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Dopamine-mediated interactions between 
short- and long-term memory dynamics

Cheng Huang1,2,8,11 ✉, Junjie Luo1,3,11, Seung Je Woo1, Lucas A. Roitman1, Jizhou Li3,4,9, 
Vincent A. Pieribone5,6, Madhuvanthi Kannan5,6,10 ✉, Ganesh Vasan5,6,10 ✉ & 
Mark J. Schnitzer1,2,3,4,7 ✉

In dynamic environments, animals make behavioural decisions on the basis of the 
innate valences of sensory cues and information learnt about these cues across 
multiple timescales1–3. However, it remains unclear how the innate valence of a sensory 
stimulus affects the acquisition of learnt valence information and subsequent memory 
dynamics. Here we show that in the Drosophila brain, interconnected short- and 
long-term memory units of the mushroom body jointly regulate memory through 
dopamine signals that encode innate and learnt sensory valences. By performing 
time-lapse in vivo voltage-imaging studies of neural spiking in more than 500 flies 
undergoing olfactory associative conditioning, we found that protocerebral posterior 
lateral 1 dopamine neurons (PPL1-DANs)4 heterogeneously and bidirectionally encode 
innate and learnt valences of punishment, reward and odour cues. During learning, 
these valence signals regulate memory storage and extinction in mushroom body 
output neurons (MBONs)5. During initial conditioning bouts, PPL1-γ1pedc and 
PPL1-γ2α′1 neurons control short-term memory formation, which weakens inhibitory 
feedback from MBON-γ1pedc>α/β to PPL1-α′2α2 and PPL1-α3. During further 
conditioning, this diminished feedback allows these two PPL1-DANs to encode the  
net innate plus learnt valence of the conditioned odour cue, which gates long-term 
memory formation. A computational model constrained by the fly connectome6,7  
and our spiking data explains how dopamine signals mediate the circuit interactions 
between short- and long-term memory traces, yielding predictions that our 
experiments confirmed. Overall, the mushroom body achieves flexible learning 
through the integration of innate and learnt valences in parallel learning units sharing 
feedback interconnections. This hybrid physiological–anatomical mechanism may  
be a general means by which dopamine regulates memory dynamics in other species 
and brain structures, including the vertebrate basal ganglia.

When navigating changing environments, animals evaluate the innate 
and learnt valences of sensory cues. The former represent predictions 
that may promote survival, such as those about threats or food, whereas 
the latter represent updates to these predictions based on experience2. 
Many species process innate and learnt valences in distinct neural 
pathways, which may promote behavioural reliability and flexibility1,3,8. 
Whether innate valences shape the acquisition of learnt valence infor-
mation, and what functional benefits such interactions might confer, 
have remained unknown.

One possibility is that innate valences modulate learning through 
dopamine teaching signals that convey both innate and learnt informa-
tion. Mammalian dopamine neurons (DANs) encode reward predictions 
and prediction errors, as well as motivational values9 and novelties or 

identities of unfamiliar cues, showing that DANs can signal certain innate 
facets of sensory cues10. In Drosophila, DANs also process innate and 
learnt valences. The PPL1 and protocerebral anterior medial (PAM) clus-
ters of DANs provide the fly mushroom body with negative and positive 
reinforcement signals, respectively, that drive synaptic plasticity and 
learning5,11. Notably, co-activation of DANs and odour-responsive, mush-
room body Kenyon cells induce olfactory learning12,13. But DANs also 
innately respond to odorants, not just to aversive or rewarding stimuli14.

The PPL1-DANs and MBONs interconnect in a parallel-recurrent cir-
cuit of multiple learning units sharing widespread feedback connec-
tions5,6 (Fig. 1a). Multiple memory traces can exist concurrently across 
different units; in each unit, one DAN controls synaptic plasticity. DANs 
also receive recurrent signals from MBONs conveying learnt valence 
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information6,7,15. We hypothesized that DANs integrate innate valence 
signals coming from the sensory system (through the mushroom body) 
and learnt valences stored in the memory (by MBONs).

We tested this hypothesis through long-term optical voltage-imaging 
studies in more than 500 flies. Unlike Ca2+ imaging, voltage imaging 
reports neural spikes with millisecond resolution, revealing spik
ing excitation and suppression16. We studied how PPL1-DAN teaching 
signals encode and integrate innate and learnt valences, and found 
that this integration allows short-term memory to regulate long-term 
memory formation through MBON → DAN feedback, enabling complex 
interactions between short- and long-term memory.

Long-term voltage imaging
To image spiking across an olfactory conditioning assay (Fig. 1b and 
Supplementary Video 1), we used a laser microsurgical preparation17 
for long-term imaging18 and predominantly the positive-polarity 
voltage indicator, pAce16, a FRET–opsin indicator we created based 
on our earlier negative-polarity indicator using an opsin from the 
algae Acetabularia19. Using Split-GAL4 fly lines5, we expressed pAce 
in five PPL1-DAN (PPL1-γ1pedc, -γ2α′1, -α′2α2, -α3 and -α′3m) and six 
MBON (MBON-γ1pedc>α/β, -γ2α′1, -α2sc, -α′2, -α3 and -α′3) subtypes 
(Extended Data Fig. 1a–i and Extended Data Table 1).

Using 1-kHz imaging of mushroom body compartments innervated 
by PPL1-DAN axons and MBON dendrites, we found variable spontane-
ous spiking and bursting rates across all 11 neuron types (Fig. 1c–e and 
Extended Data Fig. 1a–i). Spike-detection fidelity values, d′, and error 
rates were satisfactory in all neuron types (Extended Data Fig. 1j–l).  
In MBONs, spikes back-propagated from axonal regions into dendrites 

(Extended Data Fig. 2 and Supplementary Video 2), which might facili-
tate spike-timing-dependent plasticity20.

PPL1-DANs encode innate valences heterogeneously 
and bidirectionally
To assess valence coding, we tracked PPL1-DAN responses to punish-
ments (electric shock), rewards (sucrose) and odours. After the onset  
of shock pulses to the thorax, spiking increased in PPL1-γ1pedc, -γ2α′1  
and -α3 neurons, and decreased after shock offset, whereas sucrose- 
intake decreased spiking in PPL1-γ1pedc, -γ2α′1, -α′2α2 and -α3 neurons 
(Fig. 2a–e).

We next tested behavioural odour preferences without voltage 
imaging. We delivered odours from a fly’s front left or right side and 
recorded its locomotor responses on a trackball towards or away from 
the odour (Fig. 2f). We found five odours that evoked responses from 
vigorous approach to vigorous avoidance, indicating wide-ranging 
odour valences (Fig. 2f–h and Extended Data Fig. 3a,b).

Using these five odours, we imaged PPL1-DAN and MBON responses. 
Unlike the odour-evoked excitations observed in Ca2+-imaging stud-
ies13,14,21, we found that odours bidirectionally modulated PPL1-DAN 
spiking, according to flies’ odour-evoked behavioural responses 
(Fig. 2c,i; Extended Data Fig. 3c–h). An exception was PPL1-α′3, which 
mainly exhibited excitations. MBONs had excitatory responses with 
amplitudes unrelated to odour valence22 (Extended Data Fig. 4a–g).

Across the five odours, the responses of DANs and MBONs corre-
lated positively with those of other DANs and MBONs, respectively, 
but negatively across the two cell classes (Fig. 2i,j). MBON-α2sc was 
an exception, with odour responses resembling those of PPL1-DANs. 
PPL1-DAN odour responses correlated well with odour-evoked behav-
ioural responses, apart from PPL1-α′3. The MBON odour responses were 
more variable across flies and correlated more weakly with behaviour. 
Thus, PPL1-DAN responses enabled more-accurate classifications of 
odour valences (Extended Data Fig. 4h), suggesting that DAN odour 
coding is not merely inherited through feedback from MBONs but 
instead reflects diverse inputs6.

Learning induces bidirectional plasticity across 
PPL1-DANs and MBONs
To probe mushroom body coding and plasticity during learning, we 
developed an associative conditioning assay for head-fixed flies behav-
ing on a trackball or undergoing voltage imaging (Fig. 3a–d). As with 
conventional T-maze conditioning assays, ours had six training bouts, 
each with sequential exposures to a pair of conditioned-stimulus (CS+ 
and CS−) odours of the same initial valence. In each bout we paired a 30-s 
CS+ delivery with a 30-s pulsed electric shock to the fly. After condition-
ing with innately attractive odours, flies reduced their approaches to 
the CS+ but not to the CS− for 1 h or more (Fig. 3b,c).

Voltage-imaging experiments showed that CS−-evoked responses in 
all PPL1-DANs were unaltered by conditioning (Fig. 3e and Extended 
Data Fig. 5). CS+-evoked responses of PPL1-α′2α2 and -α3 evolved across 
3–6 training bouts, changing from odour-evoked decreases in spik-
ing to evoked increases and then back to evoked decreases after 1 h, 
suggesting that learnt valence information transiently alters valence 
coding in these cells. PPL1-γ1pedc consistently exhibited CS+-evoked 
spiking decreases, but with diminished amplitudes at 5 min, but not 
1 h, after conditioning. PPL1-γ2α′1 and -α′3 neurons were unaffected 
by conditioning, as was spontaneous DAN spiking. After training, the 
differential changes in evoked spike rates, which we quantified using 
a CS+ versus CS– bias (Methods), were biased to the CS+ in PPL1-α′2α2 
and -α3 but not in other PPL1-DANs.

Unlike PPL1-DANs, after training, MBONs-γ1pedc>α/β and -γ2α′1 had 
decreased CS+-evoked responses that returned to near-baseline values 
about 1 h later, in agreement with previous studies12, whereas decreased 
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Fig. 1 | Voltage imaging of PPL1-DANs and MBONs. a, PPL1-DAN and MBON 
connectivity. Five PPL1-DANs innervate eight compartments of the mushroom 
body and modulate six downstream MBONs. Kenyon cells and their axons are 
shown in grey. Solid and dashed lines indicate feedforward and feedback 
connections, respectively. b, Left, the voltage-imaging set-up. Flies could  
walk or run on a trackball, which recorded their locomotor responses to  
odour presentations. Fluorescence voltage imaging of neural activity was 
performed using an sCMOS camera. Created with BioRender.com. Right, 
fluorescence image of pAce voltage-indicator expression in PPL1-γ1pedc, -γ2α′1 
and -α′2α2 (fly line MB504B-GAL4). Scale bar, 10 μm. c, Left, optical voltage 
traces showing spontaneous spikes in PPL1-DANs and MBONs. Black circles 
indicate identified spikes. Right, mean optical spike waveforms. ΔF/F indicates 
the change in relative fluorescence intensity. d,e, Spike rates (top) and 
spontaneous burst ratios (bottom) from PPL1-DANs (d) and MBONs (e). Grey 
dots denote data from 20 individual flies per cell type. *P < 0.05, **P < 0.01, 
***P < 0.001; Kruskal–Wallis analysis of variance (ANOVA) and post-hoc U-tests 
with Holm–Bonferroni correction. Data in d,e are mean ± s.e.m.
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CS+-evoked responses in MBON-α3 persisted for more than 1 h (Fig. 3f 
and Extended Data Fig. 6). Spontaneous spiking by MBON-α3, but not 
by other MBONs, increased after training.

MBON-α3 plasticity encodes long-lived memory and 
depends on innate odour valence
Previous studies have suggested that the γ and α compartments of the 
mushroom body differentially regulate short- and long-term memo-
ries11,23. To assess this, our voltage-imaging studies lasted either 24 h 
or 48 h after associative conditioning (Fig. 4a–d and Extended Data 
Fig. 7a–c). Depressions of CS+-evoked responses endured for less than 
1 h in MBON-γ1pedc>α/β neurons, whereas those of MBON-α3 persisted 
for more than 24 h. To test the necessity of this long-lasting plasticity 
for long-lasting memory, we blocked neurotransmitter release from 
MBON-α3; this impaired memory at 3 h but not 5 min after training, veri-
fying the selective importance of MBON-α3 for long-lasting memory 
(Extended Data Fig. 7d,e).

Next, we examined how innate valences influence long-lasting plastic-
ity by comparing conditioning with attractive versus repulsive odour 
pairs. After three training bouts with attractive odours, CS+- but not 
CS−-evoked responses in MBON-α3 switched from spiking increases 
to decreases, which became more pronounced after three more bouts 
(Fig. 4a,c). This plasticity gradually decayed but remained after 24 h. 
The CS+/CS− bias fell below its pretraining level for all postconditioning 
time points except 24 h.

By comparison, after only three training bouts with repulsive odours, 
CS+ and CS− presentations evoked suppressions of MBON-α3 spiking 

across >24 h and 3 h, respectively (Fig. 4b,d and Extended Data Fig. 8a). 
CS+/CS− response biases were statistically unchanged until 24 h after 
conditioning. There were also CS+- and CS−-evoked suppressions 
of MBON-γ1pedc>α/β spiking and diminished odour responses in 
MBON-α2sc, unlike the case with attractive odours (Extended Data 
Fig. 8b,c). Overall, innate odour valence greatly influenced MBON-α3 
plasticity and thereby long-lasting memory.

MBON-γ1pedc>α/β feedback to PPL1-α3 shapes 
MBON-α3 plasticity
To investigate long-lasting plasticity in MBON-α3, we studied the bidi-
rectional teaching signals from PPL1-α3 and how PPL1-α3 responds to 
co-occurring stimuli with similarly or oppositely signed valences. Pair-
ing five shock pulses with either attractive or repulsive odours evoked 
PPL1-α3 dynamics that combined the specific activity patterns elic-
ited by the odour or shocks individually (Fig. 4e–h). Attractive odours 
reduced shock-evoked spiking, but repulsive odours did the opposite, in 
a manner consistent with PPL1-α3 linearly summing its responses to 
the individual stimuli. PPL1-γ1pedc behaved similarly (Extended Data 
Fig. 8d–g). Overall, PPL1-DAN spiking conveyed the net valence of paired 
stimuli, explaining why conditioning with attractive versus repulsive 
odour pairs yields very different plasticity in downstream MBONs.

