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Temporal recording of mammalian 
development and precancer
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Yanwen Xu1,2, Naila Tasneem1,2, Zhengyi Chen1,4, Linh T. Trinh2,5, Paola Molina2, 
Marisol A. Ramirez-Solano6,7, Iannish D. Sadien8, Jinzhuang Dou9, Andrea Rolong1,2, 
Ken Chen9, Mark A. Magnuson2,5,10, Jeffrey C. Rathmell11,12, Ian G. Macara1,2, Douglas J. Winton8, 
Qi Liu6,7, Hamim Zafar3,13, Reza Kalhor14, George M. Church15,16, Martha J. Shrubsole17,18, 
Robert J. Coffey1,2,5,18,19 ✉ & Ken S. Lau1,2,4,5,7,11,18,20 ✉

Temporal ordering of cellular events offers fundamental insights into biological 
phenomena. Although this is traditionally achieved through continuous direct 
observations1,2, an alternative solution leverages irreversible genetic changes, such as 
naturally occurring mutations, to create indelible marks that enables retrospective 
temporal ordering3–5. Using a multipurpose, single-cell CRISPR platform, we developed 
a molecular clock approach to record the timing of cellular events and clonality in vivo,  
with incorporation of cell state and lineage information. Using this approach, we 
uncovered precise timing of tissue-specific cell expansion during mouse embryonic 
development, unconventional developmental relationships between cell types and 
new epithelial progenitor states by their unique genetic histories. Analysis of mouse 
adenomas, coupled to multiomic and single-cell profiling of human precancers, with 
clonal analysis of 418 human polyps, demonstrated the occurrence of polyclonal 
initiation in 15–30% of colonic precancers, showing their origins from multiple normal 
founders. Our study presents a multimodal framework that lays the foundation for 
in vivo recording, integrating synthetic or natural indelible genetic changes with single- 
cell analyses, to explore the origins and timing of development and tumorigenesis in 
mammalian systems.

Mammalian development from a fertilized egg (zygote) comprises 
a highly orchestrated series of cell divisions and lineage diversifica-
tions6. The reconstruction of the Caenorhabditis elegans cell lineage 
and discernment of the temporal history from the zygote stage rep-
resents an important milestone for the field of developmental biol-
ogy7. Tumorigenesis shares a number of cellular and molecular events 
with embryonic development that are yet to be fully understood8,9. 
Fundamental to understanding these mechanisms is knowledge of 
their cellular origins and temporal ordering1,10. Previous work has used 
non-reversible genetic alterations in tumours, such as mutations and 
copy number changes, in either bulk or spatially resolved sequencing 
to track temporal events11–13. Although these analyses are applicable to 
human tumour studies, they provide inferences of only chronological 
order or clonality, lacking the precision to track associated change in 
cell states or pathways.

Recent barcoding strategies in mammalian systems14,15, when com-
bined with single-cell sequencing, have shown promise in unravelling 
the origins and chronology of cellular events. However, their potential 
for recording temporal events over the long term is constrained by 
limited barcode diversity16 and loss of information due to large dele-
tion of multiple adjacent cut-sites17. More recently, studies have begun 
to show phylogenetic relationships among cancer cells by applying 
barcoding strategies to xenografts or chimeras18,19. However, these 
studies do not include tracking from normal cells, which would require 
long-term labelling, thereby limiting the study of clonal origins and 
evolutionary selection during spontaneous tumorigenesis. We present 
a multimodal framework that pairs long-term temporal tracking in mice 
with human single-cell multiomics data to address questions regard-
ing cellular origins and chronology in development and cancer. We 
developed native single-guide RNA capture and sequencing (NSC–seq), 
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a custom multipurpose, single-cell platform for concurrent capture of 
messenger RNAs and guide RNAs (gRNA), that leverages self-mutating 
CRISPR barcodes from homing guide RNAs (hgRNAs)20,21 for lineage 
tracking and temporal recording by accumulative mutation patterns. 
We use NSC–seq to decipher canonical developmental branching dur-
ing mouse gastrulation. We demonstrate the ability of this platform 
to identify new embryonic progenitor cell populations and routes 
of cellular differentiation, as well as to provide new insights into the 
timing of tissue diversification. These results lay the foundation for 
in vivo multimodal recording for a wide variety of applications. We fur-
ther leveraged this tracking approach by pairing it with genome-scale 
analysis of human tissues to illuminate the cellular origins of colorectal 
cancer. As part of the Human Tumor Atlas Network (HTAN), we col-
lected one of the largest multiomic atlasing datasets on human sporadic 
polyps to date, comprising 116 polyps with single-cell RNA sequencing 
(scRNA-seq) data and 418 polyps with mutational data. Paired analysis 
of human atlasing data, in conjunction with mouse intestinal tumour 
models, showed the polyclonal origins of colorectal tumorigenesis. 
Our multimodal framework, which pairs natural genetic changes in 
humans with induced genetic changes in the mouse, illuminates the 

complexities of cellular origins and temporal transitions, and their 
relevance in early tumorigenesis.

A temporal recording platform
To enable CRISPR-based temporal recording at single-cell resolution, 
we developed a custom capture platform for non-polyadenylated 
hgRNAs that requires neither redesign of whole gRNA libraries22 nor 
indirect readouts23 (Fig. 1a and Extended Data Fig. 1a–c). Nearly 80% 
of gDNA mutations were detected in hgRNA with NSC–seq (Fig. 1b). 
Using controlled cell and organoid passage experiments, we demon-
strated that hgRNA mutations are equivalent to gDNA mutations for 
lineage tree reconstruction (Extended Data Fig. 1d). Adaptation of 
NSC–seq to single-cell resolution demonstrated gRNA detection in 
95% of cells, with transcriptome quality similar to a standard inDrops 
experiment (Fig. 1c,d, Extended Data Fig. 1e–h and Supplementary 
Methods). Previous work5 and our results here showed that gDNA bar-
code mutation frequency—as defined by the ratio of mutated versus 
wild-type barcodes—tracks linearly with cell or organoid culture time 
when measured in bulk (Extended Data Fig. 2a–c). However, we found 
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Fig. 1 | Optimization of a multipurpose, single-cell capture platform.  
a, gRNA capture schematic for the NSC–seq platform. The target site of gRNA 
scaffold anneals to NSC–seq capture sequence (CS) with a cellular barcode 
(blue) and unique molecular identifier (green). An additional sequence (grey) is 
added to the 3′-end of the complementary DNA via template switching during 
reverse transcription to enable downstream library amplification. This gRNA 
capture approach is compatible with any type of gRNA (single-guide RNA 
(sgRNA), hgRNA and self-targeting guide RNA) that contains the target site 
sequence in the scaffold (Extended Data Fig. 1). b, Cas9-induced mutation 
recovery by direct hgRNA capture as compared with mutations detected in 
DNA of the same samples. c, gRNA capture efficiency by NSC–seq assessed in 
an experiment in which all cells from a drug-selected cell line should contain 
sgRNAs. d, Comparative transcriptome capture efficiency between standard 
inDrops and NSC–seq experiments. e, NSC–seq experiments performed on 
developmentally barcoded whole embryos in which Cas9 is constitutively 

