochberg's multiple testing correction; 
Probabilistic = probabilistic method (Veech 2013); RII null models = Relative Interaction Intensity index with pairwise null models (Armas, Ordiales, 
and Pugnaire 2004); SCH = region Schorfheide-Chorin; TN = true negatives; TP = true positives.
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2.6   |   Interaction Strength Signal

To explore how the strength of the interaction signal is trans-
lated into co-occurrence data, we represented it in a coordi-
nate system by plotting the intensity of co-occurrence on the 
x-axis, which is the strength of all plant-butterfly pair asso-
ciations, against the strength of species interaction on the y-
axis, and dividing the space into four quadrants (Figure  3). 
The lower left quadrant represents pairs with weak (or no) 
trophic interactions and weak (or no) co-occurrence, which 
might arise from the interactions themselves; for example, 
butterflies might avoid unpalatable plants. On the upper 
right quadrant, pairs with strong trophic interaction and 
strong co-occurrence indicate strong, positive interactions, 
which are independent of other filters (Ovaskainen, Hottola, 
and Siitonen  2010). On the lower right quadrant, pairs with 
weak (or no) trophic interaction but strong co-occurrence (and 

therefore strong spatial aggregation) might result from shared 
preferences for environmental factors or environmental filter-
ing (Peres-Neto, Olden, and Jackson 2001) or simply because 
these species have higher local intrinsic growth rates (Cadotte 
and Tucker  2017) and dispersal limitation (Ulrich  2004), al-
though this might not apply for all butterfly species, or spatial 
variability in dispersal and subsequent settlement and recruit-
ment (de Bello et al. 2012). Finally, in the upper-left quadrant, 
pairs with strong trophic interactions but low (or no) co-
occurrence might simply indicate that spatial association is 
a poor proxy for ecological interactions (Blanchet, Cazelles, 
and Gravel  2020). In addition to plotting the strength of co-
occurrence association and the strength of interaction, we ran 
an Ordinal Logistic Regression (OLR) model using the MASS 
package in R (Venables and Ripley 2002) using only pairs of 
plants and butterflies with positive co-occurrences (using 
the RII index with pairwise null models). Only the model for 

FIGURE 2    |    Sensitivity (a, b) and specificity (c, d) per region at different significance values of the Spearman's rank correlation method for 
the abundance of lepidopteran species with the abundance of plants (a and c) and flowers (b and d) at different significance levels. Sensitivity 
was transformed to a percentage and appears in parentheses within the “detected” orange bar (blue/green bars represent the undetected known 
interactions). Sensitivity represents the probability of detecting a true link and was calculated as TP/(TP + FN). Known links are any values > 0 
in the interaction matrix. Specificity was transformed to percentage and appears in parentheses within the “detected” orange bar (blue/green 
bars represent the undetected known non-interactions). It was defined as the true negative rate and was calculated as TN/(TN + FP). Known non-
links are the 0 s in the interactions matrix. Abbreviations: ALB = region Swabian Jura; FN = false negatives; FP = false positives; Plant, and Flower 
correlation = Spearman's rank correlation of plants and flowers with Benjamini–Hochberg's multiple testing correction; Probabilistic = probabilistic 
method (Veech  2013); RII null models = Relative Interaction Intensity index with pairwise null models (Armas, Ordiales, and Pugnaire  2004); 
SCH = region Schorfheide-Chorin; TN = true negatives; TP = true positives.
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region ALB was significant, where the probability of a pair 
of interacting species having a high interaction strength de-
creased with a higher co-occurrence association, especially 
at higher levels of interaction strength, but the model did not 
meet with the proportional odds assumption; therefore, this 
model should be interpreted with caution and should only 
be considered as a preliminary insight into the relationship 
between co-occurrence association and interaction strength 
(Figure  S6; Tables  S5 and S6). Additionally, to further vali-
date these results and because we only had one predictor, we 
conducted a one-way ANOVA to compare the differences in 
means of co-occurrence association strength (continuous vari-
able) for each interaction strength (categorical variable). We 
further used a Tukey HSD post hoc test with a 95% CI to com-
pare all possible group pairings (Figure S7).

3   |   Results

For the ALB and SCH regions, 51 and 21 lepidopteran and 135 
and 51 plant species, respectively (Figures S1 and S2), that si-
multaneously occurred in the field observations (abundance 
data) and showed a mutualistic interaction in the literature (spe-
cies interactions) were selected.