We considered candidate circuit mechanisms for net valence 
coding by PPL1-α3, including feedback from several MBONs6, and 
identified feedback from MBON-γ1pedc>α/β as likely to have a cen-
tral role. Clues motivating this hypothesis were the matching dura-
tions of learning-induced depression of the odour responses of 
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Fig. 2 | PPL1-DANs heterogeneously and bidirectionally encode 
punishment, reward and odour valence. a,b, Top, raster plots of PPL1-DAN 
spiking on trials when flies received either an individual 200-ms electric-shock 
pulse (a; 36 trials; 12 flies per cell type, 3 trials per fly, spaced 1.8 s apart) or 
sucrose for 5 s (b; 10 flies per cell-type, 1 trial per fly). Dashed lines indicate the 
onset of shock or sucrose availability; grey shading shows periods of shock  
or feeding. Bottom, trial-averaged mean spike rates (colour shading, s.e.m.).  
c, Odour-evoked changes in PPL1-DAN spiking relative to the rate in the 5 s 
before odour delivery (12 flies, 1 trial per odour per fly). Red and black dashed 
lines indicate odour onset and offset, respectively. Extended Data Fig. 4 has 
analogous MBON data. BEN, benzaldehyde in mineral oil; OCT, 3-octanol in 
mineral oil; EtA, ethyl acetate in mineral oil; ACV, apple cider vinegar. d,e, PPL1- 
DAN spike rates before (baseline, unfilled bars) and during (filled bars) the 
shock (d; 12 flies per cell type) or sucrose (e; 10 flies per cell type). *P < 0.05; 
**P < 0.01; ***P < 0.001; NS, not significant; signed-rank test. f, Top, odour- 
evoked behavioural responses of flies were measured on a trackball. Created 

with BioRender.com. Bottom, mean changes in rotational speed of wild-type 
flies (w1118) in response to a 5-s presentation (shaded interval) of ACV or either 
0.3% or 3% BEN. Shading on time traces denotes s.e.m. over 36 total trials in  
12 flies. g, Odour-evoked rotational responses. Each row shows one fly’s change 
in rotational speed, averaged over 3 trials per odour for 5 different odours (n = 12 
flies). Red and black dashed lines indicate odour onset and offset, respectively. 
h,Evoked changes in rotational speed, averaged over 5-s odour presentations 
and 36 trials per odour (12 flies, 3 trials per fly), plotted left to right from the 
most repulsive to the most attractive odour. Grey dots represent data from 
individual flies. i, Odour-evoked changes in PPL1-DAN and MBON spike rates 
plotted against changes in fly turning speed induced by the same odorants. 
Coloured lines show linear regressions (12 flies per cell type). Source data has 
R-values and P-values for the regressions. j, A 12 × 12 matrix of correlation 
coefficients, computed for the 11 neuron types using their mean responses to 
the 5 odorants in i, and the flies’ mean rotational responses to each odour in h 
(12 flies per cell type). Data in d,e,h,i are mean ± s.e.m.
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MBON-γ1pedc>α/β and the short-lasting potentiation for PPL1-α3 
(Fig.  3e,f), suggesting  that depressed inhibitory feedback from 
MBON-γ1pedc>α/β disinhibits the odour responses of PPL1-α3.

We tested the role of this feedback in innate odour-valence coding by 
knockdown of GABAA receptor expression in PPL1-α3 (Extended Data 
Fig. 9). This disrupted the range and bidirectionality of innate valence 
coding in PPL1-α3. Downregulating expression of the glutamate-gated 
chloride channel (GluCl-α) also disrupted innate odour-valence cod-
ing in PPL1-α3, suggesting that this coding depends on feedback from 
multiple MBONs.

Next, we tested the role of feedback inhibition from MBON-γ1pedc>α/β 
in associative conditioning. Using two genetic expression systems, we 
imaged PPL1-α3 spiking while blocking MBON-γ1pedc>α/β neuro-
transmission. In these flies, during training with attractive odours, 
PPL1-α3 exhibited slight odour-evoked spiking increases that were 
unaffected by training (Fig. 4i,j). In control flies, odours evoked normal 
decreases in PPL1-α3 spiking, which after conditioning switched for the 
CS+ to evoked increases. These results suggest that, during learning, 

the initial depression of CS+ responses in MBON-γ1pedc>α/β increases 
CS+ responses in PPL1-α3, which then gates the formation of long-lasting 
plasticity in MBON-α3 for long-lasting memory.

To test this interpretation, we optogenetically activated MBON- 
γ1pedc>α/β to maintain its inhibitory feedback signals at a high level 
during conditioning with attractive odours (Fig. 4k–m). Control flies 
showed reduced attraction to the CS+ at 5 min and 3 h after conditioning, 
whereas flies receiving MBON-γ1pedc>α/β excitation during condition-
ing had memory impairments at 3 h but not 5 min after conditioning. 
This selective impairment shows that removing the strong feedback 
from MBON-γ1pedc>α/β is crucial for long-lasting memory formation.

Computational model of valence integration and 
memory trace interactions
To analyse how valence signals interact, we modelled three modules 
(γ1, α2 and α3), interconnected according to the fly connectome6,7 
(Fig. 5a and Supplementary Information). The nine neurons of the 
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Fig. 3 | Learning induces distributed bidirectional plasticity in PPL1-DANs 
and MBONs. a, On-ball memory assay. Bottom, timeline of associative learning 
and memory assay for flies on a trackball. Each fly had three bouts of odour 
testing before conditioning (Pre), characterizing its initial responses to the  
CS+ and CS− odours. Next, there were six training bouts, each with a paired 
presentation of the CS+ and the unconditioned stimulus (US, electric shock 
pulses) plus an unpaired CS− presentation. Finally, each fly had three testing 
bouts at both 5 min and 1 h after conditioning. Red line indicates the end of 
training. Top, timelines for individual training and testing bouts. A pair of 
innately attractive odours (ACV and 1% ethyl acetate) were counterbalanced  
as CS+ and CS− across flies for b–f. b, Mean time-dependent behavioural 
responses on the trackball to the CS+ and CS− in odour-testing bouts before 
training (top) and 5 min (middle) and 1 h (bottom) after conditioning. Each 
trace is an average over 12 flies and the 3 test bouts in each period. c, Rotational 
speed changes induced by CS+ and CS− odours before and 5 min and 1 h after 

training sessions (n = 12 flies). d, Bottom, timeline for voltage-imaging assay of 
learning and memory. Each fly had one imaging bout before conditioning, 
characterizing spiking responses to the two innately attractive odours. Next, 
there were three training bouts, each with a paired CS+ and electric-shock US, 
plus an unpaired CS−. Then, 5 min after the third training bout, we imaged 
odour-evoked spiking (mid-training, Mid). Next, 5 min after this mid-training 
imaging bout, there were three more training bouts. There were additional 
imaging bouts 5 min and 1 h after conditioning. The red dashed line indicates 
the end of training. Top, timelines for individual training and imaging bouts. 
e,f, Left, changes in spike rates of PPL1-DANs (e), or MBONs (f), induced by CS+ 
and CS− odours in the four different imaging periods. Right, CS+ versus CS− bias 
in evoked responses, relative to pre-training responses (Methods); n = 12 flies 
per cell-type. In c,e,f, data are mean ± s.e.m. and grey lines show data from 
individual flies. *P < 0.05, **P < 0.01; Friedman ANOVA and post-hoc signed-rank 
tests with Holm–Bonferroni correction.
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model comprise DANs and MBONs, two Kenyon cells (KCs), which trans-
mit olfactory signals, and a shock-sensing neuron. The DANs integrate 
shock-related and olfactory signals with MBON→DAN feedback. The 
bidirectional, anti-Hebbian plasticity of the model was motivated by 
our findings of bidirectional valence coding and distinct conditioning 
outcomes using attractive versus repulsive odours. Specifically, KC 
activation coinciding with DAN activation or suppression respectively 

weakens or strengthens the corresponding KC→MBON connection 
(Fig. 5b and Extended Data Fig. 10a,b).

In the model, the initial input strengths of the DANs set their innate 
odour-valence representations. KC→MBON plasticity allows learnt 
valences to shape DAN dynamics through MBON→DAN feedback, 
enabling existing short-term memories to gate long-term memory 
formation during further training. After conditioning, KC→MBON 
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Fig. 4 | Both innate and learnt valences influence long-lasting plasticity and 
behaviour. a,b, Voltage imaging reveals plasticity in MBON-α3 lasting ≥24 h 
after conditioning with an attractive (a; ACV and 1% ethyl acetate) or repulsive 
(b; OCT and 0.3% BEN) odour pair. The protocol was that of Fig. 3d but with 
additional imaging bouts at 3 h and 24 h after training. Top, time-dependent 
mean spike rates before, during and after 5-s exposures to CS+ (orange) or CS− 
(blue) odours during the six different imaging sessions. Bottom, odour-evoked 
changes in MBON-α3 spike rates in 12 flies. Each row shows a single trial of data. 
c,d, Left, changes in MBON-α3 spike rates induced by CS+ and CS− odours in the 
six imaging sessions in flies trained with attractive (c), or repulsive (d) odours. 
Right, CS+ versus CS− bias in evoked spiking, relative to pre-training responses. 
*P < 0.05, **P < 0.01; n = 12 flies. e,f, Attractive odour attenuates (e) but repulsive 
odour enhances (f) punishment-induced spiking by PPL1-α3. Top, spiking 
changes relative to baseline rates in 16 flies before, during and after 10-s 
exposures to odours (left; ACV in e, blue shading; 1% OCT in f, green shading), 
five electric-shock pulses (red tick marks, middle) or paired odour–shock 
presentations (right) (one trial per fly for each of the three conditions). Bottom, 
time-dependent mean spiking responses to each stimulus (shading, s.e.m.). 
Black dashed lines indicate mean baseline spike rates in the first 5 s of recording. 
g,h, Changes (n = 16 flies) in PPL1-α3 spiking relative to baseline rates during 
10-s exposures to odour (ACV in g; 1% OCT in h), five shock pulses or paired 
odour–shock presentations (Exp, purple filled bars). Spiking changes during 
odour–shock presentations were indistinguishable from the sum of changes 
induced by the two individual stimuli (Net, purple empty bars). i,j, Left, changes 

in PPL1-α3 spike rates in the blocking (i; TH-LexA/13×LexAop-pAce;MB085C/
UAS-TnT) or control ( j; TH-LexA/13×LexAop-pAce) groups, evoked by attractive 
CS+ and CS− odours in four different imaging sessions. Right, CS+ versus CS−  
bias of evoked spiking relative to pre-training responses (Methods; 12 flies  
per group). k, Bottom, timeline for 3-h assay of memory with optogenetic 
activation for four groups of flies on a trackball. Experimental (MB085C/UAS- 
CsChrimson-tdT) but not control (MB085C/+) flies expressed the CsChrimson 
opsin in MBON-γ1pedc>α/β. Each genotype was split into groups that did 
(light-on) or did not (light-off) receive optogenetic illumination (30 pulses of 
0.5-s red light; red shading) during odour presentation. The protocol is that of 
Fig. 3a but with memory testing 5 min and 3 h after conditioning. Top, timelines 
for individual training and testing bouts. Odours (ACV and ethyl acetate) were 
initially attractive and counterbalanced as CS+ and CS− across 12 flies. The 
results are shown in l and m. l,m, At 3 h after conditioning (see k), the light-on 
experimental group had poorer memory performance than the light-on  
control group (l). Flies in both light-off groups (m) had normal 3-h memory 
performance. Plots show rotational speed changes induced by CS+ and CS− 
odours. Empty and filled bars represent experimental and control groups, 
respectively (12 flies per group). Grey lines (in c,d,g,h,i,j) and grey dots (in l,m) 
show data from individual flies, and data are mean ± s.e.m. For these panels, 
*P < 0.05, **P < 0.01; Friedman ANOVA followed by post-hoc signed-rank tests 
with Holm–Bonferroni correction for within-group comparisons. In l and m, 
across-group comparisons are U-tests.
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plasticity decays at rates reflecting the memory-retention properties 
of each module. Model fits to measured spike rates (Figs. 2i, 3e,f, 4c,d 
and Extended Data Fig. 8b,c) determined these and other parameter 
values (Fig. 5c and Extended Data Fig. 10c–m). A roughly 30-min plastic-
ity time constant governs the faster memory decay of the γ compart-
ment, whereas the two α compartments have a roughly 100-min decay. 
Beyond 3 h after conditioning, plasticity in the α compartments decays 
with another much slower time constant (Supplementary Information).

We assessed how odour valences shape plasticity in the model and 
quantified innate valences of hypothetical attractive or repulsive odor-
ants, respectively, by the negative or positive changes in DAN spiking 
they evoked. As in real experiments, conditioning involved odour pairs 
of equal innate valence. One training bout with attractive odours weakly 
depressed, or even slightly potentiated, odour-evoked spiking in all 
three MBONs; simulated conditioning with repulsive odours more 
strongly depressed odour-evoked MBON spiking (Fig. 5d). After six 
training bouts, MBON-α2sc and -α3 had valence-dependent CS+/CS− 
response biases for more than 24 h (Extended Data Fig. 11). Thus, as 
found experimentally, the innate valences of sensory cues regulated 
their plasticity dynamics.

Next, we explored how learnt valences and inhibitory feedback from 
MBON-γ1pedc>α/β to DANs influence subsequent conditioning. In 
model versions without this feedback, plasticity decreased by 2–8% 
in MBON-γ1pedc>α/β, was eliminated in MBON-α2sc, and declined in 
MBON-α3 by 0–36% at 15 min after conditioning, and by 36–63% at 3 h 

(Fig. 5e,f). Despite this diminished plasticity of the KC→MBON-α3 con-
nection when MBON-γ1pedc>α/β feedback to PPL1-α3 was removed, 
at 15 min after conditioning MBON-α3 firing remained almost fully 
suppressed by odour presentation, as was the case for models with 
feedback (Fig. 5e). However, without feedback, odour presentation 
incompletely suppressed MBON-α3 spiking at 3 h after conditioning. 
Thus, consistent with experimental results, learnt valences promote 
the long-lasting plasticity of the model in MBON-α3, owing to feedback 
from MBON-γ1pedc>α/β.

The model made several testable predictions. First, it predicted that 
synaptic depression levels should depend on the inter-stimulus interval 
(ISI) between conditioning stimuli. This resembles the ‘spacing effects’ 
observed in many species, in which learning protocols repeated at 
longer intervals induce long-term memories more effectively24,25. When 
we increased the ISIs for model training from 60 s to 900 s, short-term 
(5 min) depression in MBON-γ1pedc>α/β gradually declined (Fig. 5g). 
MBON-α3 exhibited prominent, ISI-dependent plasticity at 3 h and 
24 h after conditioning; plasticity was maximized by an ISI of around 
360 s, owing to the countervailing influences of sensory adaptation 
and MBON-γ1pedc>α/β feedback (Extended Data Fig. 10e–g). In real 
flies, six training bouts with an ISI of 360 s induced greater long-lasting 
depression in MBON-α3 than an ISI of 60 s or 900 s (Fig. 5h).

The model also predicted that the extinction of a long-lasting 
memory trace, reflecting MBON-α3 plasticity, should depend on 
innate odour valence and the time elapsed since conditioning.  
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After repeated conditioning bouts, the CS+-evoked responses of the 
model in PPL1-α3 initially increased but gradually decayed by around 
1 h later. Hence, within this first hour, the CS+ is not only associated 
with the unconditioned stimulus (US) in the short-term-learning unit 
but also acts as a reinforcer in the long-term units (Extended Data 
Fig. 11d,f). Consequently, postconditioning re-exposures to unpaired 
CS+ and CS− odours influenced MBON-α3 plasticity in a valence- and 
time-dependent manner (Fig. 5i and Extended Data Fig. 10h). For simu-
lated attractive odours, extinction bouts starting ≥60 min but not 
≤30 min after conditioning erased conditioning-induced MBON-α3 
depression, as measured 3 h after conditioning (Fig. 5i and Extended 
Data Figs. 10h and 12). For repulsive odours, extinction bouts induced 
more modest, transient changes in the CS+/CS− response bias of 
MBON-α3. To test these predictions, 3 h after conditioning we meas-
ured MBON-α3 response biases in conditioned flies that either had 
no extinction sessions or an extinction session at either 10 min or 
2 h after conditioning. These measurements supported the model, 
verifying the predicted valence and time dependence of plasticity 
after extinction training (Fig. 5j).