expressed (top). Accumulative mutations on homing barcode regions increase 
over time (bottom)5,20. f, Average mutation density over embryonic time points 
(Extended Data Fig. 2a). Black dots represent geometric mean for each time 
point, and P values are derived from unpaired two-tailed t-tests. g, Somatic 
mtVar calling from mitochondrial RNA (mtRNA) (top). Approach to filtering 
informative mtVars for lineage tracking using hgRNA mutations as ground 
truth (bottom) (Extended Data Fig. 3b–d). h, Number of somatic mtVars per cell 
over embryonic time points. Black dot represents geometric mean for each time 
point, and P values were derived from unpaired two-tailed t-tests. i, Pearson 
correlation coefficient heat map of variant proportions combining hgRNAs and 
mtVars for selected tissue types, presented as pseudobulk from an E9.5 embryo 
(Extended Data Fig. 4). j, Multimodal application of the NSC–seq platform. 
a,e,g,j, Schematics created using BioRender (https://BioRender.com).  
a.u., arbitrary units; AUC, area under the curve; rep., replicate; prog., progenitor; 
bp, base pairs.

https://BioRender.com
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mutational frequency to be unusable for single-cell applications owing 
to single-cell data sparsity, in which only a fraction of barcodes can be 
detected on a per-cell basis. Therefore, we introduced a mutational 
density metric, defined as the average number of mutations within 
barcodes, which is unaffected by single-cell data sparsity and also tracks 
with time in organoid cultures and the intestinal epithelium (Extended 
Data Fig. 2d,e). We observed that mutational density increases at a faster 
rate in intestinal organoid cultures than in intestinal epithelium in vivo 
(Extended Data Fig. 2f), confirming that epithelial cells under organoid 
conditions are more proliferative. Although high Wingless-related 
integration site (Wnt) activity in organoid culturing conditions mimics 
injury-induced regeneration and induces stem/progenitor cell prolif-
eration, there may be additional in vitro factors that can marginally 
affect mutation rates. Cellular turnover rates of common intestinal cell 
types, as inferred by mutational density, were consistent with current 
knowledge (Extended Data Fig. 2g). Specifically, tuft cells exhibited 
a multimodal distribution of mutational densities, consistent with a 
heterogeneous cell population with different lifetimes24 (Extended 
Data Fig. 2h). NSC–seq applied to three mouse embryonic time points 
for profiling of hgRNAs and messenger RNAs simultaneously also 
showed mutation density to increase over time (Fig. 1e,f), driven by 
cell type-specific changes (Extended Data Fig. 2i,j), that is not due to 
cell type bias in Cas9 expression or non-homologous end-joining activ-
ity (Extended Data Fig. 2k,l). Although mutation density per barcode 
can be used for timing assessments, non-overlapping gRNA barcode 
expression detected per cell limits information content used for cell 
phylogeny reconstruction. We thus augmented hgRNA mutational 
information with somatic mitochondrial variants (mtVars). In brief, 
we filtered out germline mtVars using a custom ‘germline mtVars bank’ 
(Supplementary Methods) and then defined a lineage-determining 
cut-off from mtVar distributions using paired hgRNA mutations as 
‘ground truth’ somatic variants (Extended Data Fig. 3a–d). Using this 
pipeline, we showed that mtVars also consistently increased over three 
embryonic time points (Fig. 1g,h), similar to hgRNA mutations (Fig. 1f). 
We further delineated the known developmental order of different 
mouse brain layers before left–right brain segregation21 (Extended 
Data Fig. 3e), and verified previously reported clonal relationships 
between three human breast tumour regions (Extended Data Fig. 3f), 
using mtVars on published spatial data. Single-cell analysis using 
hgRNA, mtVars or both was able to accurately identify lymphoid and 
myeloid cells as distinct lineages in peripheral blood mononuclear 
cells (Extended Data Fig. 3g–j), and to distinguish embryonic tissue 
types (Fig. 1i). Taken together, our findings demonstrate the efficacy 
of a comprehensive pipeline of temporal and lineage tracking that is 
coupled to single-cell transcriptomic analysis (Fig. 1j).

Lineage and cell division tracking
We then analysed the combined single-cell barcoding and transcrip-
tome data of time point embryonic day (E)7.75, E8.5 and E9.5 embryos 
to glean biological insights pertaining to early development. Cell type 
annotation using conventional gene expression analysis showed canon-
ical cell types and germ layers at each of the time points14,25 (Extended 
Data Fig. 4 and Supplementary Information). Consistent with the estab-
lished timeline of mammalian development, more defined cell types 
emerged at E9.5 compared with earlier time points (E7.75/8.5), prompt-
ing two separate sets of cellular annotations (Extended Data Fig. 4a–h). 
Our data corresponded well with previously generated scRNA-seq data 
at E7.0 and E8.0, supporting the premise that our single-cell embryonic 
data were collected at the correct developmental times (Extended 
Data Fig. 4i), with data quality typical of this experimental platform 
(Extended Data Fig. 4j–l and Supplementary Methods). Our quality 
assessments focusing specifically on barcode mutations—including 
distribution of mutations amongst cells, frequency of different types 
of mutations, incidence of random collision mutations, number of 

mutations as a function of cell type, barcode lengths and barcode 
classifications—were consistent with previous reports21 (Extended 
Data Fig. 5a–f). We retrospectively investigated the initial phases of 
development by analysis of early embryonic mutations (EEMs), which 
manifest during the earliest cell divisions and are inherited by a sub-
stantial portion of cells within the embryo (Extended Data Fig. 5g,h). 
The proportional presence of these mutations amongst cells, referred 
to as the mosaic fraction, is an indicator of the cell generation when 
these mutations originated (Extended Data Fig. 5i,j). Progressive restric-
tion of EEMs shared in tissues enables the use of mosaic fractions to 
model early divergence of germ layers and tissue types (Fig. 2a). Mouse 
primordial germ cell (PGC) lineage segregated from other embryonic 
and extra-embryonic lineages, supporting the early allocation of cells 
to the PGC lineage that has been reported in mice26 and humans27. We 
also found a similar mosaic fraction between mesoderm and ecto-
derm that supported a shared progenitor population, as previously 
reported28. Notably, extra-embryonic endoderm (EEndo) and embry-
onic endoderm (Endo) cells appeared to share origins, although these 
are reported to originate from two distinct tissue layers, hypoblast and 
epiblast, respectively. However, there is literature supporting some 
degree of shared progenitors, lineage convergence and intermixing 
between these tissues14,25,29,30. We also assessed the clonal contributions 
of different EEMs towards germ layers (early) or tissue types (late) and 
observed unequal contribution between different early clones (Fig. 2b 
and Extended Data Fig. 5k,l). We found unequal partitioning of first-cell 
generation clones across different tissue types (Fig. 2c; P = 1.057 × 10−13), 
suggesting that the specific lineage commitment of early embryonic 
progenitors is not predetermined, but rather subject to potential 
stochastic processes (Extended Data Fig. 5m,n). This phenomenon 
has previously been reported in mammals but was not observed in  
C. elegans31,32.