The comparison of pairwise associations obtained from co-
occurrence analyses with species interaction data showed 
that, particularly at lower ⍺ levels, where the models had 
lower levels of “false positives” (Table  1), all tested meth-
ods had low sensitivity (Figure  1a–c). The best performing 
method was the implementation of the RII index with pair-
wise null models. The second-best performing method was 

the probabilistic model, and the worst performing method 
was Spearman's rank correlation method with multiple testing 
correction. At a significance level of ⍺ = 0.2, the difference in 
the number of correctly detected interactions between the two 
methods was significant for ALB (X2 = 3.986, df = 1, N = 817, 
p = 0.046) and SCH (X2 = 14.291, df = 1, N = 214, p < 0.001). At 
this significance level, the sensitivity values achieved were 
0.252, 0.209, and 0.160 using methods RII with pairwise 
null models, Probabilistic, and Spearman's rank correlation, 
respectively.

The highest specificity was achieved using the probabilistic 
method of Veech (2013, 2014). The RII with pairwise null mod-
els and the Spearman's rank correlation methods had similar 
specificity at β = 0.05, but the specificity of the RII decreased 
strongly with the increasing significance level (Figure  1e,f). 
In comparison, the specificity of the Spearman's rank correla-
tion method was more constant and decreased less strongly 
(Figure  1d); thus, at the β = 0.2 level, the specificity of the 
Spearman method was 10% higher than that of RII. At this 
selected level of significance, the number of TN detected with 
the probabilistic method was significantly higher than the RII 
method in ALB (X2 = 474.98, df = 1, N = 817, p = 0.001) and SCH 
(X2 = 88.782, df = 1, N = 214, p < 0.001).

At the selected significance level of ⍺ = 0.2, the number of re-
alized and relative number of interactions achieved by any of 
the methods was significantly lower than those of the empirical 
data in both regions (Table  2). In particular, the connectance 
achieved with the best performing method (RII with pairwise 
null models) was 4.0 and 3.5 times less than the empirical con-
nectance in ALB and SCH respectively.

FIGURE 3    |    Quadrant analysis showed incongruence between the actual interaction strength and predicted co-occurrence association strength 
per region. Each empty point represents a pair of plants and butterfly species. To aid visualization, we added dashed black lines that divide each plot 
into four quadrants and thin dotted black lines for each trophic level. At specified interaction strengths of 0 (low), 0.2, 0.4, 0.6, 0.8, and 1 (strong), the 
boxes show the interquartile range, that is, the first and third quartiles (the 25th and 75th percentiles).
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Running the co-occurrence analyses with the abundance of 
flowers instead of just plant abundance did not improve the 
sensitivity (Figure 2a,b). At the ⍺ = 0.2 level, the number of TP 
identified for plants and flowers did not differ significantly nei-
ther in ALB (X2 = 3.533, df = 1, N = 817, p = 0.060) nor in SCH 
(X2 = 0.607, df = 1, N = 214, p < 0.436). In contrast, specificity was 
improved (Figure 2c,d) for the ALB region (X2 = 40.859, df = 1, 

N = 6885, p < 0.001), but not for the SCH region (X2 = 1.707, 
df = 1, N = 1071, p = 0.191).

The analysis of quadrants for species pairs using the rela-
tionship between interaction strength and co-occurrence 
association strength revealed a high degree of incongru-
ence between the predicted association strength of the best 

TABLE 1    |    Details of the sensitivity and specificity analyses for all co-occurrence methods at each significance level.