In the model, extinction training soon after associative conditioning 
can paradoxically extend the longevity of plasticity in the long-term 
memory compartment (Fig. 5i). To test this, we compared the CS+/CS− 
response biases of MBON-α3 in conditioned flies with either no extinc-
tion training or with extinction training 10 min after conditioning. 
Strikingly, extinction training increased MBON-α3 plasticity, assessed 
35 min after conditioning (Fig. 5k and Extended Data Fig. 12b). In the 

model, this effect arises from learnt valences encoded by PPL1-α3, 
which allows unpaired CS+ presentations to reinforce the previously 
formed plasticity in the long-term memory units, even as they extin-
guish plasticity in the short-term unit. The learnt valence makes the 
CS+ a self-reinforcer.

Discussion
Dopamine-based valence integration modulates mushroom-body 
memory dynamics and seems suited to reserve long-lasting memories, 
which may be costly energetically26, for reliable, frequently encoun-
tered associations. Our voltage-imaging studies of these effects 
involved more than 500 flies and provided some important advan-
tages over Ca2+ imaging (Extended Data Fig. 13a–h and Supplementary 
Discussion). The quantitative, verifiable predictions arising from our 
model illustrate the potency of combining spike-rate and connectomic 
data as modelling constraints.

Valence integration by PPL1-DANs regulates memory dynamics
PPL1-DANs integrate the innate and learnt valences of sensory cues; the 
tally can be positive or negative, augmenting reports that PPL1-DANs 
signal negatively valued stimuli27,28. During the initial cycles of aver-
sive conditioning, PPL1-DANs sum the innate valences of cue and 
reinforcer. This leads to the depression of KC→MBON connections, 
especially in fast (γ1 and γ2) learning units. The net valence signal 
discourages learning of contradictory associations (such as innately 

Fig. 5 | A computational model that captures the interactions between 
mushroom-body learning units and yields testable predictions.  
a, Connectivity of the model’s three modules (γ1, α2 and α3) and nine neuron 
types. Kenyon cells (KC1 and KC2) convey olfactory signals to DANs and MBONs 
(Dγ1, PPL1-γ1pedc; Dα2, PPL1-α′2α2; Dα3, PPL1-α3; Mγ1, MBON-γ1pedc>α/β; 
Mα2, MBON-α2sc; Mα3, MBON-α3). DANs integrate input from a shock-sensing 
neuron (SN), olfactory input from KCs and feedback signals from MBONs. 
Co-activation of a KC and its postsynaptic DAN modifies the weight of the 
KC→MBON connection through anti-Hebbian plasticity (b and Methods). 
The Supplementary Information lists all model parameter values, obtained by 
global fits to 86 spike-rate measurements across learning (40 measurements 
for attractive odours and the relevant DANs and MBONs in Fig. 3e,f except for 
MBON-α3; 24 measurements for MBON-α3 in Fig. 4c,d; and 22 measurements 
for aversive odours, comprising 6 in Fig. 2i for DANs and 16 in Extended Data 
Fig. 8b,c). b, Bi-directional anti-Hebbian plasticity rule for KC→MBON 
connections. In our standard training bout, a 30-s CS+ presentation was paired 
with an unconditioned stimulus (shock) starting 3 s after CS+ onset, followed  
by a 30-s CS− presentation. With either attractive or repulsive odours, KC1 is 
activated by the CS+ and KC2 by the CS−, but DAN responses depend on the 
odour valence. During training with attractive odours, DANs integrate the 
inhibitory effects of the CS+ and excitatory effects of the shock, yielding weak 
depression of the KC1→MBON synapse. The unpaired CS− presentation 
suppresses DAN firing, facilitating the KC2→MBON connection. With repulsive 
odours, joint CS+–US presentations strongly activate the DAN, greatly 
depressing the KC1→MBON synapse. A repulsive CS− mildly depresses the 
KC2→MBON weight. c, Odour-evoked spiking changes (mean ± s.e.m.), from 
voltage-imaging data (solid lines) and median predictions of the parameter- 
fitted model (dashed lines) at four time-points in the conditioning protocol of 
Fig. 3d. Simulated CS+ and CS− odours had equal valences, matched to those of 
ACV and ethyl acetate using odour-evoked changes in DAN spiking before 
conditioning. For the modelling data in c,f–h,j,k, n = 10,000 simulations per 
condition, and error bars span 16–84% confidence intervals. d, Plots showing 
how innate valences shape learning in the three MBONs of the model. In each 
plot, each row has data for one of nine simulated odours, the innate valences of 
which were specified by evoked changes in DAN spiking ( y axis). We simulated 
one training bout (using the protocol of Fig. 3d) with each odour as the CS+  
(top) or CS− (middle); these six plots show, as a function of time after training, 
changes in odour-evoked MBON spiking relative to pre-training rates, with  
time zero denoting immediately after training. The bottom row shows biases 
between CS+- and CS−-evoked spiking changes. After one training bout, 

MBON-γ1pedc>α/β exhibits short-lived depression, MBON-α2sc undergoes a 
longer-lived plasticity, the sign of which depends on the innate valence of the 
odour, and MBON-α3 exhibits the longest-lasting plasticity. Extended Data 
Fig. 10 shows more results. e, Simulated biases between CS+- and CS−-evoked 
MBON spiking as a function of time after training (x axis), given different 
numbers of training bouts ( y axis) and with feedback from MBON-γ1pedc>α/β 
either active (top) or inactivated (bottom). f, Changes in CS+ versus CS− spiking 
biases when feedback from MBON-γ1pedc>α/β is removed from the simulations 
of e, for 3–15 training bouts, at 15 min and 3 h after training. g, CS+ versus CS− 
spiking biases in the three MBONs of the model, at 5 min, 3 h or 24 h after ten 
training bouts with simulated CS+ and CS− odours of no innate valence, for five 
different ISI values. h, Plasticity is ISI dependent. Plotted are predicted (filled 
bars, median) and empirically measured (empty bars, mean ± s.e.m.) values of 
CS+ versus CS− spiking bias in MBON-α3 at 5 min and 24 h after six training bouts, 
using an ISI of 60 s, 360 s or 900 s. Grey dots show data from 14 individual flies. 
i, Simulated MBON-α3 plasticity after extinction training (three bouts of 
unpaired CS+ and CS− presentations). Plots show CS+ versus CS− spiking biases 
over 3 h after three associative conditioning bouts. The top six rows show 
results for extinction sessions (black squares) occurring at different times after 
the last conditioning bout, and the bottom row shows results for no extinction. 
Conditioning used innately attractive odours (left; valences matched to ACV 
and 1% ethyl acetate) or repulsive ones (right; valences matched to 1% OCT and 
0.3% BEN). With attractive odours, extinction training has the greatest effect 
when it occurs a long time after conditioning. With aversive odours, extinction 
training is less dependent on timing. j, Bottom, simulated (filled bars, median) 
and measured (open bars, mean ± s.e.m.) values of the CS+ versus CS− spiking 
bias in MBON-α3 at 3 h after conditioning, with either no extinction training or 
with extinction training (3 bouts) at either 10 min or 2 h after associative 
conditioning (three bouts). Bias values in j and k are normalized by their values 
5 min after conditioning. Training and extinction used innately attractive  
(ACV and ethyl acetate) or repulsive (OCT and BEN) odours. Grey dots show 
data from ten individual flies per group. Top, timeline of training, extinction 
and imaging. k, Bottom, simulated (filled bars, median) and measured (empty 
bars, mean ± s.e.m.) values of CS+ versus CS– spiking biases in MBON-α3  
at 35 min after three conditioning bouts with attractive odours, with no 
extinction training (black) or with three bouts of extinction training at 10 min 
after conditioning (red bars). Dots show data from ten individual flies per 
group. Top, timeline of training, extinction and imaging. *P < 0.05, **P < 0.01; 
Kruskal-Wallis ANOVA followed by post-hoc U-tests with Holm–Bonferroni 
correction for h and j; U-tests for k.
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attractive cues paired with punishment), which may not be ecologically 
reliable and elicit smaller dopamine signals and less plasticity than 
innately aversive cues paired with punishment. The fast-learning unit 
(γ1) can rapidly adjust fly behaviour. Through feedback interactions, 
short-term memory traces in γ1 also gate the formation of long-term 
traces for repeated, reliable associations. After repeated condition-
ing, diminished feedback inhibition from γ1 allows DANs of the slower 
learning units (α2 and α3) to undergo short-lived potentiation of their 
sensory-evoked responses, which encode the net CS+ valence (innate 
plus learnt) and induce long-lasting plasticity in α2 and α3. Because 
α2 is more responsive to learnt CS valences than to unconditioned 
stimulus punishments, this unit seems poised to detect repetitions of 
cues from prior associative events. In α3, both net odour valence and 
the unconditioned stimulus drive learning. The γ2 and α′3 compart-
ments respectively respond to locomotion29 and odour novelty21 and 
may have specialized learning roles. Sensory data, diverse teaching 
signals and both short- and long-term memory traces all interact in the 
mushroom body to execute assorted learning rules in parallel, creating 
complex memory dynamics (Extended Data Fig. 13i).

Connectome- and physiology-constrained computational model
Multiple models of the mushroom body include compartmentalized, 
KC→MBON synaptic plasticity gated by KC–DAN co-activation15,30–37 
but differ over whether they treat appetitive33 or aversive30,35 learn-
ing (or both15,31,32,34), signalling of prediction errors15,30–32, interactions 
between appetitive and aversive learning units15,31,32,34, single compart-
ments35–37 or both short- and long-term learning units15,34, and various 
lateral and feedback connections. Our model reveals key features of 
the parallel-recurrent PPL1-DAN/MBON learning system, enacts distinct 
learning algorithms in short-term and long-term memory (STM and 
LTM) modules, and makes new predictions. Although several aspects 
have appeared previously, the model distinctively combines quanti-
tative use of the fly connectome to determine connections, param-
eter optimization through global fits to spike-rate data, bidirectional 
plasticity, KC→DAN inputs driving innate odour-valence coding, and 
MBON→DAN feedback from STM to LTM units for DAN integration of 
innate and learnt valences, which no previous model we have seen 
describes.

The bidirectional plasticity implies that KC activation paired with 
DAN inhibition strengthens the KC→MBON synapse. This model feature 
is based on the bidirectional encoding of innate valences, distinct plas-
ticity induced by attractive and repulsive odours, and memory-trace 
extinction induced by unpaired attractive CS+ odours. In mammals, 
negative dopamine signals can encode negative prediction errors38.  
In flies, inactivation or activation of PAM-γ3 DAN, which is normally 
inhibited by rewards, artificially reinforces appetitive or aversive mem-
ories, respectively39. Analogous studies should be done with PPL1-DANs.

In our model, anti-Hebbian plasticity supports distinct learn-
ing algorithms in different compartments. In the STM (γ1) module, 
stimulus-evoked DAN signalling is invariant across learning, and 
MBON-γ1pedc>α/β plasticity relies on the CS+–US co-occurrence. 
The slower-acting (α2 and α3) modules enact prediction-based 
algorithms by means of CS+-evoked dopamine signals that increase 
over repeated conditioning cycles to convey the learnt valence of 
the CS+ and promote LTM formation. This highlights how inhibitory 
feedback from MBON-γ1pedc>α/β to PPL1-α′2α2 and PPL1-α3 regu-
lates LTM formation, assigning functions to these recently identified  
connections6.

Excitatory feedback connections from MBON-α2sc and MBON-α3 
to PPL1-α3, which might in principle support ‘prediction error’ com-
putations, were fitted to negligible strengths in our model, implying 
that the α2 unit in the model does not influence long-term plasticity 
in MBON-α3. Thus, prediction error signals may not be prime drivers 
of plasticity for our training protocol. Previous work implicates α2 in 
diverse memory-related functions11,40, but studies of α2 plasticity report 

varying results23,41. Here, PPL1-α′2α2 encoded learnt valences after 
training with odours of either valence, but MBON-α2sc exhibited plas-
ticity only for repulsive odours (Extended Data Fig. 8c). A two-module 
version of our model with γ1 and α3 units generated almost identical 
parameter values and LTM dynamics in α3 as the three-module version 
(Extended Data Fig. 10i–m and Supplementary Fig. 1).

The circuit implementation of valence integration in our model leads 
to testable predictions about LTM. The model exhibits a spacing effect 
in memory encoding and predicts enhanced long-lasting plasticity 
when associative events are spaced at particular optimal time inter-
vals. Mechanistically, plasticity strength in the LTM unit depends on 
the offsetting influences of sensory adaptation and feedback from the 
STM unit. These processes have distinct time courses, which jointly set 
the optimal ISI. For ISI values shorter than optimal, sensory adaptation 
dominates, slowing LTM formation. For ISI values longer than optimal, 
the STM decays, weakening LTM induction.

The model also predicts that extinction of a long-lasting memory 
trace depends on the timing of extinction bouts and the innate valences 
of the sensory cues. Notably, in flies conditioned with attractive odours, 
the timing of subsequent re-exposures to the CS+ odour strongly influ-
enced MBON-α3 plasticity; extinction bouts 10 min after conditioning 
strengthened the original α3 plasticity, whereas extinction bouts 2 h 
after conditioning weakened it (Fig. 5i,j). These effects reflect dynamic 
competition between innate appetitive and learnt aversive valences, 
which PPL1-α3 encodes with relative amplitudes that vary across time 
and learning phases. Soon after conditioning, PPL1-α3 encodes the 
learnt aversive valence of an innately attractive CS+, enabling the CS+ 
to act as its own reinforcer and enhance α3 plasticity.

This competition between innate and learnt valences drives an inter-
play between STM and LTM that is mediated by feedback inhibition. 
Unlike previous conceptions, in which spontaneous neural activity 
during an offline consolidation period transfers memory from STM to 
LTM modules, in our model, memory is not directly transferred. Instead, 
feedback from the STM module gates plasticity in the LTM module dur-
ing training bouts subsequent to the first. Frequent co-occurrences of 
two stimuli may indicate a reliable relationship that an animal should 
remember. Crucially, the gating mechanism allows rapid LTM forma-
tion in α3 once the repeated association has been detected, unlike in 
models that encode LTM in slow-changing synapses. The gating also 
adjusts learning and extinction speeds for odours of different valences; 
CS+–US pairs of opposite valences lead to slower LTM formation plus 
a memory trace that is more extinction prone. The Supplementary 
Discussion describes additional valence interactions and explains why 
CS− stimuli can induce MBON plasticity.

Outlook
Our model focuses on aversive conditioning and the γ1, α2 and α3 
modules, but it neglects modules central to appetitive condition-
ing6,11. Future voltage-imaging experiments should examine the full 
mushroom body circuit, whether appetitive learning involves valence 
integration, and paradigms mixing appetitive and aversive reinforce-
ment. How DAN spiking relates to dopamine release should be directly 
measured, which might clarify plasticity dynamics in α2. Our model 
neglects plasticity induced by DAN activity in the absence of KC excita-
tion13,29, which future models should explore.