Regulation of organ size is a fundamental process of embryonic 
development, primarily governed by organ-specific cell division rates 
and, to a lesser extent, by rates of apoptosis33,34. Here, we developed a 
catalogue of cell division histories of different organs to show insights 
into the timing and scale of cell division across tissues during develop-
ment (Supplementary Methods). Using mutations within NSC–seq 
barcodes, we quantified the cumulative number of cell divisions per tis-
sue type at three gastrulation time points (Extended Data Fig. 6a,b and 
Supplementary Table 2). We observed that the relationship between 
the number of cell divisions and known tissue mass differs among 
various tissue types, which could be attributed to a number of vari-
ables, including differential progenitor field size, timing of progenitor 
specification, cell death, cellular lifespan and cell competition across 
tissue types35. In addition, our data showed a widening distribution 
of tissue-specific cumulative cell divisions at both the E8.5 and E9.5 
stages, whereas a narrow unimodal distribution was observed for the 
E7.75 stage (Fig. 2d), suggesting that tissue-specific cell division and 
diversification initiates after the E7.75 stage. In general, we observed 
high proliferation of haematopoietic progenitors during gastrulation 
whereas cardiomyocytes and endothelial cells showed low prolifera-
tion (Extended Data Fig. 6a,b). We noticed an emergence of various 
intermediate haematopoietic progenitors at E9.5 with distinct cellular 
turnover histories, supporting diverse roots of haematopoiesis during 
early embryonic development as previously reported36,37. Cumulative 
cell division levels for forebrain progenitors were higher than those 
for hindbrain progenitors (Extended Data Fig. 6b), supporting known 
turnover kinetics that maintain relative sizes of brain regions during 
mammalian neurogenesis35,38. In addition, we found a constant rate of 
cell proliferation for gut endoderm over embryonic time points, simi-
lar to the turnover of the adult intestinal epithelium (Extended Data 
Figs. 2e and 6c). Overall, differential proliferation timing and kinetics 
among organs during gastrulation were observed. These variations 
mainly corresponded to organ size, although there were exceptions. 
We also demonstrated that, for certain tissues, proliferation rates were 
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set during gastrulation and persisted throughout life33. Overall, this 
catalogue serves as a basis for the study of embryonic cellular prolif-
eration kinetics and adds a temporal axis in lineage diversification1 to 
complement lineage tracking.

Next, a single-cell phylogenetic reconstruction39 (Supplementary 
Methods) was conducted using NSC–seq data, which provided more 
informative mutations for lineage analysis compared with previous 
approaches (Extended Data Fig. 7a–c). Pseudobulk reconstruction of 
embryonic tissue relationships generally reflected canonical knowl-
edge of germ layer development (Extended Data Fig. 7d). Phylogenetic 
distance analysis from a single-cell tree supports the closer proximity 
of EEndo to root compared with Endo or embryonic mesoderm (Meso) 
to root (Extended Data Fig. 7e). A wider distribution of phylogenetic 
distances across cell types was observed at E8.5 and E9.5 compared with 
E7.75 (Extended Data Fig. 7f), supporting the initiation of tissue-type 
diversification following E7.75 as illustrated above (Fig. 2d). Further-
more, computational inference from single-cell lineage tree topology 
(Supplementary Methods) estimated the number of epiblast progeni-
tors (n of around 28) and extrapolated unequal progenitor field size 
between ectoderm and mesoderm stemming from these progenitors 
(Extended Data Fig. 7g,h). These data underscore the robustness of 
using a temporal and lineage-tracking approach in deriving new insights 
into early mammalian development and organogenesis.

Unconventional lineage diversification
We highlight three examples of unconventional lineage diversification 
that we identified during embryonic development. Lineage analysis at 
both E8.5 and E9.5 indicated that erythroid progenitor 1 (EryPro1) shares 
common ancestry with somite (Fig. 3a). We then reanalysed somite, 
endothelium and haematopoietic cell types, all potential progenitors 
to EryPro1, and found that EryPro1 did not express yolk sac (Icam2, 
Krd and Gpr182), endothelial (Pecam1) or embryonic multipotent pro-
genitor markers (Flt3) (Extended Data Fig. 8a–c). By contrast, EryPro1 

expressed somite-specific markers (Twist1 and Sox11) and showed 
upregulation of Wnt signalling, which comprised an EryPro1-specific 
gene signature (Extended Data Fig. 8d–f and Supplementary Table 3). 
In addition, RNA velocity, mosaic fraction of EEMs and clonal analyses 
all supported a developmental relationship from somite to EryPro1 
(Extended Data Fig. 8g–i). Indeed, multiplex HCR RNA–fluorescence 
in situ hybridization (FISH) of somite and erythroid markers showed 
a cluster of Kit+ erythroid cells in the somite region of the E9.5 embryo 
(Fig. 3b), supporting a somite-derived erythroid progenitor popula-
tion. The EryPro1 population is present at E8.5 but not at E7.75, whereas 
somite cells were observable at E7.75 (Extended Data Fig. 8j–m). Gene 
expression analysis showed that some somite cells from E8.5 coex-
pressed haematopoietic transcription factors (Gata1 and Gata2) and 
low levels of the haemoglobin gene (Hbb-bt), suggesting a cell state 
transition from somite to EryPro1 (Extended Data Fig. 8n,o). Finally, 
pseudotime analysis showed a distinct developmental trajectory from 
somite to EryPro1, in addition to the expected trajectory from somite to 
sclerotome (Extended Data Fig. 8p). Thus, our data show a previously 
unidentified somite-derived haematopoietic population during late 
gastrulation of mammalian development, with similarities to that of 
zebrafish37.