Method Region ⍺ TP TN FP FN Sensitivity Specificity

RII ALB 0.050 47 1852 4216 770 0.058 0.305

RII ALB 0.100 123 1359 4709 694 0.151 0.224

RII ALB 0.200 206 875 5193 611 0.252 0.144

RII ALB 0.500 414 0 6068 403 0.507 0.000

RII SCH 0.050 11 244 613 203 0.051 0.285

RII SCH 0.100 31 196 661 183 0.145 0.229

RII SCH 0.200 62 117 740 152 0.290 0.137

RII SCH 0.500 123 0 857 91 0.575 0.000

Probabilistic ALB 0.050 70 2545 3523 747 0.086 0.419

Probabilistic ALB 0.100 105 2330 3738 712 0.129 0.384

Probabilistic ALB 0.200 171 1882 4186 646 0.209 0.310

Probabilistic ALB 0.500 319 1101 4967 498 0.390 0.181

Probabilistic SCH 0.050 11 347 510 203 0.051 0.405

Probabilistic SCH 0.100 22 318 539 192 0.103 0.371

Probabilistic SCH 0.200 29 283 574 185 0.136 0.330

Probabilistic SCH 0.500 85 193 664 129 0.397 0.225

Plant cor ALB 0.050 67 1808 4260 750 0.082 0.298

Plant cor ALB 0.100 98 1659 4409 719 0.120 0.273

Plant cor ALB 0.200 131 1455 4613 686 0.160 0.240

Plant cor ALB 0.500 196 1017 5051 621 0.240 0.168

Plant cor SCH 0.050 5 261 596 209 0.023 0.305

Plant cor SCH 0.100 9 247 610 205 0.042 0.288

Plant cor SCH 0.200 11 240 617 203 0.051 0.280

Plant cor SCH 0.500 38 192 665 176 0.178 0.224

Flower cor ALB 0.050 45 1237 2271 629 0.067 0.353

Flower cor ALB 0.100 66 1155 2353 608 0.098 0.329

Flower cor ALB 0.200 84 1051 2457 590 0.125 0.300

Flower cor ALB 0.500 160 774 2734 514 0.237 0.221

Flower cor SCH 0.050 0 182 392 167 0.000 0.317

Flower cor SCH 0.100 3 181 393 164 0.018 0.315

Flower cor SCH 0.200 5 180 394 162 0.030 0.314

Flower cor SCH 0.500 31 136 438 136 0.186 0.237

Abbreviations: ⍺ = significance level, ALB = Region Swabian Jura, FN = false negatives, FP = false positives, Plant and Flower cor = Spearman's rank correlation of 
plants and flowers with Benjamini–Hochberg's multiple testing correction, Probabilistic = probabilistic method (Veech 2013), RII = Relative Interaction Intensity index 
with pairwise null models (Armas, Ordiales, and Pugnaire 2004), SCH = region Schorfheide-Chorin, TN = true negatives, TP = true positives.
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performing co-occurrence method and the actual species 
interaction strength in both regions (Figure  3). Specifically, 
a high number of pairs had high interaction strength but 
low co-occurrence association and vice versa. The one-way 
ANOVA showed that there was a statistically significant dif-
ference in co-occurrence association strength between at least 
two of the levels of interaction strength only for region ALB 
(F (5) = 4.098, p = 0.001), but not for region SCH (F (3) = 0.180, 
p = 0.910). The Tukey HSD post hoc test revealed that this dif-
ference was between species interaction strength levels 0 and 
0.2 (Figure S7).

4   |   Discussion

In this study, we investigated the performance of three pair-
wise co-occurrence methods for detecting mutualistic species 
interactions between butterflies and flowering plant species in 
temperate grassland ecosystems. Given the results of prior in-
vestigations, which revealed that co-occurrence methods are 
more effective in detecting positive interactions than negative 
ones, we anticipated that the presence of associations would be 
evident in the P/A and abundance data, and that these signals 
would become more pronounced when using additional flower 
abundance data.

Contrary to our expectations, all three methods showed weak 
performances. Among them, the RII index with pairwise null 
models performed best for sensitivity, whereas the proba-
bilistic method showed the highest specificity. However, all 
the methods exhibited low sensitivity, particularly at higher 
significance levels, affecting their ability to accurately de-
tect interactions. In a study on marine intertidal ecosystems 
by Freilich et  al.  (2018), at an ⍺ = 0.1, the sensitivity (0.692) 
was higher than that of ALB (0.129) and SCH (0.103) using 
the probabilistic model (sensu Veech 2013), but the specificity 
(0.283) was lower than that of ALB (0.384) and SCH (0.371). 