Overall, the parallel-recurrent DAN and MBON circuitry flexibly regu-
lates memory by using innate and learnt valences, and exhibits some 
striking effects, such as self-reinforcement of an unpaired, previously 
learnt CS+. When extrapolated to the mammalian basal ganglia, this 
finding (Fig. 5k) suggests why habits can be so hard to break. Because 
many facets of dopamine-based learning are evolutionarily conserved, 
mushroom-body mechanisms that guide decision-making over multi-
ple timescales may provide insights into how heterogeneous dopamine 
signalling and recurrent connections between learning modules shape 
memory dynamics in other species.
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Methods

Fly stocks
The FlyLight Project Team at Janelia Research Campus provided flies 
of the Split-GAL4 lines MB504B-GAL4, MB502B-GAL4, MB065B-GAL4, 
MB304B-GAL4, MB085C-GAL4, MB093C-GAL4, MB080C-GAL4, 
MB077B-GAL4 and MB542B-GAL4. We obtained R82C10-LexA (54981), 
20×UAS-jGCaMP7b (79029) and 13×LexAop-jGCaMP7b (80915) from the 
Bloomington Drosophila Stock Center. In some experiments, we used 
other Bloomington fly lines to block neurotransmission through expres-
sion of the tetanus toxin light chain42 (UAS-TnT, 28838) or to knockdown 
expression of either the GABAA receptor43 (UAS×RDL-RNAi, 52903) or 
the glutamate-gated Cl−-channel44 (UAS×GluCl-α-RNAi, 53356). R. Davis 
(Scripps Institute) provided TH-LexA flies and D. Anderson (Caltech) 
provided 20×UAS-CsChrimson-tdTomato flies. We outcrossed all strains 
with w1118 wild-type flies for five generations to minimize differences 
in genetic background.

To create 20×UAS-Ace2N-mNeon-v2, 20×UAS-pAce and 13×LexAop-pAce 
flies that express the Ace-2N-mNeon-v2 and pAce FRET–opsin voltage 
indicators16,19,45, we synthesized codon-optimized Ace2N-mNeon-v2 
and pAce genes (GenScript Biotech) with a Drosophila Kozak sequence 
before the start codon. We then subcloned the Ace2N-mNeon-v2 and 
pAce cDNA into the XbaI and XhoI restriction sites of the pJFRC7-
20×UAS-IVS-mCD8::GFP and pJFRC19-13×LexAop2-IVS-myr::GFP vectors 
(Addgene 26220 and 26224). After verifying the constructed plas-
mids pJFRC7-20×UAS-IVS-Ace2N-mNeon-v2, pJFRC7-20×UAS-IVS-pAce 
and pJFRC19-13×UAS-IVS-pAce by sequencing, we used a commer-
cial transformation service (Bestgene) to create two transgenic fly 
lines for each construct by inserting them into two phiC31 docking 
sites, the attP40 on the second chromosome and VK00027 on the 
third chromosome, for further combination with GAL4 or LexA  
driver lines.

All imaging and behavioural experiments used female flies (3–8 days 
old at the time of laser surgery). We raised flies on standard cornmeal 
agar medium with a 12:12 h light:dark cycle at 25 °C and 50% relative 
humidity. Before surgery or behavioural tests, we chose flies informally 
in a random manner from a much larger group raised together for all 
studies; there was no formal randomization procedure for selecting 
flies. Extended Data Table 1 lists the transgenic fly lines we created for 
this study, as well as the genotypes and total number of flies used in 
each imaging and behavioural experiment and for each figure panel. 
Experimenters were not blind to the genotypes of the flies used. All 
data collection and analyses were done automatically using computer 
software that was uniformly applied to all flies irrespective of their 
genotype.

When imaging flies with more than one fluorescently labelled neuron 
type, in most cases we focused on one neuron type per fly to achieve 
recordings with a sufficiently high signal-to-noise ratio. In a subset of 
flies, we were able to image two or even three neuron types concur-
rently with satisfactory signal-to-noise ratios. This means the total 
number of flies imaged is less than the sum of the n-values reported in 
the figure panels. In most experiments, we tested at least 12 flies per 
neuron type, except that we tested 4–6 flies per type for Extended Data 
Fig. 3c and 10 flies per condition for Figs. 2b,e and 5j,k and Extended 
Data Figs. 7d,e and 9c,f–h.

Odorants
We tested flies’ responses to the following monomolecular odours: 
ethyl acetate (CAS 141-78-6, Sigma-Aldrich), isoamyl acetate (CAS 123-
92-2, Sigma-Aldrich), benzaldehyde (BEN; CAS 100-52-7, Sigma-Aldrich), 
1-octen-3-ol (CAS 3391-86-4, Sigma-Aldrich) and 3-octanol (CAS 
589-98-0, Sigma-Aldrich). We diluted ethyl acetate, isoamyl acetate, 
1-octen-3-ol and 3-octanol into 1% and 10% concentrations and BEN 
into 0.3% and 3% concentrations (v/v) with mineral oil. We also tested 
a natural odour, apple cider vinegar (ACV, Bragg).

Mounting of flies for behavioural, voltage-imaging or optogenetic 
experiments
In brief, to mount flies for behavioural experiments on a trackball or for 
in vivo imaging studies of neural activity, we anaesthetized the flies on 
ice for 1 min. We then transferred them to the cooled surface (around 
4 °C) of an aluminium thermoelectric cooling block. When viewing the 
fly through a dissection microscope (MZ6, Leica) and using a multi-axis 
stage to manipulate the entire cooling block, we brought the posterior 
of the fly’s thorax into contact with a fused silica optical fibre 125 μm in 
diameter (PLMA-YDF-10/125, Nufern) on a custom-made plastic fixture 
that was secured on the mounting apparatus directly above the fly. We 
applied around 1 μl of ultraviolet light-curing epoxy (NOA 89, Norland) 
to the contact point between the fibre and the fly’s thorax and cured 
the epoxy with ultraviolet for 30 s. Finally, to reduce head motion, 
we fixed the fly’s head to the thorax using ultraviolet-curable epoxy, 
after which we considered the fly to be fully mounted. We conducted 
behavioural testing and imaging experiments in separate sets of flies, 
because we found that the blue illumination used for voltage imaging 
substantially disrupted normal, odour-driven fly behaviour.

Laser microsurgery
To create an imaging window in the fly’s cuticle, we used a laser micro-
surgery system based on an excimer laser with a wavelength of 193 nm 
(EX5 ArF, GamLaser), as detailed previously17,18. After transferring  
a mounted fly to the surgery station, we created an optical window 
in the cuticle by laser drilling a hole 150 μm in diameter (30–40 laser 
pulses delivered at 100 Hz, 36 μJ per pulse, as measured at the specimen 
plane). This microsurgical procedure normally removed the cuticle, air 
sacs and fat bodies, exposing the underlying brain tissue. Occasionally, 
further rounds of laser dissection or manual cleaning of the cuticle were 
needed owing to variations in head size and fly age. Immediately after 
surgery, we applied 1 μl of ultraviolet-curable epoxy (NOA 68, Norland; 
1.54 refractive index; approximately 100% optical transmission for 
wavelengths between 420 nm and1,000 nm) and cured it for 30 s to 
seal the cuticle opening. We did this under a dissection microscope 
while using a desktop ultrasonic humidifier (AOS 7146, Air-O-Swiss) 
to keep the local environment around the fly at around 60% humid-
ity. After mounting the fly, we put a coverslip (22 × 22 mm, number 0, 
Electron Microscope Sciences) above the fly’s head and placed a small 
drop (about 1 μl) of water between the coverslip and the fly cuticle.

High-speed fluorescence voltage imaging
To image neuronal voltage dynamics, we used a custom-built upright 
epi-fluorescence microscope and a 1.0 NA water-immersion objec-
tive lens with a 20× magnification (XLUMPlanFL, Olympus). We 
used a 503/20 nm excitation filter (Chroma), a 518 nm dichroic mir-
ror (Chroma) and a 534/30 nm emission filter (BrightLine). Using 
the 500-nm-wavelength module of a solid-state light source (Spec-
tra X, Lumencor), we illuminated the sample with an intensity of 
3–7 mW mm−2 at the specimen plane. We acquired images at 1,000 Hz, 
using a scientific-grade camera (Zyla 4.2, Andor) and 2 × 2 pixel bin-
ning. For Ca2+ imaging experiments with the jGCaMP7b indicator46, 
we used the same set-up and illumination conditions but acquired 
images at 100 Hz.

Odour delivery to awake flies
To deliver odours to flies’ antennae, we used a custom-built olfactom-
eter that delivered a constant airflow (200 ml min−1) to the fly through 
either a control path (air passed through mineral oil) or an odour path 
(air passed through mineral oil with dissolved odorant). Airflow and 
odours went through a probe needle (1.7 mm inner diameter, Grainger) 
placed at a 45-degree angle in the horizontal plane and around 3 mm 
away from the fly’s antennae on the right side (Fig. 2f). Each trial lasted 
for 15 s, and odour was delivered during the (5 s, 10 s) interval in the trial.  



For all experiments in which we studied a fly’s responses to multiple dif-
ferent odours, we presented the odours in a pseudo-random order with 
intervals of at least 2 min between odours. In neural-imaging experi-
ments, as we delivered odours, we imaged neuronal voltage dynamics 
through the transparent window in the cuticle made above the brain’s 
right hemisphere by laser microsurgery.

Electric shock and sucrose delivery
To deliver electric shocks to a fly, we glued a pair of electric wires 
(0.4 mm diameter; R26Y-0100, OK Industries) to both sides of the tho-
rax with electrically conductive glue (Wire Glue). After the glue dried, 
the resistance between the two wires was 10–30 MΩ. During each trial, 
we delivered either three (Fig. 2a,d) or five (Fig. 4g,h and Extended Data 
Figs. 8d–g and 13d–g) electric shock pulses (0.2 s long, 20 V, delivered 
1.8 s apart) using a constant-voltage stimulator (STM200, Biopac Sys-
tems), starting 5 s after trial onset.

To image neural responses to sucrose feeding, we positioned the tip 
of a microlitre syringe (Microliter 701, Hamilton) about 1 mm below the 
fly’s proboscis. By manually pushing the syringe to deliver around 1 µl of 
saturated sucrose solution, we allowed the fly to sample the liquid with 
its proboscis, inducing feeding. In each 15-s imaging trial, we delivered 
the sucrose solution during the (5 s, 10 s) interval in the trial.

Measurements of fly locomotion on the trackball
To determine the locomotion of individual flies walking on a trackball 
(Figs. 2f–h, 3a–c and 4l,m and Extended Data Figs. 3a,b and 7d,e), we 
used a set-up similar to that of previous studies47–49. Specifically, two 
optical USB pen mice (i-pen mouse, Finger System) were aimed at the 
equator of an air-suspended, hollow, high-density polyethylene ball 
(6.35 mm diameter with a mass of around 80 mg; Precision Plastic Ball). 
The pen mice were 2.3 cm away from the ball and tracked its rotational 
motion (120 Hz read-out). We converted the pair of digital readouts 
from the pen mice into a forward displacement on the ball plus a rota-
tional angle for each time bin. We computed the fly’s forward and turn-
ing velocities using code written in MATLAB (v.2018b, MathWorks).

Olfactory conditioning on the trackball
After mounting flies and attaching electric wires to the thorax (see 
above), we positioned flies on the trackball using a 3D translation stage. 
Before olfactory conditioning began, we allowed flies to rest on the 
trackball for at least 30 min to minimize the effect of the cold anaes-
thesia used during the mounting process. For all conditioning studies, 
we used two attractive odours, ACV and 1% ethyl acetate, each of which 
served as either the CS+ or the CS− in a counterbalanced manner across 
the flies used in each group. A 1 h memory experiment comprised one 
training session and three testing sessions (Fig. 3a–c).

In the training session, we delivered six bouts of CS+ and CS− odour 
pairs to flies sequentially (30 s per odour exposure, with 135 s of fresh 
air between successive odours). During delivery of the CS+ odour, we 
also administered to the fly 16 electric shock pulses of 20 V amplitude 
(each pulse of 0.2 s duration, with 1.8 s between successive pulses), 
starting 3 s after the onset of the CS+ odour. This 30-s pairing is longer 
than the CS+–US pairings of 1 s or 5 s often used in conditioning assays 
for tethered flies12,50, because we found that brief pairing durations did 
not reliably induce behavioural changes that lasted for hours. To capture 
the time course of learning, we measured behavioural responses to the 
CS+ and CS− before, during and after conditioning, instead of assessing 
the conditioned response at only one time point, as in the T-maze assay51.

In each testing session, we delivered three bouts of CS+ and CS− odour 
pairs to flies (5 s per odour exposure, with 60 s of fresh air between 
presentations of the CS+ and CS− odours and also between bouts). 
We recorded flies’ forward and turning velocities on the trackball in 
the three testing sessions (‘before’, 5 min and 1 h). The ‘before’ ses-
sion occurred 5 min before the training session and assessed the 
odour-induced behaviour of the flies when they were still naive. The 

5 min and 1 h memory-testing sessions respectively began 5 min and 
1 h after the end of the training session. In a 3 h memory experiment 
(Fig. 4l,m and Extended Data Fig. 7d,e), the third testing session 
occurred 3 h after the training session.

To minimize the bias of flies’ turning behaviour on the trackball, we 
delivered odours to the left side of flies’ antennae in half of the experi-
ments and to the right side in the other half. Positive values of the fly’s 
walking speed represent walking forwards, and negative values repre-
sent walking backwards. Positive values for rotational velocity indicate 
that the fly turned towards the direction of odour delivery, and negative 
values indicate that it turned in the opposite direction.

Measurements of conditioning-induced neural plasticity
After mounting flies and attaching a pair of wires to deliver electric 
shocks to the thorax (see above), we allowed flies to rest for more than 
30 min before training to minimize the effect of the cold anaesthesia we 
used in the mounting process. Each 1-h imaging experiment to study 
memory comprised two training and four testing sessions (Fig. 3d).

Each fly first underwent one bout of imaging before conditioning, 
in which we examined neural spiking responses to the two odours to 
be used during conditioning (CS+ and CS−; each odour was presented 
for a duration of 5 s with an interval of 120 s between odours). Next, 
each fly had three bouts of training, in each of which the fly received a 
paired presentation of the CS+ (30 s in duration) and the unconditioned 
stimulus (electric shocks; 16 pulses of 0.2 s duration, 20 V in amplitude, 
spaced 1.8 s apart; the first pulse started 3 s after the onset of the CS+), 
and an unpaired presentation of the CS− (30 s in duration, with intervals 
of 135 s between odours). Then, 5 min after the end of the training bouts, 
each fly had a mid-training imaging bout to assess the odour-evoked 
spiking responses. At 5 min after the end of the mid-training imaging 
bout, each fly had three more bouts of training. Then the fly had another 
two imaging bouts at 5 min and 1 h after the training. All imaging bouts 
had the same internal timing structure (Fig. 3d).

In the 24-h memory imaging experiments (Fig. 4a–d and Extended 
Data Fig. 7a), we used the same protocol for odour and shock delivery as 
in the 1-h experiments, except that we added two more testing sessions, 
3 h and 24 h after training. We kept the flies glued on the optical fibre 
across the entire 24 h period. To avoid any potential effects caused by 
food deprivation over this period, we fed the flies with sucrose water at 
3 min after the 3 h session and at 30 min before the 24-h and 48-h sessions.

At each time point across associative conditioning, for each neuron 
type studied we calculated for each fly the differences between its 
CS+- and CS−-evoked spike rates, subtracted the bias value measured 
for the same fly before conditioning in the before-training imaging ses-
sion, and termed the result the CS+ versus CS− bias. We then averaged 
the bias values across flies. This bias, which, by definition, is zero in 
the before-training session, was inspired by the two-way choice index 
that is commonly used to characterize flies’ responses in the T-maze 
behavioural assay51.