We next sought to understand gut endoderm development in the 
context of regionalization and the timing of progenitor specification. 
Endoderm (definitive and visceral) cell populations from E7.75 and E8.5 
embryos were plotted together to show region-specific markers as 
early as E7.75, implying regionalization (spatial patterning) at that early 
time point (Extended Data Fig. 9a–d). We then focused our analysis on 
region-specific progenitors of the gut at E7.75. Analysis of the foregut 
population from E7.75 showed three distinct clusters: hepatopancreatic 
(HPC) progenitors (Hnf4a+), lung progenitors (Foxa2+) and thyroid/thy-
mus (TT) progenitors (Eya1+) (Fig. 3c). Gene expression, regulon activity 
and lineage analysis showed that the HPC population is relatively dis-
tinct from lung and thyroid/thymus progenitors (Fig. 3d,e and Extended 
Data Fig. 9e,f). Similar progenitor populations from the foregut were 
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Data Figs. 5 and 7). b, Contribution of different EEMs towards various germ 
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found at E8.5 (Extended Data Fig. 9g,h) but not at E7.5 (Extended Data 
Fig. 9i), implying precise timing of progenitor specification at E7.75. 
Analysis of the remaining definitive endoderm populations similarly 
showed distinct gene expression patterns between midgut (Gata4, Pyy 
and Hoxb1) and hindgut (Cdx2, Cdx4 and Hoxc9) progenitors as early 
as E7.75 (Fig. 3f and Extended Data Fig. 9j). Regulon analysis also sug-
gested distinct region-specific activities for midgut (Gata4, Foxa1 and 
Sox11) and hindgut (Cdx2, Sox9 and Pax2) progenitors at this time point 
(Extended Data Fig. 9k). Pseudotime and CytoTRACE analyses resulted 
in an expected developmental trajectory from E7.75 to E9.5 (Extended 
Data Fig. 9l). We found notable region-specific differences in Wnt and 
bone morphogenetic protein (BMP) signalling over developmental 
pseudotime (Extended Data Fig. 9m). Significantly higher Wnt signal-
ling activity was observed in hindgut compared with midgut progeni-
tors at E7.75 (Extended Data Fig. 9n,o). Consistent with the literature, 

the Wnt target gene Lgr5, a canonical intestinal stem cell marker, was 
highly expressed in hindgut40 whereas Lgr4 and Lgr6 were expressed in 
midgut (Extended Data Fig. 9p). Our results showed early differential 
usage of developmental signalling pathways between progenitors of 
different regions, supporting an early progenitor specification model 
during endoderm development41.

We also examined the lineage relationship between visceral and defin-
itive endoderm during embryonic development. We derived a visceral 
endoderm score using reported visceral endoderm infiltration-specific 
marker genes and showed that this score could accurately mark sorted 
visceral endoderm-derived cells (Extended Data Fig. 10a). Application 
of this score to our data identified cells demonstrating high visceral/
definitive endoderm intermixing in the developing hindgut (Fig. 3g and 
Extended Data Fig. 10b). We found that the visceral endoderm inter-
mixing score correlated with a Wnt signalling score and Wnt-response 
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genes (Lgr5, Axin2 and Fzd10) (Fig. 3h and Extended Data Fig. 10c), 
which is supported by higher Lgr5 expression in sorted visceral than in 
definitive endoderm-derived cells (Extended Data Fig. 10d). Multiplex 
HCR RNA–FISH showed the presence of cells coexpressing Lgr5 and 
the visceral endoderm marker gene Cthrc1 in the posterior gut region 
(dotted line, Extended Data Fig. 10e). Lineage analysis using mutational 
barcodes supports a lineage relationship between hindgut and visceral 
endoderm, probably resulting from visceral endoderm-derived cells 
mixing into the hindgut during gastrulation (Fig. 3i). This relationship 
persists at E9.5, as supported by differential lineages between midgut 
and hindgut (Extended Data Fig. 10f,g). To determine the role of vis-
ceral endoderm-derived cells post gastrulation, we analysed midgut 
and hindgut tissues at the E14.5 time point and found that the hindgut 
epithelium has a higher visceral endoderm intermix score than that 
of the midgut (Extended Data Fig. 10h,i), consistent with the results 
above. We then assessed the ability of these cells to contribute to epi-
thelial development by performing a ‘parent–childless’ clonal analy-
sis using an established approach15 (Extended Data Fig. 10j). Visceral 
endoderm-derived cells have a high parent clone fraction, implying 
that they have a higher potential to give rise to progeny (Extended 
Data Fig. 10k). Mutation density analysis also demonstrated that vis-
ceral endoderm-derived cells accumulated more divisions at E14.5 
compared with other definitive endoderm-derived cells, highlighting 
their post-gastrulation activities (Extended Data Fig. 10l). Finally, we 
performed mutational barcode analysis of adult tissues derived from 
foregut, midgut and hindgut and found that hindgut-derived tissues 
maintain a separate lineage branch from midgut- and foregut-derived 
tissues, even into adulthood (Extended Data Fig. 10m). Thus, our data 
support previous reports of visceral endoderm-derived cells intermix-
ing with definitive endoderm (Extended Data Fig. 10n) predominantly 
in the hindgut25, and their potential contribution to gut epithelial devel-
opment14,25,29,30.

Persisting progenitors of the gut
It is generally accepted that crypt-based columnar cells (CBCs) marked 
by Lgr5 serve as the homeostatic stem cell population driving continual 
renewal in the adult intestinal epithelium, and can be a cell of origin of 
tumours42. However, the embryonic origin of adult stem/progenitor 
cells remains elusive. Using NSC–seq, we identified a unique cell popu-
lation related to enterocytes that persisted into the adult from their 
embryonic developmental origins; we have termed this population 
persister intestinal stem cells (pISCs) (Extended Data Fig. 11a–c). A gene 
signature derived from this cell population was also able to identify 
the same cells in another publicly available dataset (Extended Data 
Fig. 11d,e). Mutational lineage analysis demonstrates a developmental 
relationship between CBCs and pISCs, indicating that they potentially 
derive from each other (Extended Data Fig. 11f). However, pISCs exhibit 
a higher mosaic fraction, implying that they are derived from much 
earlier cell generations compared with CBCs, which develop relatively 
late during fetal intestinal development43 (Extended Data Fig. 11g).  
A smaller number of progenitors that give rise to these cells, as inferred 
from single-cell lineage tree topology (Extended Data Fig. 11h), sup-
ports their earlier specification stemming from the fewer progenitors 
available at earlier development. Clonal contribution analysis using 
hgRNA mutations demonstrates that the pISC population possesses 
a larger clone size, thus contributing more progenies to the intestinal 
epithelium than CBCs (Fig. 3j,k). This finding was consistently observed 
(Extended Data Fig. 11i–n), supporting the premise that the pISC popu-
lation acts as a stem/progenitor-like population during intestinal devel-
opment. Tob2 was identified as a selective marker of pISC cells, and 
Tob2+ cells were located at the bottom of adult small intestinal crypts by 
immunofluorescence analysis (Extended Data Fig. 11o,p). We propose 
that pISCs can act as stem/progenitor-like cells to populate the gut 
during embryogenesis, in contrast to the limited contribution of the 

CBC population at that time43. A study characterizing this population 
is in preparation.