This could be explained by: (1) the sessile nature of marine in-
tertidal species compared with the relatively high mobility of 
butterflies (Gullan and Cranston 2014), for which interactions 
between sessile organisms might leave a stronger signal in 
the occurrence and abundance data; (2) butterflies might not 
be efficient pollinators (Jennersten 1984), even though it has 
been shown that some butterflies pollinate some herbaceous 
plants in temperate climates, such as northern Europe (Table 1 
in Andersson et al. 2002), and are specially adapted for long-
distance pollination (Courtney, Hill, and Westerman 1982); (3) 
some butterfly species may exhibit limited flower constancy, 
which can fluctuate based on local flower availability (Szigeti 
et al. 2018) and even change during the lifetime of individual 
butterflies (Szigeti et al. 2019); and (4) possibly, the relatively 
limited sampling effort for the occurrence data (approximately 
one sample per month per site). Following the logic of points 
one and three and given that butterfly larvae show more spe-
cific interactions with their larval host plants and are less mo-
bile than adults (Ebert and Rennwald 1991), one would expect 
stronger patterns of species co-occurrence between them, re-
sulting in higher sensitivity and specificity.

At a significance level of ⍺ = 0.2, the best method performed 
significantly better than the second-best method. Although the 
chosen significance level (⍺ = 0.2) aimed for the highest sensitiv-
ity and acceptable specificity, the sensitivity values were modest 
at the conventional ⍺ = 0.05. Despite achieving higher specific-
ity, none of the methods detected as many interactions as the 
empirical data at any of the tested significance levels (range 
from 0.05–0.5). Detection was not low because there were ex-
tremely few or high numbers of true interactions in the data-
set. In this respect, the relative number of interactions of the 
empirical datasets extracted from the literature for region ALB 
(0.119) and SCH (0.2) were within the values of other empirical 
datasets typically found in the literature which range (on aver-
age) between 0.1 and 0.3 (Dunne, Williams, and Martinez 2002; 
Rezende, Jordano, and Bascompte  2007; Baumgartner  2020). 

TABLE 2    |    Network-level summary metrics for the observed community of species interactions and for the reconstructed associations using co-
occurrence analyses with a significance level of ⍺ = 0.2.

Method Region Potential associations Realized associations Connectance

Empirical ALB 6885 817 0.119

RII null models ALB 6885 206 0.030

Probabilistic ALB 6885 171 0.025

Plant correlation ALB 6885 131 0.019

Flower correlation ALB 4182 84 0.020

Empirical SCH 1071 214 0.200

RII null models SCH 1071 62 0.058

Probabilistic SCH 1071 29 0.027

Plant correlation SCH 1071 11 0.010

Flower correlation SCH 741 5 0.007

Note: Values in bold highlight those in the (known) empirical community.
Abbreviations: ALB = Swabian Jura, Plant and Flower correlation = Spearman's rank correlation of plants and flowers with Benjamini–Hochberg's multiple testing 
correction, Probabilistic = probabilistic method (Veech 2013), SCH = Schorfheide-Chorin, RII null models = Relative Interaction Intensity index with pairwise null 
models (Armas, Ordiales, and Pugnaire 2004).
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This supports the validity of using interaction data from the lit-
erature in this study.

Including the abundance of flowers in the analyses, rather than 
the abundance of plants, did not improve sensitivity (Figure 2a,b) 
but did improve specificity within the ALB region (Figure 2c,d). 
These findings underscore the complexity of ecological inter-
actions and emphasize the importance of considering regional 
differences and environmental contexts when interpreting the 
results. Further research is needed to refine the methodologies 
for the accurate assessment of species interactions in diverse 
ecological settings.

Our study also aimed to explore the relationship between the 
signal strength of species interactions and the co-occurrence 
patterns in ecological systems. Through various analytical 
methods, including plotting, OLR, and one-way ANOVA, we 
sought to understand how the strength of interactions influ-
ences co-occurrence associations. However, our results re-
vealed significant discrepancies between the predicted and 
observed patterns in both regions, particularly in the dispro-
portionate number of species pairs exhibiting high interaction 
strength but low co-occurrence, and vice versa. Moreover, the 
negative relationship found in ALB (whereas no relationship 
was found in SCH) suggests the influence of local environ-
mental factors and regional management on the observed 
patterns. In the SCH region, historically intense local man-
agement has reduced local species richness and simplified the 
regional community to mostly generalist species in compari-
son to region ALB (Gelbrecht et al. 2016). Based on the Species 
Interactions–Abiotic Stress Hypothesis (SIASH), the effect of 
species interactions on occurrence (and therefore the extent 
of their geographical ranges) would also differ across abi-
otic stress gradients (Louthan, Doak, and Angert 2015), with 
the intensity or number of interactions per interactor being 
higher in high-stress environments. These findings high-
light the complexity of ecological dynamics and emphasize 
the limitations of using co-occurrence as a proxy for species 
interactions.