In the experiments of Fig. 5j, studying memory extinction, we used 
three groups of flies: a control group that received memory training 
(three bouts of CS+/US association, as in the training session of 1-h 
experiments); an ‘early’ extinction group that received memory training 
and then underwent an extinction session starting 10 min after the end 
of the training; and a ‘late’ extinction group that received training and 
then had an extinction session starting 2 h after training. For all three 
groups, we imaged the neural activity in three testing sessions (before, 
5 min and 3 h). The before-training session was 5 min before the training 
session, and the 5 min and 3 h sessions respectively started 5 min and 
3 h after the end of the training session. The extinction session involved 
three bouts of CS+ and CS− odour exposure, as in the training session 
but without electric shocks. The experiments reported in Fig. 5k had 
a similar structure, except that there was no late-extinction group and 
the 3 h imaging session was replaced with an imaging session 35 min 
after associative conditioning.
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Analyses of imaging data
To extract traces of neuronal voltage activity, we first used an algorithm, 
NoRMCorre52, to correct computationally the raw (1 kHz) fluorescence 
videos (see the High-speed fluorescence voltage imaging section 
above) for lateral displacements of the brain. To improve the signal-
to-noise ratios of the videos, we applied a denoising algorithm that 
was based on a singular value decomposition. This involved first reshap-
ing the raw video into a matrix, Y R∈ p d× , where p is the total number 
of video frames and d is the number of pixels in the field of view. We 
then decomposed Y as a product, Y = UC, where U is a set of k low-rank 
components R∈ p k×U , and ∈ k d×C R  are weighting coefficients. The 
components U are assumed to be semi-unitary, without loss of gener-
ality, and were obtained by computing the singular value decomposi-
tion of Y. The number, k, of low-rank components that we retained in 
U was determined by requiring that the set of retained singular vectors 
captured more than 95% of the variance in the raw video. We then cal-
culated the coefficients as C = UTY. For each row of the coefficient 
matrix, after reshaping it back into a two-dimensional image, we applied 
the BM3D image-denoising algorithm53, which applied a nonlinear 
thresholding operation to obtain a denoised set of coefficients, Ĉ. We 
determined the denoised video as =Y UĈ ̂  and reshaped it back to its 
original dimensions.

After denoising the fluorescence videos, we manually selected one 
to three regions of interest that contained the anatomical structures of 
the targeted cell types expressing the voltage indicator (Extended Data 
Fig. 1 shows regions of interest for all the fly lines used for imaging). We 
then computed spatially averaged, time-dependent changes in relative 
fluorescence intensity, ΔF(t)/F0, where F0 is the mean fluorescence in 
the region of interest averaged over the entire video and t is time. Next, 
we computationally corrected the resulting fluorescence traces for 
photobleaching by parametrically fitting a sum of two exponential func-
tions to the mean fluorescence trace, F0, and then normalizing F0 by the 
parametrically fitted trace. To identify neural spikes, we high-pass fil-
tered the ΔF(t)/F0 trace by subtracting a median-filtered (40 ms window) 
version of the trace and then identifying as spikes the local peaks that 
surpassed a threshold value. Because different cell types had distinct 
spiking rates and signal-to-noise ratios, we used different threshold 
values for spike detection in different cell types (more than 3 s.d. for 
PPL1-DANs and MBON-α2sc, more than 2 s.d. for MBON-γ1pedc>α/β and 
MBON-γ2α′1, and more than 2.5 s.d. for MBON-α′2, -α3 and -α′3m). We 
calculated the spiking rate using the number of spikes that occurred 
in a sliding 100 ms window. Burst ratio was computed as the number 
of spikes occurring less than 20 ms after the preceding spike divided 
by the total number of spikes in the trial.

To compute mean optical spike waveforms, we temporally aligned 
each identified spike in a trial to the time at which its peak value of ΔF(t)/F0  
occurred. We performed a spline interpolation (10 μs sampling) of the 
mean waveform, and from this we determined the spike amplitude.

We also used a signal-detection framework to compute the 
spike-detection fidelity, d′, which characterizes the ability to correctly 
distinguish instances of a spike from background noise fluctuations 
in the fluorescence trace19,54. As we described previously54, when we 
use N successive samples of photon counts from a photodetector, 
F = (F1, F2, …, FN), to detect spikes, the distribution of F follows Poisson 
statistics in the shot-noise-limited regime. We can use the distribution 
to express two mutually exclusive hypotheses: the null hypothesis, 
H(0), which posits the absence of a spike; and the alternative, H(1), which 
posits that a spike occurred at time zero. The d′ value was calculated as 
d′ = (μL

(1)− μL
(0))/σL, in which μL and σL represent the mean and variance, 

respectively, of the distributions of the log-likelihood ratio, L( f ), for 
each of the two hypotheses.

The mean, μL, and variance, σL, of the distribution of L( f ) under the 
null hypothesis, H(0), of no spike having occurred, and under the alterna-
tive hypothesis, H(1), that a spike occurred, are given by:

∑ ∑

∑ ∑

∑

μ
F
ν

s
F
ν

s

μ
F
ν

s s
F
ν

s

σ σ σ
F
ν

s

= log(1 + ) −

= (1 + )log(1 + ) −

≈ ≈ = log (1 + ) ,

L
n

N

n
n

N

n

L
n

N

n n
n

N

n

L L L
n

N

n

(0) 0

=1

0

=1

(1) 0

=1

0

=1

(1) (0) 0

=1

2

where ν denotes the sampling rate, F0 represents the baseline fluo-
rescence intensity from time periods that contained no neural spike, 
and sn is the mean fluorescence signal at each time bin in a time period 
that contains the averaged waveform of the identified spikes for each 
imaging trial (N = 51 bins, 1 ms per bin).

Odour classification
For odour classification analysis (Extended Data Fig. 4h), we used 
PyTorch55 (v.1.7.1; www.pytorch.org) to train computational classifiers 
that identified odours on the basis of patterns of activity in PPL1-DAN 
or MBON neural populations. Because we imaged different cell types 
in different flies, we first constructed datasets of the responses of 
neural populations from ‘virtual flies’22 by combining data from the 
five subtypes of PPL1-DAN or the six subtypes of MBON to produce 
aggregate PPL1-DAN or MBON population datasets. For each cell 
type, we used recordings from 12 different real flies and their neural 
responses to each of five odours. To construct a dataset of PPL1-DAN 
neural-population odour-evoked responses for an individual virtual 
fly, we randomly selected one of the 12 real flies studied for each of the 
NPPL1 = 5 different PPL1-DAN cell types and combined their odour-evoked 
responses. This enabled us to create response datasets for 125 differ-
ent virtual PPL1-DANs, each of which responded to Nodours = 5 different 
odours. We used an analogous approach to construct datasets of MBON 
neural-population odour-evoked responses and combined the data 
from randomly selected flies for each of the NMBON = 6 different MBON 
types. This approach would have allowed us in principle to create 126 
different datasets of virtual MBON population responses, but in prac-
tice we constructed only 125 such datasets so we would have an equal 
number of MBON and PPL1-DAN virtual flies. To create shuffled data-
sets, we took the same two sets of 125 virtual flies and within each set 
we randomly reassigned the neural responses across the set of odours.

To create classifiers of odour identity on the basis of the odour-evoked 
neural-population responses of virtual flies, we randomly assigned 90% 
of the virtual flies to a training set, 5% of the virtual flies to a validation 
set, and the remaining 5% to a testing set. We used the validation set to 
evaluate trained classifiers and tune hyperparameters, but we used the 
testing set only at the end to determine the rate of correct classifications 
attained with the optimized classifier. We used linear support vector 
machines56 to create a multiclass linear classifier of odour identity. 
To perform odour classification using the set of all Nodours × 125 virtual 
PPL1-DAN odour-evoked responses, we created a vector classifier func-
tion, f, for which the value for the i-th odour-evoked neural response 
(1 ≤ i ≤ Nodours × 125) was

W W( , , ) = + ,i iPPL1−DAN PPL1−DANf x b x b

where WPPL1−DAN is a matrix of size Nodours × NPPL1, xi is a vector of size NPPL1 
that expresses the PPL1 responses of a specific virtual fly to one of the 
odours, and b is a bias vector of size Nodours. For computational purposes, 
we rewrote f as

f x xW W( ′, ) = ′,i i

where W is a matrix of size Nodours × (NPPL1 + 1) comprising WPPL1−DAN in its 
top NPPL1 rows and the vector b in its last row, and x′i  is a vector of size 
(NPPL1 + 1) comprising xi in its first NPPL1 entries and 1 in its last entry. 

http://www.pytorch.org


Given a set of odour-evoked neural responses, the multiclass linear 
classifier predicted the odour identity, j, as f x Wargmax { ( ′, )}j i , that is, 
according to the entry of the vector classifier function that yielded the 
maximum value.

To train the model, we optimized W by using a hinge loss function 
that penalized incorrect odour predictions. For the i-th odour-evoked 
response (1 ≤ i ≤ Nodours × 125), its contribution to the total loss was found 
by summing the penalties incurred for all incorrect classifications

f x f x∑W W Wloss ( ) = max(0, ( ′, ) − ( ′, ) + 1),i
j

i j i
≠odour

odour
i

i
true,

true,

where the index j runs over the individual odours, odourtrue,i refers to 
the odour that evoked the i-th neural response and which is thus the 
correct classifier result for the i-th response, and 1 is used as a margin to 
help enforce successful classifications. To optimize W, we averaged the 
loss function across individual batches of Nbatch = 200 odour responses 
chosen randomly without replacement from the full set of Nodours × 125 
responses, with inclusion of an L2 regularization penalty to minimize 
the entries of W:
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Here λ = 10−4 is an L2 regularization hyperparameter that we opti-
mized empirically using the validation dataset. We then used the Adam 
optimizer to update the matrix elements of W:

W W α W:= − × Adam(∇ loss( )),W

where α = 5 × 10–4 is a hyperparameter that specifies the learning  
rate and that was optimized using the validation dataset, and 
Adam(∇Wloss(W )) refers to the Adam optimizer, an extension of sto-
chastic gradient descent that adjusts the learning rate during training 
to improve convergence. (We used the standard parameter values of 
the Adam optimizer to adjust the learning rate57). To train the classifier, 
we optimized W by updating its matrix elements across ten full passes 
through the entire set of Nodours × 125 odour responses. Empirically, 
we found that extra training did not further improve classification 
accuracy. We used the same procedures and optimization parameters 
to train odour classifiers that were based on the set of odour-evoked 
MBON responses.

Finally, to test the performance of our classifiers, we divided the test-
ing dataset of virtual flies into 120 different sub-testing sets, each with 
200 different virtual flies, each with 5 different odour responses. For 
each sub-testing set, we computed the classification performance as the 
sum of the number of correctly identified odours divided by 1,000. The 
box-and-whisker plot of Extended Data Fig. 4h shows the distribution of 
classification performance values across these 120 different datasets. 
Note that this classification analysis provides an underestimate of the 
extent to which individual real flies could classify odour valences on 
the basis of MBON responses, because our classifiers cannot make full 
use of the intra-fly correlations between the responses of different 
MBONs, whereas real flies could in principle use such correlations to 
create better classifiers.

Optogenetic studies
To provide all-trans-retinal, which is an essential cofactor for CsChrim-
son activation58, we dissolved all-trans-retinal powder in 95% ethanol to 
make a 20 mM stock and diluted it with fly food to 400 µM. We collected 
adult female flies (2 days old) and transferred them to the 400 µM reti-
nal food for 3–5 days before the optogenetics experiments (Fig. 4l,m). 
To the light-on group of flies, we delivered 30 pulses, each lasting 0.5 s, 

of red light (625 nm, 0.5 Hz, 25 µW mm−2) during CS+ and CS− exposures 
by using a collimated LED (M625L4, ThorLabs), whereas the light-off 
group did not receive these pulses of illumination.

Computational model
We simulated computationally a model of the neural circuitry that 
controls associative conditioning-induced aversive behaviours in 
Drosophila. The model characterized the interactions of KCs, MBONs 
and DANs in three interconnected learning modules (γ1, α2 and α3) 
of the mushroom body (Fig. 5a). The KCs sparsely encode the CS+ and 
CS– odour stimuli, and the DANs encode the electric-shock punish-
ments. Dopamine modulates the strengths of the synaptic connections 
between the KCs and the MBONs, thereby altering the strength of the 
associative memory. The MBONs gather signals from the KCs to control 
approach or avoidance motor behaviours (Fig. 5a). Our model used a 
set of ordinary differential equations to capture how the neural activ-
ity patterns of the mushroom body and the synaptic weights change 
with time. The model thereby describes how associative information 
is stored and retrieved in the short-term (γ1 module) and long-term 
memory compartments (α2 and α3 modules) of the mushroom body.

The Supplementary Information presents differential equations 
that characterize the dynamics of the neural spiking rates and synaptic 
weights in the model (§2 and §3, respectively, of the Supplementary 
Information). The network architecture (Fig. 5a) is based on the synaptic 
connections in the fly brain connectome7 ( Janelia hemibrain v.1.2.1).  
If the number of synapses between two neurons is less than 5 in the 
connectome, we set the corresponding synaptic weight term in the 
model to be zero. This approximation substantially reduced the number 
of parameters used in the model. We inferred the values of non-zero 
synaptic weights by parametric fits of the model to the experimental 
data on neural spike rates, without further consideration of the number 
of synapses between neurons (Supplementary Tables 1 and 3).

Concurrent activation of a KC and its corresponding DAN in the model 
modifies the synaptic weight of the KC→MBON connection according 
to a bidirectional, anti-Hebbian plasticity rule. The anti-Hebbian rule 
implies that the KC→MBON synaptic weight decreases if a punishment 
appears just after odour presentation but increases if the punish
ment precedes the odour (Extended Data Fig. 10b). In all of our experi-
mental and simulation studies, we used a fixed CS+–US interval of 3 s  
(Figs. 3a,d, 4k, 5b and Extended Data Fig. 10b).

The differential equations in sections 2 and 3 of the Supplementary 
Information form a complete set that models the time-varying neural 
activity and synaptic weights in the γ1, α2 and α3 modules. We simulated 
these equations using the MATLAB (Mathworks) function ode15s(), 
which solves the differential equations numerically. However, this 
approach is time consuming and takes around 14 s to obtain results 
using each set of parameters. For this reason, we simplified the model 
using several approximations (see sections 4 and 5 of the Supplemen-
tary Information for details). First, we approximated the activation 
functions of KCs and DANs as linear functions. Second, we assumed 
that the membrane time constants of KCs, DANs and MBONs (τKC,i, 
τMBON,j and τDAN,j) are sufficiently brief (about 10 ms) to allow the spike 
rates of KCs, DANs and MBONs to attain their steady-state values in 
associative-conditioning and testing bouts. Third, we assumed that the 
resting intervals between training and testing bouts or between succes-
sive training bouts are much longer than the duration of the training and 
testing bouts (Figs. 3a,d and 4k), which allowed us to focus our analyses 
on discrete time points corresponding to the individual training and 
testing bouts. Finally, we used time-averaged values of KC and DAN 
spike-rate changes to calculate the changes in the values of the synaptic 
weights between KCs and MBONs. Using these approximations, we 
simplified the computational model into a recursive set of equations 
using discrete time-points (sections 4 and 5 of the Supplementary 
Information). The time needed to simulate each set of parameters for 
the simplified model was only about 0.02 s, which is roughly 700-fold 
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faster than the time needed to simulate results for one parameter set 
of the full model. The recursive formulation of the model also helped 
us to understand key facets of mushroom-body circuit dynamics and 
plasticity (sections 4–6 of the Supplementary Information). Notably, 
Supplementary Information equation 5.20 is plotted in Extended Data 
Fig. 10a and shows that, given the fixed CS+–US interval (3 s) used in 
all of our experiments and simulations, in the model’s recursive for-
mulation the anti-Hebbian plasticity rule reduces to one in which  
a linear integration of the innate and learnt valences governs the change 
in the KC→MBON synaptic weight. The amplitudes of these changes 
differ between the different compartments of the mushroom body 
because the different PPL1-DANs respond with distinct amplitudes to 
the unconditioned stimulus (an electric shock).