Clonal analysis of colorectal precancers
Tumours are often thought to form through aberrant developmen-
tal gene programs44. An unresolved issue in colon cancer is whether 
tumours arise from a single stem cell or from multiple progenitor 
cells to result in complex tissue systems. Thus, we used NSC–seq, in 
approaches akin to what we used to study developmental origins, 
to investigate the origins of tumorigenesis in the gut. The prevailing 
model, with support from human colorectal cancer data, is the mono-
clonal model, in which a tumour is initiated from a single stem cell45. 
However, selection and clonal sweeps that occur in advanced cancers 
tend to erase clonal histories occurring earlier in tumorigenesis46. 
Furthermore, lineage-tracing studies in the mouse have shown that 
some tumours can be initiated from multiple ancestors, resulting in 
tumours with multiple lineage labels47. We thus applied single-cell 
barcode tracking to delineate clonality during intestinal tumour ini-
tiation in ApcMin/+ mice, in which tumorigenesis occurs as a result of 
random mutations inactivating the second allele of Apc. We found that 
these tumours were composed of both normal and tumour-specific 
cells, similar to human adenomas in a previous study48 (Extended Data 
Fig. 12a–c and Supplementary Methods). Evaluation of tumour-specific 
cells using NSC–seq demonstrated increased proliferation signature, 
stemness, fetal gene expression (Marcksl1) and clonal contribution 
compared with normal CBCs (Extended Data Fig. 12d,e), consistent 
with the transformed features of these cells. Examination of pheno-
typically normal cells within the tumour showed normal-like prog-
enies of tumour-specific cells, which can be distinguished from their 
normal counterparts by their higher barcode mutation densities and 
shared barcode mutation profiles with tumour cells (Extended Data 
Fig. 12f). These progenies consisted of enterocytes and Paneth cells, 
consistent with Wnt-restricted aberrant differentiation of intestinal 
tumour cells49. To delineate clonality, we first used shared barcode 
mutations in lymphocytes, demonstrating that tumour-infiltrating 
lymphocytes had expanded clonally compared with peripheral blood 
lymphocytes, which were mostly polyclonal (Extended Data Fig. 12g). 
A similar analysis showed three founder clones within tumour-specific 
cells (Fig. 4a). The three clones were distinct in many characteristics, 
including mutation density, clonal contribution, biased differentiation 
and gene expression signatures (Fig. 4b and Extended Data Fig. 12h–k). 
More importantly, single-cell phylogenetic analysis showed independ-
ent tumour founder clones arising from distinct normal epithelial 
ancestors (Extended Data Fig. 12l). Next, we performed whole-exome 
sequencing (WES) of 13 mouse intestinal tumours to assess the number 
of Apc mutations. Loss-of-function mutations in both APC alleles that 
result in Wnt pathway activation are considered the initiating event 
in the majority of sporadic human colorectal tumours50. Thus, the 
number of unique Apc mutations can be used to assess clonality dur-
ing intestinal tumour initiation51. In a diploid genome, a monoclonally 
initiated tumour should present at most two unique Apc mutations that 
lead to loss of function of both alleles, given that there is no selective 
advantage for additional mutations. We found that five of the 13 mouse 
intestinal tumours had three or more unique mutations in the Apc gene, 
implying multiple founder clones (Fig. 4c). Moreover, around 40% of 
mouse tumours showed evolutionary selection pressure comparable to 
human adenomas (see below and Extended Data Fig. 12m). The normal 
cell of origin of tumour cells can also be examined by early embryonic 
clonal intermixing using barcode mutations in both tumour and adja-
cent normal tissues from the same mouse52. Early embryonic clonal 
intermixing was seen in four out of five mouse polyclonally initiated 
tumours (Extended Data Fig. 12n,o and Supplementary Table 4), indi-
cating that barcode mutations used to determine polyclonality were 
also found in adjacent normal cells. A concurrent study demonstrates 
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similar intrapatient embryonic clone sharing among multiple familial 
polyps within the same patient, demonstrating the possibility of poly-
clonal intestinal tumour formation in humans53, which supports our 
observations in mice.

Whereas embryonic clone mixing can be leveraged only in hereditary 
diseases such as familial adenomatous polyposis, we sought to find 
evidence of polyclonal initiation in the two most common subtypes of 
human sporadic colonic precancer. We expect polyclonal initiation to 
occur in only a minor subset of polyps, thus requiring a large sample size 
analysis for our study. We therefore collected new scRNA-seq datasets, 
resulting in a total of 116 polyp datasets (adenomas (AD), 70; serrated 
polyps (SER), 42; unknown (UNK), 4) from three different cohorts of 
patients at Vanderbilt University Medical Center (VUMC)48 (Fig. 4d and 
Extended Data Fig. 13a). Out of these, 96 polyps (AD, 63; SER, 33) had 
matching WES data. These data were generated from distinct regions 
of the colon from a distribution of 96 patients of diverse racial back-
grounds and ages (Supplementary Table 4). In addition, we analysed 
targeted DNA sequencing from 300 polyps from the Tennessee Colo-
rectal Polyp Study to assess APC mutations48. Using Tennessee Colo-
rectal Polyp Study data, we found that roughly 20% of polyps showed 
three or more unique APC mutations, implying more than one founder 

clone in those polyps (Fig. 4e and Extended Data Fig. 13b). Similar to 
these results, WES data from our VUMC polyp dataset showed that 
potential polyclonal initiation occurred in approximately 15% of polyps 
(Fig. 4e, Extended Data Fig. 13c and Supplementary Table 4). Although 
our study is mainly focused on precancers, we also performed APC 
mutation analysis using published multiregional WES in a cohort of 
23 colorectal carcinoma (CRC) samples from VUMC13, which showed 
only one specimen exhibiting potential polyclonal initiation (Fig. 4f), 
consistent with other multiregional sequencing data that demonstrated 
a decrease in polyclonality in advanced cancer54. This is consistent with 
the occurrence of clonal sweeps during tumour progression—as seen 
in external cohort datasets—that erases the clonal history of tumour 
initiation55 (Extended Data Fig. 13d).