In our analysis, the implementation of the RII metric (Armas, 
Ordiales, and Pugnaire  2004) with the pairwise null model 
using the “curveball algorithm” (Strona et  al.  2014) was the 
method with the highest sensitivity. This algorithm works by 
fixing the row and column totals, that is, perfectly constraining 
the matrix, with the marginal totals of the null matrix match-
ing those of the original matrix (Strona et  al.  2014). Fixing 
marginal totals not only has been shown to reduce the risk 
of type II statistical error (Ulrich and Gotelli 2013), but also 
has ecological implications. For example, in a species-by-site 
matrix (rows × columns), fixing the row totals means that we 
maintain species occurrence across sites; hence, species that 
occupy many or few sites represent generalists or specialists. 
Conversely, when fixing column totals, we maintain the occu-
pancy of sites; hence, sites with high occupancy also represent 
sites with high resource availability (Gotelli and Graves 1996). 
In the context of our analysis, this would also maximize the 
chances of preserving species interactions across sites, helping 
to increase their detection. Freilich et al. (2018) found that, es-
pecially for positive interactions, sensitivity increases rapidly 
when species become more common; hence, implementing 

a model that allows for representation of this might also in-
crease the chances of detection.

In contrast, the probabilistic model was the second best in de-
tecting true interactions (sensitivity) but the best in detecting 
the absence of interactions (highest specificity). Arita  (2016) 
pointed out that the probabilistic method corresponds to 
Fisher's exact test, therefore being the analytical equivalent 
to a null model with fixed marginal rows but unconstrained 
columns (i.e., a F-E null model). This means that the prob-
ability of a cell in the null matrix is only dependent on the 
corresponding row total, but independent of the column to-
tals of the original matrix (Veech 2013); hence, all sites have 
the same probability of being occupied by a given species. 
Butterfly species have a high dispersal ability (Ebert and 
Rennwald  1991). Therefore, they could fly and possibly oc-
cupy many sites; therefore, representing this trait using this 
null model could help increase the sensitivity and especially 
the specificity of the model.

Nevertheless, with any of the methods used, the specificity 
was generally higher than the sensitivity, showing the supe-
rior capabilities of the methods for detecting true absences 
of interactions over the existence of true interactions. This 
suggests that, while these methods provide insights, they do 
not capture the complexity of real ecological interactions, es-
pecially when these mechanisms do not leave such a strong 
spatial signal. In recent years, the analysis of co-occurrences 
and interpretation of significant associations has also been 
criticized (Blanchet, Cazelles, and Gravel 2020; Goberna and 
Verdú 2022). Caution should be taken when directly interpret-
ing significant associations (aggregation or segregation) as 
ecological interactions because other factors could influence 
the detected pattern. For example, co-occurrence patterns 
might arise due to dispersal limitations or environmental 
factors hindering the distinction between the influence of 
species interactions and the environment based on species 
distribution data (Gotelli and Ulrich 2012; Godsoe, Franklin, 
and Blanchet 2016). Furthermore, for species with shared phe-
notypic attributes and small niche differences, these species 
may co-occur simply because they have higher local intrinsic 
growth rates than other species (Cadotte and Tucker  2017). 
Interactions with other species, indirect species interactions, 
and increased matrix complexity may also hamper detection 
(Cazelles et  al.  2016). Another consideration is that to cor-
rectly interpret ecological interactions, the spatial scale of the 
analysis should always match the scale of the interactions and 
the analysis should consider a large sample size (Blanchet, 
Cazelles, and Gravel  2020). Moreover, to detect patterns, bi-
otic interactions should first leave a signal in the data, which 
is usually assumed in analyses and might be less pronounced 
in highly mobile organisms.

Our study showed the shortcomings of prevalent co-occurrence 
methods in detecting mutualistic ecological interactions for highly 
mobile species, underscoring the need for refined methodologies 
or abandoning such long-sought shortcuts. We emphasize the 
importance of understanding algorithmic implications, caution 
against direct interpretation of co-occurrence patterns as interac-
tions, and advocate refined approaches and consideration of con-
textual factors to better comprehend ecological interactions.
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