By putting the experimental conditions and model parameters (θ) 
into the recursive formulation of the model, we simulated the spike 
rates of DANs and MBONs in our experiments. Then we optimized the 
parameters of the model by fitting the model outputs to our experimen-
tal spike-rate data (Figs. 2i, 3e,f and 4c,d and Extended Data Fig. 8b,c). 
The fitted results from the optimized model are shown in Fig. 5c and 
Extended Data Fig. 10c,d. We assumed that the measured neural spike 
rates, under all experimental conditions, were governed by independ-
ent normal distributions. This assumption allowed us to estimate 
the optimized values of the model parameters and their confidence 
intervals (Supplementary Information section 7 and Supplementary 
Table 3). Using the model and its optimized parameters, we predicted 
the neural firing rates and their confidence intervals for experiments 
that had not yet been done. These predictions well matched the sub-
sequent experimental results (Fig. 5g–k).

Because PPL1-α′2α2 does not respond to the unconditioned stimulus 
electric shock (Fig. 2a,d), and because the α2 compartment does not 
influence the long-term plasticity of MBON-α3 in the model using the 
conditioning protocols of this paper, we simplified the model with 
γ1, α2 and α3 compartments (Fig. 5a) into a two-module model with 
only the γ1 and α3 compartments (Extended Data Fig. 10i). The two 
different model variants generated nearly identical predictions for 
valence-dependent long-term memory formation and extinction in the 
α3 compartment (Fig. 5e–k and Extended Data Fig. 10k–m). Moreover, 
for all parameters common to both model variants, the fitted parameter 
values were statistically indistinguishable between the two-module 
and three-module versions (Supplementary Table 3 and Supplemen-
tary Fig. 1).

Statistical analyses
We performed all statistical analyses using MATLAB (v.2018b and 
v.2020b, Mathworks) software. We chose sample sizes using our own 
and published empirical measurements to estimate effect magnitudes. 
For statistical testing, we performed non-parametric Kruskal–Wallis 
and Friedman ANOVAs to avoid making assumptions about normal 
distributions or equal variances across groups. To perform post hoc 
pairwise statistical comparisons, we used two-sided versions of the 
Mann-Whitney U-test or the Wilcoxon signed-rank test (respectively 
abbreviated to ‘U-test’ or signed-rank test’ in the figure captions) with 
a Holm–Bonferroni correction for multiple comparisons.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The Source data files for each figure and Extended data figure in this 
paper contain data for individual figure panels and statistical results, 
including for statistical comparisons that are not explicitly marked in 
the figures. The raw voltage-imaging data are available from the cor-
responding authors on reasonable request. The neural voltage activity 

traces are available at Zenodo at https://zenodo.org/uploads/10998457 
(ref. 59). Source data are provided with this paper.

Code availability
We used open-source image algorithms for motion correction (NoR-
MCorre52; https://github.com/flatironinstitute/NoRMCorre) and for 
image denoising (BM3D53; https://webpages.tuni.fi/foi/GCF-BM3D). We 
used the PyTorch55 machine learning framework (v1.7.1; www.pytorch.
org) for classification analysis. The software code to run our computa-
tional model of the MB is available at https://github.com/schnitzer-lab/
Luo_Huang_2024_MB_model.
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Extended Data Fig. 1 | Voltage imaging of neural spiking activity using split-
GAL4 lines to label PPL1-DANs and their downstream MBONs. a–i) Example 
data from voltage imaging studies of 5 different types of PPL1-DANs and 6 
different types of MBONs. Left panels, Mean fluorescence images (averaged 
over 15 s of voltage movies), showing the patterns of pAce expression in 9 
different split-GAL4 lines. Dashed boxes demarcate regions-of-interest (ROIs) 
from which we aggregated fluorescence signals to determine fluorescence 
traces of transmembrane voltage activity in individual neurons. Middle panels, 
Spatial maps of the mean fluorescence responses (ΔF/F) of individual neuron-
types at the peaks of their action potentials, averaged over all spikes detected 
within the selected 15-s-intervals. Dashed boxes enclose the same regions as  
in the left panels. Right panels, Traces of each neuron’s relative fluorescence 
changes (ΔF/F) during the same 15-s-intervals used to create the spatial maps. 
Open circles mark detected spikes. All scale bars are 10 μm. j–l) Mean ± s.e.m. 

values of the spike amplitude, j, spike detection fidelity (d′), k, and spike 
detection error rate, l, for PPL1-DANs (top graphs) and MBONs (bottom graphs). 
Gray dots are data points for 20 individual flies for each neuron-type. Spike-
detection fidelity values, d′, and error rates were satisfactory in all neuron-
types (DAN error rates: 0.05–0.16 s−1; MBON error rates: 0.06–1.7 s − 1). MBON-
γ2α’1, MBON-α’2, and MBON-α’3 m had the lowest d′ values and highest spike 
detection error rates, likely reflecting their smaller spike amplitudes, as seen  
in panel j and as reported previously for MBON-γ2α’112. All 4 graphs exhibited 
significant differences across neuron-types (n = 20 flies per neuron-type; 
Kruskal-Wallis ANOVA). Horizontal lines and asterisks mark pairwise 
comparisons that yielded significant differences in post-hoc Mann-Whitney 
U-tests performed with a Holm-Bonferroni correction for multiple 
comparisons (*P < 0.05 and ***P < 0.001).



Extended Data Fig. 2 | Axonally initiated spikes in MBONs backpropagate 
into the dendritic arbors. a–d) Example data from 4 different types of MBONs 
showing the backpropagation of spikes into the dendritic tree. Left panels, 
Mean fluorescence images (each an average over a 15-s-interval of a voltage 
movie), showing the spatial pattern of pAce expression in an individual 
MBON-type. Dashed boxes demarcate regions-of-interest (ROIs) that enclose 
either axons (blue) or dendrites (red) of the selected cell. Scale bars are 10 μm. 
Left middle panels, Fluorescence traces of transmembrane voltage activity 

from each cell’s axonal ROI (blue traces) and dendritic ROI (red traces). 
Triangles mark the peak of detected action potentials. Right middle panels, 
Mean waveforms of the axonal (blue traces) and dendritic spikes (red traces), 
computed by spline interpolation of the fluorescence traces determined from 
the 1-kHz-voltage imaging data. Vertical dashed lines mark the peaks of these 
spike waveforms and reveal the temporal offsets between axonal and dendritic 
spikes. Right panels, Histograms of the temporal offsets between axonal and 
dendritic spikes, assessed relative to the time of the dendritic spike.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | PPL1-DANs bidirectionally encode innate odour 
valences. a) Mean time-dependent forward walking speeds (lower panels)  
and changes in rotational speed (upper panels) of wild-type flies (w1118) in 
response to 5 different odours (3% BEN, 1% OCT, 0.3% BEN, 1% EtA, and ACV), 
each presented for a duration of 5 s. Gray shading marks the duration of odour 
delivery. Shading on the time traces: s.e.m. over 36 total trials in 12 flies.  
b) Mean ± s.e.m. changes in the rotational (upper panel) and forward walking 
speeds (lower panel) of wild-type flies (w1118) relative to baseline values in the 5 s 
before odour presentation, in response to the 5 odours used in a, averaged over 
the 5 s of odour presentation and 36 trials per odour (n = 12 flies, 3 trials per fly). 
Individual points denote data from individual flies. (*P < 0.05 and **P < 0.01; 
n = 12 flies per neuron type; Friedman ANOVA followed by post-hoc Wilcoxon 
signed-rank tests with Holm-Bonferroni correction). c) Mean ± s.e.m. changes 
in spike rates measured during odour exposure (5 s duration), relative to 
baseline spiking rates, in PPL1-γ1pedc, -γ2α’1, -α’2α2, -α3 and -α’3 neurons 
(n = 4–7 flies per odor, 1–4 trials per fly; the exact total numbers of trials and 
flies used are indicated under each odour-type in the graphs). Odorants:  
Apple cider vinegar (ACV), 0.3% or 3% benzaldehyde in mineral oil (0.3% or 3% 
BEN), 1% or 10% 3-octanol in mineral oil (1% or 10% OCT), 1% or 10% ethyl acetate 
in mineral oil (1% or 10% EtA), 1% or 10% 1-octen-3-ol in mineral oil (1% or 10% 
1O3O). The different PPL1-DANs exhibit different degrees of sensitivity to 

odour valence. Odours are arranged left to right in the plots according to  
their evoked spiking changes in PPL1-γ1pedc. d–h) Upper left panels, Example 
optical voltage traces showing PPL1-DAN responses to presentations of the 
same 5 odours as in b. Gray shading covers the 5-s-duration of odour delivery. 
Lower left panels, Mean time-dependent spike rates in response to each odor, 
averaged over 12 flies for each neuron-type, 1 trial per odor. Right panels,  
Plots of the mean changes in PPL1-DAN spike rates evoked by odour exposure 
(5 s exposure duration; the 5 odorants used are listed above the x-axis in h), 
plotted as a function of the mean changes in rotational speed induced by each 
odorant (using the data of Fig. 2h). Gray points show data from 12 individual 
flies per neuron-type. As in Fig. 2h, odour data are plotted from left to right on 
the x-axis from the most repulsive to the most attractive odor. Dashed lines are 
linear regressions (Source data has R-values and P-values for the regressions). 
Although individual odours induced characteristic spiking patterns in PPL1-
DANs, distinct odours of similar valences were not readily distinguished based 
solely on changes in spike rates, suggesting that the spike rates encode odours’ 
innate valences rather than their actual identities. Horizontal lines and asterisks 
mark pairwise comparisons that yielded significant differences in post-hoc 
Wilcoxon signed-rank tests performed with a Holm-Bonferroni correction for 
multiple comparisons (*P < 0.05 and **P < 0.01), following a Friedman ANOVA. 
See Extended Data Fig. 4g for data on odour-evoked spiking in MBONs.
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Extended Data Fig. 4 | Odour-evoked responses of MBONs do not vary much 
across odours with different innate valences. a–f) Example fluorescence 
voltage traces (top rows), time-dependent mean spiking rates (middle rows), 
and odour-evoked changes in 12 individual flies’ spike rates relative to baseline 
rates (bottom rows), for 6 different MBON-types during 5-s-presentations  
of 5 different odours. Red vertical dashed lines mark the onsets of odour 
presentation, and black vertical dashed lines mark the offsets. The mean spike 
rates shown in the middle row of each graph are averages over the same 12 flies, 
for which data is shown individually in the corresponding graph of the bottom 
row. g) Mean ± s.e.m. changes in spike rates measured for 6 different MBON-
types during 5-s-odour presentations, determined relative to baseline spiking 
rates. Gray dots: data from individual flies. None of the bar graphs exhibited 
significant differences in the MBON responses to different odorants (Friedman 
ANOVA; P > 0.05). h) To estimate the extent to which a fly might be able to 
distinguish the different odorants used in our study based solely on the  

odour-evoked patterns of neural activity across the 5 PPL1-DANs or 6 MBONs, 
we performed a classification analysis using a collection of neural recordings 
from 117 total flies, in which the dynamics of each neuron-type was recorded in 
12 different flies (Some fly lines allowed recordings from more than 1 cell-type 
at once; Methods; Extended Data Table 1). The box-and-whisker plot shows the 
accuracy of odour classification using the set of mean odour-evoked changes  
in neural activity across either the 5 PPL1-DANs or the 6 MBONs (n = 120 sub-
testing sets used for each; see Methods). Notwithstanding that there are fewer 
PPL1-DANs than MBONs, classification was significantly more accurate based 
on PPL1-DAN activity patterns. We compared the results to those attained 
using shuffled datasets, in which odour identities were randomly permuted. 
Boxes span the 25th–75th percentiles, horizontal lines denote median values, 
whiskers span 1.5 times the interquartile distance, and open circles are outlier 
data points. Gray dashed line indicates chance level (***P < 0.001; Wilcoxon 
ranked sum test).
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Extended Data Fig. 5 | Associative conditioning with an attractive odour 
pair increases CS+-evoked responses in PPL1-α’2α2 and PPL1-α3 but not 
PPL1-γ1pedc, PPL1-γ2α’1 and PPL1-α’3. a–e) Example fluorescence voltage 
traces (top rows), time-dependent mean spiking rates (middle rows), and odour-
evoked changes in spike rates relative to baseline rates in 12 individual flies 
(bottom rows) for PPL1-γ1pedc (a), PPL1-γ2α’1 (b), PPL1-α’2α2 (c), PPL1-α3 (d), 
and PPL1-α’3 (e) neurons in response to innately attractive CS+ and CS– odours 
in the pre-training (Pre), mid-training (Mid), 5-min post-training, and 1-hr post-
training periods (as defined in Fig. 3d). Red vertical dashed lines mark the 
onsets of odour presentation, and black vertical dashed lines mark the offsets. 
The mean spike rates shown in each graph of the middle rows are averages over 

the same 12 flies, for which data is shown individually in the corresponding 
graph of the bottom row. For each conditioning experiment, we used apple 
cider vinegar (ACV) and 1% ethyl acetate and assigned them as CS+ and CS– in a 
counterbalanced manner across 12 flies. f) Mean ± s.e.m. baseline spike rates, 
averaged over the 5-s period before CS+ or CS– delivery, in the pre-training (Pre), 
mid-training (Mid), 5-min post-training, and 1-hr post-training periods for the 
PPL1-γ1pedc, PPL1-γ2α’1, PPL1-α’2α2, PPL1-α3, and PPL1-α’3 neurons. Gray  
dots: data from individual flies. None of the bar graphs evidenced significant 
differences between the different time points (Friedman ANOVA; P > 0.05; 
n = 12 female flies per cell-type).
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Extended Data Fig. 6 | Olfactory conditioning with an attractive odour  
pair decreases CS+ responses in MBON-γ1pedc > α/β, MBON-γ2α’1 and 
MBON-α3. a–f) Example fluorescence voltage traces (top rows), time-
dependent mean spiking rates (middle rows), and odour-evoked changes in 
spike rates relative to baseline rates in 12 individual flies (bottom rows) for 
MBON-γ1pedc > α/β (a), MBON-γ2α’1 (b), MBON-α2sc (c), MBON-α’2 (d), 
MBON-α3 (e) and MBON-α’3 m (f) in response to CS+ and CS– odours in the pre-
training (Pre), mid-training (Mid), 5-min post-training, and 1-hr post-training 
periods (as defined in Fig. 3d). Red vertical dashed lines mark the onsets of 
odour presentation, and black vertical dashed lines mark the offsets. The mean 
spike rates shown in each graph of the middle rows are averages over the same 