To provide additional clonality evidence, we called somatic 
single-nucleotide variations (SNVs) from single-cell transcriptomics 
data of colorectal polyps using two independent pipelines (Extended 
Data Fig. 14a,b). Clonal composition was then assessed using the 
variant allele frequency (VAF) distribution of somatic SNVs (Sup-
plementary Methods). If a polyp is derived from a single founder 
clone, the VAF distribution of its somatic SNVs would be higher than 
that of a polyp initiated by multiple clones due to a higher fraction of 
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shared SNVs across a single founder-derived population56,57 (Fig. 4g). 
We calculated the median VAF from polyps (n = 86) and found wide 
variation across them, implying the existence of both monoclonal 
and polyclonal polyps (Extended Data Fig. 14c). To establish a poly-
clonality cut-off based on VAF distribution, we leveraged the con-
cept of X-linked inactivation in female polyps (n = 46). During early 
embryonic development in female individuals, one X chromosome 
in somatic cells becomes randomly silenced to balance X-linked gene 
dosage. This pattern persists in daughter cells, creating a mosaic 
of inactivated X chromosomes in adult female tissues. Therefore, 
somatic SNVs within X-linked transcripts can be used as developmen-
tal markers to track the clonal origin of cells in female individuals58 
(Fig. 4h and Supplementary Methods). In male individuals with a 
single X chromosome, mosaic expression of X-linked genes is absent 
and thus male polyps can stand in as ‘monoclonally initiated’ when 
considering only X-linked SNVs (Extended Data Fig. 14d). We thus used 
simulations, mixing male polyps to establish baseline distributions 
of X-linked SNVs, to distinguish between monoclonally and poly-
clonally initiated polyps. As anticipated, the proportion of X-linked 
clonal SNVs decreased in relation to the degree of polyclonality (as 
simulated by the number of mixed male polyps) (Extended Data 
Fig. 14e). Examination of female polyps on the same scale showed a 
substantial number potentially to be initiated polyclonally (Fig. 4i); 
many of these were also classified as polyclonally initiated from 
APC mutation assessment (Extended Data Fig. 14f). A wide distri-
bution of clonal X-linked SNVs in female polyps also indicated the 
potential for different numbers of founder clones (Fig. 4i). To extend 
the analysis to all single-cell SNVs in addition to X-linked SNVs, we 
examined VAF distributions in female polyps previously assigned 
as either monoclonally or polyclonally initiated based on X-linked 
SNVs. Assigned monoclonal polyps exhibited higher median VAF com-
pared with polyclonally initiated polyps, and we were able to estab-
lish a median VAF distribution cut-off of 0.20 to identify polyclonal 
initiation (Extended Data Fig. 14g,h and Supplementary Table 4). 
Applying VAF distribution analysis to all polyps, we found approxi-
mately 29% to be polyclonally initiated (Fig. 4j and Supplementary 
Table 4), comparable to APC mutation-based assessments (Fig. 4e). 
Thus, analysis of multiple data types supports the premise that a 
substantial subset of human colorectal precancers arise from multiple  
non-cancer ancestors.

For additional orthogonal confirmation, we applied WES data to a 
linear model that distinguishes between neutral and selective evolu-
tion46 (Extended Data Fig. 14i,j). We found that a higher proportion of 
the assigned monoclonal polyps showed a signature of clonal selection 
(R2 < 0.98) compared with the assigned polyclonally initiated polyps 
(Extended Data Fig. 14k). Using this analysis, about 60% of polyps overall 
showed clonal selection (Extended Data Fig. 14l), suggesting a subset of 
polyclonally initiated tumours to be transitioning towards clonal selec-
tion, consistent with previous reports of selective pressures exerted 
during malignant progression46,55. Moreover, adenoma-specific cells 
of assigned monoclonal polyps showed higher expression of genes 
associated with cell cycle, nucleic acid synthesis and protein transla-
tion signatures than polyclonal polyps, which can be attributed to a 
highly proliferative, stem cell-expansion phenotype that may drive 
selection59 (Extended Data Fig. 14m–q). In addition, we found a sig-
nature of T cell exhaustion in the tumour microenvironment that is 
lowest in polyclonal polyps, intermediate in monoclonal polyps and 
highest in cancer, consistent with a transitional process of the tumour 
microenvironment (Extended Data Fig. 14r). These data suggest that 
selection can occur at the premalignant stage, with increased selective 
pressures potentially resulting in decreased polyclonality, which may 
prove to be a hallmark of the transition from precancer to cancer. Taken 
together, our results generated from human and mouse precancers 
provide insights into the evolutionary dynamics at the earliest stage 
of tumorigenesis in the mammalian colon.

Discussion
Identification of the origins of cells is an important endeavour in both 
developmental biology and cancer studies. This challenge becomes 
particularly pronounced when the progenitor cell is embedded within 
a specific subset of a given cell type. As an example, tumours can arise 
from a subset of normal cells in a seemingly random fashion or under the 
influence of factors that push them towards this fate. Using single-cell 
genomic information from 116 human colorectal polyps, we present 
orthogonal evidence from different analyses to demonstrate the sub-
stantial number of instances in which colorectal polyps emerge from 
multiple distinct clonal origins. Note that the frequency of polyclonal 
polyps reported in this study is probably an underestimation due to 
a variety of factors affecting the detection of polyclonality, includ-
ing sequencing depth, and that a subset of polyps may be driven by 
mutations independent of APC (such as those seen in serrated polyps). 
In addition, monoclonal conversion in polyps may also have erased 
polyclonal history during tumour initiation, lowering detection rates. 
However, results from this study and the concurrent study by Schenck 
et al.53 demonstrate that polyclonal initiation is not only possible, but 
also perhaps common, for human colorectal polyps in both familial and 
sporadic settings. It is likely that the normal cells of origin arise from 
multiple monoclonal crypts, although it is possible that they may have 
arisen from the same crypt due to incomplete crypt purification52. This 
finding in the gut is in line with recent reports on polyclonal human 
breast cancer initiation57. The decrease in polyclonality observed in 
advanced cancer, coupled with clonal selection that can be observed in 
some, but not all, polyps, raises an intriguing possibility that the subset 
of polyps undergoing a selection process may be primed to progress 
to cancer. Hence, future research may elucidate whether clonality can 
serve as a predictive biomarker for precancers that will advance to 
malignancy, in contrast to polyps that maintain polyclonality. Neverthe-
less, approaches to functional study of the origins of predetermined 
cell fates in model systems are lacking. Here, we additionally leveraged 
clonal progeny generated by synthetic barcode mutations in a single-cell 
platform to enable retracing of cell lineage origins backwards in time.