12 flies, for which data is shown individually in the corresponding graph  
of the bottom row. For each conditioning experiment, we used apple cider 
vinegar (ACV) and 1% ethyl acetate and assigned them as CS+ and CS– in a 
counterbalanced manner across 12 flies. g) Mean ± s.e.m. baseline spike rates, 
averaged over the 5-s period before CS+ or CS– delivery, in the pre-training (Pre), 
mid-training (Mid), 5-min post-training, and 1-hr post-training periods, for 
MBON-γ1pedc > α/β, MBON-γ2α’1, MBON-α2sc, MBON-α’2, MBON-α3 and 
MBON-α’3 m. Gray dots: data from individual flies. (*P < 0.05 and **P < 0.01; 
n = 12 flies per neuron-type; Friedman ANOVA followed by post-hoc Wilcoxon 
signed-rank tests with Holm-Bonferroni correction).
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Extended Data Fig. 7 | MBON-α3, but not MBON-γ1pedc > α/β, exhibits 
long-lasting plasticity after olfactory conditioning and is required for  
3-hr memory. a) Left, Mean ± s.e.m. odour-evoked changes in spike rates of 
MBON-γ1pedc > α/β, induced by the attractive CS+ and CS– odours (apple cider 
vinegar and 1% ethyl acetate; counterbalanced across flies in their assignments 
as CS+ and CS–) in the pre-training (Pre), mid-training (Mid), 5-min, 1-hr, 3-hr and 
24-hr imaging periods, using the training and imaging protocol of Fig. 3d. Right, 
Changes in the CS+ vs. CS– bias in evoked spiking responses relative to those in 
the pre-training session (Methods). (*P < 0.05 and **P < 0.01; n = 12 flies per 
neuron-type; Friedman ANOVA followed by post-hoc Wilcoxon signed-rank tests 
with Holm-Bonferroni correction). b) Example fluorescence voltage traces 
showing odour-evoked, MBON-α3 spiking responses to 5-s presentations of an 
innately attractive CS+ (1% ethyl acetate, red) or CS– odour (apple cider vinegar, 
blue) in the pre-training (Pre) period, or at 5-min, 1-hr, 3-hr, 24-hr or 48-hr after 
associative conditioning using the training protocol of Fig. 3d. c) Mean ± s.e.m. 
odour-evoked changes in MBON-α3 spike rates, induced by innately attractive 

CS+ and CS– odours in the pre-training (Pre) period, or at the 5-min, 1-hr, 3-hr, 
24-hr time points (n = 12 flies for each time point; **P < 0.01; Friedman ANOVA 
followed by post-hoc Wilcoxon signed-rank tests with Holm-Bonferroni 
correction), or at the 48-hr time-point (n = 2 flies; not included in the ANOVA).  
d, e) Mean ± s.e.m. changes in rotational speed induced by CS+ and CS– odours in 
the pre-training (Pre), 5-min and 3-hr testing sessions for w1118 > UAS-TnT (d) or 
MB093C > UAS-TnT (e) flies. Both CS+ and CS– odours were initially attractive and 
were either apple cider vinegar (ACV) or 1% ethyl acetate; assignments as CS+  
and CS– were counterbalanced across 10 flies. w1118 > UAS-TnT flies exhibited 
behavioral conditioning to the CS+ but not the CS– odours at 5-min and 3-hr after 
training. MB093C > UAS-TnT flies exhibited behavioral conditioning to the CS+ 
odour at 5-min but not at 3-hr after training. Thus, inhibition of synaptic vesicle 
release in MBON-α3 impedes the longevity but not the formation of associative 
memory. (*P < 0.05; **P < 0.01; n = 10 female flies per genotype; Friedman ANOVA 
followed by post-hoc Wilcoxon signed-rank tests with Holm-Bonferroni 
correction). Gray lines in panels a, c, d, e: data from individual flies.
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Extended Data Fig. 8 | Valence-dependent coding and plasticity: Like 
PPL1-α3, PPL1-γ1pedc conveys the net valence of jointly presented stimuli, 
and spiking plasticity in MBON-γ1pedc > α/β, MBON-α2sc and MBON-α3 
depends on innate odour valence. a) Mean ± s.e.m. odour-evoked changes in 
MBON-α3 spike rates induced by the CS+ and CS– odours at different time-
points before, during and after associative conditioning with either a pair  
of innately attractive (ACV and 1% ethyl acetate (EtA)) or a pair of innately 
repulsive (OCT and 0.3% benzaldehyde (BEN)) odours. We followed the training 
and imaging protocol of Fig. 3d but added extra imaging sessions at 3-hr and 
24-hr post-training. (*P < 0.05 and ***P < 0.001; n = 12 individual flies. Mann-
Whitney U-tests). Gray dots: Data from individual flies. b, c) Left, Mean ± s.e.m. 
odour-evoked changes in spike rates of MBON-γ1pedc > α/β, (b), or MBON-
α2sc, (c), induced by the CS+ and CS– odours in the pre-training (Pre), mid-
training (Mid), 5-min, and 1-hr imaging periods, using a pair of repulsive odours, 
OCT and 0.3% benzaldehyde (BEN). Right, Changes in the CS+ vs. CS– bias in 
evoked spiking responses relative to that of the pre-training session (Methods). 
These valence-dependent changes in MBON activity patterns (compare to 
Fig. 3f) might be relayed to PPL1-α3 (Fig. 1a), perhaps amplifying valence-
dependent activity in the α3 unit. (*P < 0.05 and **P < 0.01; n = 12 flies per 
neuron-type; Friedman ANOVA followed by post-hoc Wilcoxon signed-rank 
tests with Holm-Bonferroni correction). d) Attractive odour attenuates the 
punishment-induced spiking responses of PPL1-γ1pedc. Top, Changes in PPL1-
γ1pedc spike rates relative to baseline levels, immediately before, during and 
after delivery of either 10-s-exposures to apple cider vinegar (ACV; blue 
shading; left), 5 electric-shock pulses (each 0.2 s in duration with 1.8 s interval 
between pulses; red tick marks; middle), or the paired presentation of ACV  
and shocks (right) to n = 14 flies (1 trial per fly for each of the 3 stimulation 
conditions). Bottom, Time-dependent mean spiking rates, averaged over all  

14 trials for each stimulus. Dashed lines mark the mean baseline spiking rates, 
averaged over the first 5 s of recording. Gray shading on the time traces: s.e.m. 
e) Mean ± s.e.m. odour-evoked changes in PPL1-γ1pedc spike rates relative to 
baseline levels, as measured during 10-s exposures to ACV (blue bar), 5 electric 
shocks (red bar), or paired presentations of ACV and shocks (purple solid bar). 
(**P < 0.01 and ***P < 0.001; n = 14 flies; Friedman ANOVA followed by post-hoc 
Wilcoxon signed-rank tests with Holm-Bonferroni correction). Spiking 
responses to the paired presentations of ACV and shocks were indistinguishable 
from the sum of the changes induced by the two stimulus-types when each was 
presented independently (purple hollow bar; n = 14 flies; Wilcoxon signed-rank 
tests). f) Repulsive odour enhances punishment-induced spiking responses in 
PPL1-γ1pedc. Top, Changes in spike rates, immediately before, during and after 
10-s-exposures to either 1% 3-octanol (OCT; green shading; left), 5 pulses of 
200-ms-electric-shock (red tick marks; middle), or the joint presentation of 
OCT and shock (right) to n = 14 flies (1 trial per fly for each of the 3 stimulation 
conditions). Bottom, Time-dependent mean spiking rates, averaged over all 14 
trials for each stimulus. Dashed lines: mean baseline spiking rates, averaged 
over the first 5 s of recording. Gray shading on the time traces: s.e.m. g) Mean ± 
s.e.m. odour-evoked changes in PPL1-γ1pedc spike rates relative to baseline 
levels, measured during 10-s exposures to either OCT (green bar), electric 
shocks (red bar), or joint presentations of OCT and shocks (purple solid bar). 
(*P < 0.05 and ***P < 0.001; n = 14 flies; Friedman ANOVA followed by post-hoc 
Wilcoxon signed-rank tests with Holm-Bonferroni correction). Spiking responses 
to the joint presentation of OCT and shocks were indistinguishable from  
the sum of the changes induced by the two stimulus-types when each was 
presented independently (purple hollow bar) (n = 14 flies; Wilcoxon signed-
rank test). Gray lines in b, c, e, g denote data from individual flies.
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Extended Data Fig. 9 | The GABA-A receptor (RDL) and glutamate-gated 
chloride channel (GluCl-α) are needed for the bidirectional encoding of 
innate odour-valence by PPL1-α3. a–c) Top panels, Time-dependent mean 
spiking rates of PPL1-α3 in response to 5 different odours (3% BEN, 1% OCT,  
0.3% BEN, 1% EtA, and ACV), in control flies (MB065B-GAL4 > 20×UAS-pAce),  
a; flies in which the GABA-A receptor (RDL)43 was selectively inhibited in PPL1-α3 
using RNAi (MB065B-GAL4,20×UAS-pAce > UAS-RDL-RNAi), b; and flies in which 
the glutamate-gated chloride channel (GluCl-α)44 was selectively inhibited in 
PPL1-α3 using RNAi (MB065B-GAL4,20×UAS-pAce > UAS-GluCl-α-RNAi), c. Gray 
shading covers the 5 s of odour presentation. Bottom panels, Odour-evoked 
changes in spike rates, relative to baseline rates, with each row showing single-
trial data from an individual fly. Red vertical dashed lines mark the onsets of 
odour presentation, and the black vertical dashed lines mark the offsets.  
d–f) Mean ± s.e.m. changes in PPL1-α3 spike rates during odour exposure  
(5 s durations) relative to baseline rates in control flies, d, flies in the RDL 

inhibition group, e, and flies in the GluCl-α inhibition group, f. (*P < 0.05 and 
**P < 0.01; 12 flies each for the control and GABA-A RNAi groups, 10 flies for  
the GluCl-α RNAi group; Friedman ANOVA followed by post-hoc Wilcoxon 
signed-rank tests with Holm-Bonferroni correction). g) Mean ± s.e.m. changes 
in PPL1-α3 spike rates measured during odour presentation (5 s) relative to 
baseline rates in the control group, the RDL inhibition group, and the GluCl-α 
inhibition group. (*P < 0.05 and **P < 0.01; 12 flies for the control and GABA-A 
RNAi groups, 10 flies for the GluCl-α RNAi group; Kruskal-Wallis ANOVA 
followed by post-hoc Mann-Whitney U-tests with Holm-Bonferroni correction). 
h) Mean ± s.e.m. rates of spontaneous PPL1-α3 spiking for flies in the control 
group, the RDL inhibition group, and the GluCl-α inhibition group. (*P < 0.05;  
12 flies each for the control and GABA-A RNAi groups, 10 flies for the GluCl-α 
RNAi group; Kruskal-Wallis ANOVA followed by post-hoc Mann-Whitney  
U-tests with Holm-Bonferroni correction). Gray and colored points in d–h  
show measurements from individual flies.
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Extended Data Fig. 10 | A computational model of the mushroom body 
captures the interactions between learning units and yields predictions 
about the dynamics of memory storage and extinction. a) Relative changes 
in KC → MBON weights in the model induced by a single training bout, plotted as 
a function of the odour-evoked DAN spike rate, which integrates innate and 
learnt valances. Depending on whether DAN activity is excited or suppressed  
(x-axis), the KC → MBON connection can either become weaker or stronger, 
respectively. The 3 plots in the graph follow Eq. (5.20) in the Supplementary 
Information. Weight changes on the y-axis are normalized by the ratio of the 
evoked spike rate in the KC to its maximum spike rate. The CS+ is jointly 
presented with the shock US, thus the integrated valence of both stimuli 
influences DAN spiking in the α3 and γ1 compartments (orange and red curves). 
The CS– odour appears alone, but its innate valence also leads to DAN spiking 
(blue curve). Because PPL1-α’2α2 does not respond to shock, its plasticity curve 
for a bout of CS+–US training is identical to that governing plasticity in any of the 
modules during a bout of CS– delivery. The y-intercept of each plot is the weight 
change induced by CS+–US training with a neutral odor. b) Graph schematizing 
the CS+–US timing dependence of the bi-directional, dopamine-mediated,  
anti-Hebb rule governing plasticity of the KC → MBON connections in the 
computational model. The curve was based on a prior behavioral study11 that 
used optogenetics to vary the time-scale between KC and DAN activation60. The 
value of Δt (x-axis), the interval between the CS+ and US presentations, leads to a 
similar time difference between DAN and KC activation. When a DAN activates 
before its presynaptic KC, this increases the strength of the downstream 
KC → MBON connection. In contrast, when a KC activates before its presynaptic 
DAN, this decreases the strength of the KC → MBON connection. Red dashed 
line marks the value of Δt (3 s) used for all experiments and simulations in this 
paper. c, d) CS–- and CS+-evoked changes in MBON-α3 spiking at different time 
points before, during and after associative conditioning, based on our 
experimental data (open bars; means) or the optimized computational model of 
the MB (solid bars; median), for conditioning with attractive (ACV and EtA), c, or 
repulsive odour pairs (OCT and BEN), d. For the experimental data, error bars 
show s.e.m. values over n = 12 flies. Gray points: data from individual flies. For 
the simulation data in panels c, d, e, j and l, error bars span the 16%–84% C.I. 
based on results from 10,000 simulations (Methods). e) We used the optimized 
computational model to evaluate how the inter-stimulus-interval (ISI) between 
CS+ and CS– presentations within a training bout influences MBON plasticity at 
different time points after training. Plots show the median CS+- (top row) and 
CS–-evoked (bottom row) spike rates in each of the 3 MBONs in the model, at 
5-min, 3-hr or 24-hr after 10 bouts of training with different ISI values. These 
studies used hypothetical odour pairs with no innate valence. Our modeling 
and imaging results reveal a neural embodiment of the ‘spacing effect’ and 
point to a mechanism; namely, the strength of plasticity in the LTM unit is jointly 
influenced by the offsetting influences of sensory adaptation and feedback from 
the STM unit. These two processes have distinct time courses, which jointly set 
the optimal ISI for LTM formation. When the ISI is less than the optimal ISI 
duration, sensory adaptation dominates, slowing LTM formation. If the ISI is 
longer than optimal, the STM decays, weakening LTM induction. This finding 
motivates future work seeking details of the underlying molecular mechanisms. 
f) To explore how sensory adaptation and neural feedback from MBON-γ1pedc >  
α/β influence the ISI-dependent plasticity, we used the optimized model to 
simulate the biases between CS+- and CS–-evoked MBON-α3 spiking at 24-hr 
after different numbers of consecutive training bouts (y-axis values) using 
different ISI values (x-axis values). These studies used hypothetical odour pairs 
with no innate valence. Plots show results for the CS+ vs. CS– bias from simulations 
of three different conditions, in which: the MB circuitry was intact (left); sensory 
adaptation was removed in the model for both the CS+ and CS– odours (middle); 
or feedback signals from MBON-γ1pedc > α/β were absent (right). g) We used 
the optimized model to simulate the biases between CS+- and CS–-evoked 
MBON-α3 spiking at 24-hr after 10 training bouts of conditioning with one  
of 9 different hypothetical odour pairs with varying innate valence values  
( y-axis values). The plots show results for the CS+ vs. CS– bias from simulations 
of the same three conditions examined in panel f. h) To examine the effects of 
extinction training and the role of feedback signals from MBON-γ1pedc > α/β to 