We first applied this lineage-tracking platform to study mamma-
lian development over different time scales from zygote to adult. Our 
analysis of gut endoderm development showed that regionalization of 
endoderm and progenitor specification initiated earlier than previously 
appreciated, and suggested that these two processes may occur simul-
taneously41. In addition, our gut lineage analysis showed convergence 
of cells from extra-embryonic origin to an embryonic endoderm state, 
supporting previous observations14,25,29,30, and extending the contri-
bution of extra-embryonic cells to gut epithelial development. More-
over, temporal analysis of embryonic development showed a shift in 
tissue-specific cell expansion after E7.75. Hence, our study provides 
clues about developmental timing of lineage diversification that can 
prompt studies into extrinsic and/or intrinsic signalling that govern 
cellular turnover and organ size during development33,34. Lastly, clonal 
analysis and temporal recording applied to the ApcMin/+ mouse model 
functionally validated the possibility of polyclonal tumour initiation, 
to the extent that barcoded mutations can be traced back to multiple 
normal epithelial cell ancestors. Integrative analysis of the HTAN colo-
rectal precancer atlas and mouse barcoding data allowed us to delineate 
factors that affect the earliest stages of tumour development, including 
clonal composition and molecular signatures influencing the clonal 
fitness landscape54,55,59. A model consistent with our results implies that 
selective pressures during tumour progression modulate transition 
from polyclonal composition in the early precancer stage towards a 
monoclonal composition55,60. However, polyclonal compositions do exist 
at the cancer stage, albeit rarely, and may even confer new biological 
functions to the tumour. Charting these complex, multistep evolution-
ary processes characterizing precancer-to-cancer transitions in human 
specimens may illuminate strategies for early intervention in the future.
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Extended Data Fig. 1 | Design and validation of NSC-seq platform.  
(a) Schematic representation of canonical CRISPR-Cas9 (left) and homing/
self-targeting CRISPR-Cas9 (right). In homing CRISPR, Cas9-hgRNA complex 
targets the DNA locus encoding the hgRNA itself. (b) Schematic representation 
of lineage tracking during development using Cas9-induced mutations.  
(c) Target site for NSC-seq capture sequence (green), along with quality metrics 
of the capture sequence primer. (d) Experimental design of control lineage 
tracking experiments using homing CRISPR-barcoded HEK293FT cell line and 
mouse intestinal organoids (MARC1;Cas9), where the hierarchy of the cultures 
are known through passage sampling. Similar lineage trees are observed from 
both bulk DNA and bulk hgRNA barcodes in this experiment (bottom). Cell lines 
were passaged after 1 week, whereas organoids were passaged after 3 days.  

(e) Overview of single-cell experiment using NSC-seq platform simultaneously 
capturing both gRNA and mRNA within the same droplet. Custom hydrogel 
beads are designed for NSC-seq experiment using inDrops61. See supplemental 
table 1 for primer sequences. (f) Workflow delineating two separate library 
preparations (gRNA and mRNA) of NSC-seq. (g) Different cDNA size selection 
approaches yield varying sgRNA capture efficiencies. The use of two separate 
library preparation approaches in (f) results in improved capture efficiency.  
(h) Comparative transcriptome (mRNA) capture efficiency between inDrops 
and NSC-seq experiments (see Fig. 1d and supplemental method). Schematic  
in a adapted from ref. 62, Springer Nature America, and schematics in a, b, d, e, 
and f created using BioRender (https://BioRender.com).

https://BioRender.com
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Extended Data Fig. 2 | Overview of temporal recording. (a) Schematic 
representation of increasing mutation density and mutation frequency 
overtime in self-mutating CRISPR system5,20. Mutation frequency denotes  
the proportion of wild-type barcodes at a given time. Mutation density is the 
number of unique mutations per mutated barcode. Color indicates different 
timepoints. Insertion (capital), deletion (dotted line) and base substitution 
(underline) mutations are shown here. Theoretical expected mutation frequency 
and mutation density are function of time (bottom). (b) Schematic of in vitro 
small intestinal (SI) organoids culture over 6 weeks and subsampled to analyze 
accumulative mutations. (c-d) Mutation frequency and mutation density exhibit 
a linear increase overtime. (e) Mutation density from adult mouse duodenum 
(SI) displays a linear increase overtime (in vivo). Pearson’s coefficient of 
determinant (R2) and p value (by F-test) are indicated in c-e. (f) Comparative 
mutation density increases in mouse SI between in vivo and in vitro. Values 
derived from previous linear model (d and e) to plot under same coordinate. 
Slope (m) indicates relative rate of cell division. In vitro cell division rate in 
intestinal organoids is almost 4 times higher than the in vivo intestinal epithelial 
cell division. (g) Comparative cell division (mutation density) across different 

small intestinal epithelial cell types (see Extended Data Fig. 11i). Here, each  
dot is a technical replicate (NSC-seq library) from the same mouse. Box plots 
show the median, box edges represent the first and third quartiles, and the 
whiskers extend to a maximum and maximum of 1.5*IQR beyond the box.  
TA, Transit-amplifying; and EEC, enteroendocrine; Stem, CBC. These data 
support the expected notion that enterocyte turnover is higher than Paneth 
cells. (h) Distribution of mutation density per tuft cell reflects only a small 
fraction of this cell type shows turnover signature, as reported before63.  
(i-j) Comparative mutation density between cycling (blood) and non-cycling/
less-cycling (brain) tissue types over two time points. These data support  
that increasing mutation density is cell division dependent. Here, rep1 and  
rep2 are independent biological replicates and bulk DNA barcode-based 
mutation density assessment. Box plots inside the violin show the median 
value (thick line), box edges represent the first and third quartiles. P value  
from unpaired two-tailed t-test. (k) Cas9 expression is uniform across 
embryonic cell types (E7.75 and E8.5). (l) Nonhomologous end joining (NHEJ) 
activity score is also uniform across cell types. Panel a and b created using 
BioRender (https://BioRender.com).

https://BioRender.com


Extended Data Fig. 3 | Mitochondrial variants detection and validation for 
lineage analysis. (a) Schematic of mitochondrial variants (mtVars) based lineage 
analysis64. (b) A representative plot of mtVars (green) and hgRNA mutations (red) 
from same selective group of intestinal cells (top). Validation of a few mtVars 
using targeted deep sequencing using previously reported targeted enrichment 
(bottom)65. Box plots (bottom right) show the median (n = 9 cells), box edges 
represent the first and third quartiles, and the whiskers extend to a minimum 
and a maximum of 1.5 × IQR beyond the box. Heatmaps (bottom left) color 
represents unique reads per cell. See Supplemental methods for details.  
(c-d) Pairwise shared hgRNA mutation proportion for each mtVar (c) and 
density plot of mtVars across dataset (d). mtVars distributed in a smaller 
number of cells (~1% of dataset) are more informative for lineage inference. 
Regression line (c) drawn from default local polynomial regression fit (loess)  
in R and shaded area indicates confidence interval. (e) mtVars calling from an 
adult mouse brain (coronal section) special transcriptomics (ST) data66. 
Pearson correlation coefficient heat map of mtVars proportions for distinct 
tissue layers in mouse left (L) and right (R) brain. Olfactory nerve layer (ONL)  