the DANs, we used the optimized model to simulate extinction training (3 bouts 
of CS+ and CS– presentation but no US presentation) occurring at different 
times after the last conditioning bout. The plots show the model’s predictions 
for the learning-induced changes in odour-evoked spiking in MBON-α3 across  
a 3-hr-duration after 3 bouts of conditioning. The different rows of each plot 
show odour-evoked spike rates for extinction sessions (marked with black 
squares) occurring at distinct times after the last training bout; the bottom  
row of each plot shows results for simulations without extinction training.  
The simulations used pairs of odours that both had attractive innate valences 
(matched to those of apple cider vinegar, ACV, and 1% ethyl acetate, EtA;  
top plots) or that both had aversive innate valences (matched to those of  
1% 3-octanol, OCT, and 0.3% benzaldehyde, BEN; bottom plots). For the innately 
attractive odours, extinction training has the greatest effect when it occurs  
at substantial intervals after the end of conditioning. The left three columns 
show results from simulations using the intact model. The right three columns 
show results from simulations in which the feedback pathway from MBON-
γ1pedc > α/β was inactivated. The difference in efficacy arises from a dynamic 
competition between the innate appetitive and learnt aversive odour valences, 
which are both encoded by PPL1-α3 but at relative amplitudes that vary over 
time and different phases of learning. At times soon after conditioning, PPL1-α3 
signals the learnt aversive valence of an innately attractive CS+, which allows  
the CS+ to act as its own reinforcer and thus to enhance α3 plasticity, even when 
the CS+ is presented unpaired, without the US. i) Diagram showing the neural 
connectivity in a simplified version of our computational model with only two 
(γ1 and α3) learning modules. Each of the two modules is shown in a distinct 
color. Supplementary Fig. 1 of the Supplementary Information shows that,  
for model parameters common to both the 2-module and 3-module versions  
of the model, the fitted parameter values are statistically indistinguishable 
between the two model versions. j) After finding optimal parameter values  
for the 2-module computational model, we examined how well the model’s 
predictions matched the data used to train it. We compared the odour-evoked 
changes in spiking for the 2 DAN and 2 MBON neuron-types (n = 12 flies per cell-
type), as found empirically from voltage-imaging data (solid lines; mean ± s.e.m. 
values) to the model predictions (dashed lines; median values) for time points 
before, mid-way through, and at 5-min and 1-hr after associative conditioning. 
k) To explore how neural feedback from MBON-γ1pedc > α/β to the DANs 
influences associative conditioning in the 2-module model of panel i, we used 
the optimized model to simulate the biases between CS+-evoked and CS–-evoked 
MBON spiking after different numbers of training bouts (y-axis values) occurring 
in immediate succession, with the feedback connections (red dashed lines in 
panel i) that carry learnt valence signals either intact (top row of plots) or 
removed (bottom row). l) We used the 2-module model to evaluate how the 
inter-stimulus-interval (ISI) between CS+ and CS– presentations within a training 
bout influences MBON plasticity at different time-points after training. The 
plots show the median CS+ vs. CS– spiking bias in each of the 2 MBONs in the 
model, at 5-min, 3-hr or 24-hr after 10 bouts of training using different ISI values. 
These computational studies used hypothetical odours with no innate valence 
for either the CS+ or CS–. The results are highly similar to those in Fig. 5g. m)  
To examine the effects of extinction training in the 2-module model, we used 
the optimized model and its fitted parameter values to simulate the effects  
of extinction training (3 bouts of CS+ and CS– presentation but no shock 
presentation) occurring at different times after the last conditioning bout. The 
plots show model predictions for the CS+ vs. CS– spiking bias in MBON-α3 across 
a 3-hr duration following 3 bouts of classical conditioning; the different rows of 
each plot show the results for extinction sessions (marked with black squares) 
occurring at distinct times after the last training bout; the bottom row shows 
results in the absence of extinction training. The simulations used pairs of 
odours that both had attractive innate valences (left plot; valences matched to 
those of apple cider vinegar, ACV, and 1% ethyl acetate, EtA) or that both had 
aversive innate valences (right plot; valences matched to those of 1% 3-octanol, 
OCT, and 0.3% benzaldehyde, BEN). For the innately attractive odours, 
extinction training has the greatest effect when it occurs at substantial intervals 
after the end of conditioning. For the aversive odours, the effect of extinction 
training is less dependent on its time of occurrence.
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Extended Data Fig. 11 | Synaptic weight changes and stimulus-evoked 
spiking rates in the computational model of the mushroom body after  
6 bouts of conditioning with attractive or repulsive odour pairs. a) We used 
the optimized (3-module) model to examine conditioning-induced changes  
in odour-evoked spiking for the model’s 3 PPL1-DANs and 3 MBONs, after 
conditioning with one of 17 different hypothetical pairs of odours with varying 
innate valences as the CS– and CS+. Within each odour pair, the two odours had 
equivalent innate valences. In each of the plots, each row presents data for a 
single hypothetical odour or odour pair. The innate valence of each odour is 
specified by the change in DAN spiking that it evokes ( y-axis values), relative  
to baseline spiking levels and prior to any associative conditioning. Using the 
model, we simulated 6 bouts of associative conditioning according to the 
protocol of Fig. 3d, using each of the 17 odours as either the CS+ (top 6 plots) or 
the CS– (middle 6 plots); these 12 plots show, as a function of time after training, 
the odour-evoked rates of PPL1-DAN and MBON spiking. The bottom 6 plots 
show how the biases between CS+- and CS–-evoked spiking change as a function 
of time after training. b–g) We used the optimized (3-module) model to 
simulate the learning-induced changes in odour-evoked spiking rates and 
synaptic weights after 6 bouts of conditioning in the PPL1-γ1pedc (b), MBON-
γ1pedc > α/β (c), PPL1-α’2α2 (d), MBON-α2sc (e), PPL1-α3 (f), and MBON-α3 (g) 
neurons. The simulations used pairs of odours that either both had attractive 
innate valences (top two rows of each panel; valences matched to those of apple 

cider vinegar, ACV, and 1% ethyl acetate, EtA) or both had aversive innate 
valences (bottom two rows of each panel; valences matched to those of 1% 
3-octanol, OCT, and 0.3% benzaldehyde, BEN). The plots show model 
predictions for the learning-induced changes in odour-evoked spiking  
and synaptic weights at pre-conditioning (Pre) and during each of the 6 
conditioning bouts (left plots), and across a 3-hr-interval after conditioning 
(right plots). The labels of the synaptic weights refer to the cell names, as 
defined in Fig. 5a. For the 6 conditioning bouts, we simulated neural responses 
to the paired presentation of the CS+ odour and the US, whereas responses to 
CS–- odour were simulated in the absence of the US. PPL1-γ1pedc elevated its 
spiking rate during paired presentations of the CS+ and US, b, which led to 
reduced CS+-evoked spiking by MBON-γ1pedc > α/β for up to 1 h after training, 
c. Notably, CS–-evoked spiking by MBON-γ1pedc > α/β also decreased during 
conditioning, mainly due to sensory adaptation. In contrast, the CS+-evoked 
spiking rates of the PPL1-α’2α2 and PPL1-α3 neurons, d and f, gradually 
increased across the 6 conditioning bouts and remained higher than CS–-
evoked spiking rates up to 1 h after training, due to the inhibitory feedback 
from MBON-γ1pedc > α/β. Under the combined influence of the innate and 
learnt odour valences encoded by the PPL1-α’2α2 and PPL1-α3 neurons, the 
downstream MBON-α2sc and MBON-α3 neurons, e and g, exhibited valence-
dependent spiking plasticity that persisted for an hour or more.



Extended Data Fig. 12 | Neural dynamics in short- and long-term memory 
modules during associative conditioning and extinction. a, b) We used  
the optimized 3-module model to simulate the effects of different extinction 
training protocols (3 bouts of CS+ and CS– presentation but no US presentation; 
see Fig. 5j), in the short-term memory module (PPL1-γ1pedc and MBON-γ1pedc 
> α/β), a, and the long-term memory module (PPL1-α3 and MBON-α3), b. The 
simulations used pairs of odours with attractive innate valences (matched to 
those of apple cider vinegar, ACV, and 1% ethyl acetate, EtA). The plots show 

model predictions for the learning-induced changes in odour-evoked spiking at 
a pre-conditioning time point (Pre) and during 3 successive training bouts (left 
column), across a 3-hr-duration after conditioning with either no extinction 
training (middle left column), or with extinction training at either 10-min 
(middle right column) or 2-hr (right column) after the end of conditioning. 
Vertical orange lines mark the times of 3 successive bouts of extinction 
training. c, d) Plots analogous to those of a and b except that the odour pair 
used for conditioning had an aversive innate valence.
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Extended Data Fig. 13 | See next page for caption.



Extended Data Fig. 13 | Unlike voltage imaging, Ca2+ imaging does not 
accurately report decreases in spiking and thereby fails to capture the 
integration of valences encoded by the spiking of PPL1 dopamine neurons. 
a, b) Top plots, Time-dependent mean fluorescence Ca2+ signals (ΔF/F) evoked 
in the PPL1-α’2α2 (R82C10-LexA > 13×LexAop-jGCaMP7b), a, and PPL1-α3 
neurons (MB065B > 20×UAS-jGCaMP7b), b, by 5 different odours (3% BEN,  
1% OCT, 0.3% BEN, 1% EtA, and ACV). Gray shading marks the duration of odour 
presentation. Bottom plots, Odour-evoked changes in Ca2+ activity in 12 
individual flies. Each row shows data from a single fly. Vertical dashed lines 
mark the onset (red) and offset (black) of odour presentation. Comparison  
to Extended Data Fig. 3f,g shows that Ca2+ imaging poorly captures the 
bidirectional encoding of innate odour valences. c, d) Mean changes in odour-
evoked Ca2+ activity relative to baseline levels in PPL1-α’2α2, c, and PPL1-α3,  
d, averaged across the 5 s of odour presentation. Error bars: s.e.m. across 12 
flies per neuron-type. (*P < 0.05; n = 12 flies; Friedman ANOVA followed by post-
hoc Wilcoxon signed-rank tests with Holm-Bonferroni correction). Gray dots 
indicate data from individual flies. e) Top, Changes in Ca2+ activity (ΔF/F) in the 
PPL1-α3 neuron immediately before, during and after 10-s-exposures to apple 
cider vinegar (ACV; horizontal blue line; left), 5 electric-shock pulses (each 0.2 s 
in duration with 1.8 s interval between pulses; red ticks mark the times of the 
individual shock pulses; middle), or the paired presentation of ACV and shocks 
(right) to n = 14 female flies (MB065B > 20×UAS-jGCaMP7b; 1 trial per fly for each 
of the 3 stimulation conditions). Bottom, Traces showing the time-dependent, 
mean Ca2+ activity, averaged over all 14 trials for each stimulus. Horizontal 
dashed lines: Mean baselines, averaged over the first 5 s of recording. Blue 
shading covers the periods of odour presentation. Shading on time traces: 
s.e.m over 14 flies. f) Mean ± s.e.m. odour-evoked changes in the Ca2+ activity  
of the PPL1-α3 neuron, as measured during 10-s-exposures to ACV (blue bar),  
5 electric shocks (red bar), or the paired presentation of ACV and shocks (purple 
bar). (*P < 0.05; n = 14 flies; Friedman ANOVA followed by post-hoc Wilcoxon 
signed-rank tests with Holm-Bonferroni correction). Gray lines: Data from 
individual flies. Changes in the Ca2+ activity in response to ACV was statistically 
indistinguishable from the baseline activity before ACV exposure. Changes in 
the Ca2+ activity in response to shocks alone and joint presentations of ACV and 
shocks have no significant difference from each other (n = 14 flies; Wilcoxon 
signed-rank test). Comparison to the data of Fig. 4e, g shows that Ca2+ imaging 

poorly captures the ACV-evoked suppression of spiking and the encoding  
of the net valence of shocks paired with ACV presentation. g) Plots analogous 
to those of e, except the odour used (1% OCT) was innately repulsive. h)  
Mean ± s.e.m. odour-evoked changes in the Ca2+ activity of the PPL1-α3 neuron, 
as measured during 10-s-exposures to 1% OCT (green bar), 5 electric shocks  
(red bar), or the paired presentation of OCT and shocks (purple solid bar). 
(n = 14 flies; Friedman ANOVA followed by post-hoc Wilcoxon signed-rank tests 
with Holm-Bonferroni correction). Gray lines: Data from individual flies. 
Changes in Ca2+ activity in response to the joint presentation of OCT and 
shocks were significantly different from the sum of the changes induced by the 
two stimulus-types, when each was presented independently (purple hollow bar) 
(*P < 0.05; n = 14 flies; Wilcoxon signed-rank test). Comparison to the data of 
Fig. 4f,h shows that Ca2+ imaging fails to report the encoding of the net valence 
of shocks paired with OCT presentation, due to saturation of the Ca2+ indicator 
response during strong neuronal excitation. i) Schematic showing how  
the parallel-recurrent circuitry of the mushroom body (MB) may allow  
the integration of innate and learnt valence signals in a heterogeneous  
manner across the different learning units. PPL1-DANs innervate different 
compartmentalized regions on Kenyon cells (KC) axons and form parallel 
learning units together with their corresponding downstream mushroom body 
output neurons (MBONs). Sensory stimuli with innate negative valences, such 
as punishments (red) and repulsive odours (orange), heterogeneously excite 
PPL1-γ1pedc, PPL1-γ2α’1, PPL1-α’2α2, and PPL1-α3. Whereas sensory stimuli 
with positive valences, such as rewards (blue) and attractive odours (green), 
inhibit the 4 PPL1-DANs. During associative conditioning with an aversive US, 
each individual PPL1-DAN may integrate the valences of stimuli presented 
concurrently and provide a distinctive teaching signal that drives a depression 
of KC → MBON synapses. Plasticity in MBON-γ1pedc > α/β lasts for ~1 h and 
reduces the strength of the inhibitory feedback from MBON-γ1pedc > α/β to 
PPL1-α’2α2 and PPL1-α3, which in turn facilitates the formation of long-lasting 
plasticity in those learning units. In addition, the PPL1-γ2α’1 neuron is modulated 
by the fly’s movement13,29, whereas PPL1-α’3 seems to encode odour novelty21. 
Owing to the integration of the innate and learnt valences encoded by PPL1-
DAN spiking and to the varying durations of MBON plasticity, the MB’s parallel-
recurrent circuitry can enact diverse plasticity patterns that shape fly behavior 
in a flexible manner.
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Extended Data Table 1 | Fly genotypes used in each figure panel

A table of the fly lines created in this study and of the fly genotypes used in each figure panel.
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There was no formal randomization procedure, but flies were informally chosen in a randommanner for all studies. Please see the "Fly stocks"
section of the Methods.

Experimenters were not blind to the genotypes of the animals used. However, all data collection and analyses were performed automatically

using computer software that was uniformly applied to all flies irrespective of their genotypes. Please see the "Fly stocks" section of the
Methods.
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Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research ofof concern

Plants

Methods

n/a Involved inin the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender inin
Research

Laboratory animals

Wild animals

Reporting onon sex

Field-collected samples

Ethics oversight

Note that full information onon the approval ofof the study protocol must also bebe provided inin the manuscript.

Novel plant genotypes

Seed stocks

Authentication

Plants

Drosophila melanogaster, female, aged 3-8 days. Detailed information isis described inin the Methods section. The full list ofof fly lines
used isis provided inin the Extended Data Table 1.1.

NoNo wild animals were used inin this study.

WeWe used only female flies inin this study.

NoNo field-collected animals were used inin this study.

Institutional approval ofof experimental procedures and ethics oversight was not required for studies ofof fruit flies.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.was applied.was applied.

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.
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