in between left and right is marked as middle (M). Annotations from original 
study are used here. Lineage tree suggests that tissue layers are established 
before L-R axis commitment during brain development. (f) Dendrogram of 
Pearson correlation coefficient heat map using only mtVars (10X ST data) from 
human breast cancer67. mtVars can identify clonal relationship in human breast 
cancer tissues corresponding to copy number based clonal relationship: clone 
2 and clone 3 are closely related compared to clone 167. Duct annotations from 
original study are used here and the dendrogram- corresponding heat map  
is not shown here. (g) NSC-seq encapsulation of mouse peripheral blood  
(PB) cells, followed by cell type annotation using marker genes (dot plot).  
(h) Pearson correlation coefficient heat map of variant proportions using 
mtVars for selected cell types is presented as pseudobulk. (i) Pearson correlation 
coefficient heat map of variant proportions combining hgRNAs and mtVars for 
selected cell types is presented as pseudobulk. ( j) Reconstruction of single cell 
lineage tree using custom LinTiMaT pipeline39. See supplemental methods and 
GitHub page. Cells in the leaf are broadly colored by lymphoid and myeloid 
lineages. Panel a and b created using BioRender (https://BioRender.com).
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Cell-type annotation and data quality control metrics 
for mouse embryos. (a) Uniform manifold approximation and projection 
(UMAP) embedding shows cell populations from two embryos. Cells are 
colored by annotated cell types. See supplemental note for embryonic cell type 
annotation. (b) Cells are colored by two embryonic time points. (c) UMAP 
embedding of two E9.5 embryos and cell type annotation. (d) Cells are colored 
by embryo number. (e-f) Heat map of mean expression of selective marker genes 
(y axis) for each cell type (x axis). Counts are normalized to median library size 
and log transformed. Separate heatmaps e and f are corresponding to a and c, 
respectively. (g-h) Dot plots of representative germ layers specific marker genes. 
Annotated cell types are grouped into germ layers for E7.75&E8.5 (g) and E9.5 
(h) embryos. The size of the circle denotes the fraction of marker-positive cells, 

and color intensity indicates normalized group mean. (i) Box plots representing 
tissue proportions from E7.0, E7.75, and E8.0. Only E7.75 embryo is from this 
study. The proportion of shared selective cell types from wild-type embryos 
(E7.0 and E8.0) are calculated from GSE122187. Box plots show the median  
(n = 3 embryos), box edges represent the first and third quartiles, and the 
whiskers extend to a minimum and a maximum of 1.5 × IQR beyond the box.  
( j-k) UMAP plots are colored by unique molecular identifiers (UMIs), number  
of unique genes detected per cell, percentage of mitochondrial gene counts 
per cell, and predicted doublet score (Scrublet)68. See supplemental method 
and GitHub section for further data filter and quality control approaches.  
(l) UMAPs represent cell cycle status.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122187
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Extended Data Fig. 5 | Temporal recording reveals asymmetric contribution 
of early embryonic clones to germ layers and tissue types. (a) The histogram 
represents the number of cells in which each mutant allele is observed across 
three embryonic time points (3-ETP). (b) The top mutation frequency 
distribution is shown from a representative 21 bp long barcode of two E9.5 
embryos. The mutation code along the x-axis is as follows: barcode number 
(BC), barcode position (P), mutation type (insertion, I; deletion, D; mismatch, 
M), and mutated base(s). (c) Proportion of shared and unique mutations across 
3-ETP. (d) Scatter plot shows the proportion of unique mutations within each 
annotated cell types between E7.75 and E8.5 embryos. Pearson’s correlation (r) 
and p value (by F-test) are indicated. Shaded area indicates 95% confidence 
intervals of the regression line. See Extended Data Fig. 4 for cell type annotation. 
(e) Relatively fast mutation accumulation in small length hgRNAs, as reported 
before21. Data points are calculated from 3-ETP; p value is derived from unpaired 
two-tailed t-test. (f) Average hgRNA activity across time points. Box plots in e 
and f show the median, box edges represent the first and third quartiles, and 
the whiskers extend to a minimum and a maximum of 1.5 × IQR beyond the box. 

(g) A phylogenetic tree schematic represents early embryonic development. 
Mosaic fraction (MF) of somatic early embryonic mutations (EEMs) that are found 
across all three germ layers tracks cell generation (CG) stage32,69. MF represents 
the fraction of single cells that carry a certain mutation. (h) Distribution of 
hgRNA mutations that are shared between ≥ 2 tissue types at E7.75. The earlier a 
mutation arises during development; the more tissue types would share that 
mutation. (i) Relationship between MF and CG (CG MF= log (1/ ))2 . ( j) EEMs  
and corresponding approximate CG for E7.75 embryo. Due to possible dropout 
in single-cell mutation detection, CG was assigned to the next closest CG  
stage as shown in i. (k) Unequal contribution of EEMs towards specific germ 
layers at E8.5. (l) MF distribution of 10 EEMs (found in >50% of tissue types) 
showing unequal contributions to specific tissue types at E9.5. The fraction  
of cells in each tissue contributed by clones C1 to C10 normalized by summing 
to 100%. (m) Simulated data representing symmetric (left) and asymmetric 
(right) contribution of first two clones (blastomeres) to tissue types during 
embryogenesis. (n) Asymmetric contribution of first two clones calculated from 
E7.75 embryo (Fig. 2c). Panel g created using BioRender (https://BioRender.com).

https://BioRender.com


Extended Data Fig. 6 | Catalog of cellular turnover across embryonic 
timepoints. (a) Comparative mutation density that corresponds to cellular 
turnover between two time points (E7.75 and E8.5). Here we show only a selective 
list of tissue types. See supplemental table 2 for mutation density of all the 
tissue types. The difference between Primitive blood early vs late at E8.5, 
implies that this cell type is highly proliferating and/or this cell type is derived 

from alternative high proliferating progenitors. (b) Cellular turnover across 
cell types at E9.5 embryo. Hematopoietic cell types show relatively high cellular 
turnover compared to other somatic cell types. (c) Consistent increase of gut 
endoderm cellular turnover across 3-ETP. Pearson’s coefficient of determinant 
(R2) and p value (by F-test) are indicated. Shaded area indicates 95% confidence 
intervals of the regression line.
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Extended Data Fig. 7 | Lineage reconstruction of mouse embryogenesis.  
(a) Reconstructed single-cell lineage tree from E7.75 embryo. Leaf cells are 
colored by germ layer colors and the proportions of cells in the tree are shown 
as a pie chart (inset). Nodes are colored by dark gray. Each branch represents an 
independent mutation event. Non-binary single-cell trees for all embryos and 
adult tissues can be found in NSC-seq GitHub page. (b) Table summarizing the 
lineage informative mutations (shared between ≥ 2 cells) detected between 
two studies (Chen et al.14 and this study) that performed similar whole mouse 
embryonic lineage tracking using constitutive Cas9. Here, we compared only 
the best reported embryo data between two studies. (c) After combining 
mtVars with hgRNA mutations, number of cells with lineage informative 
mutations increases for single-cell lineage tree reconstruction. Note that there 
are high variabilities in the proportion of cell that can be used for lineage tree 
reconstruction among samples due to multiple reasons, including the barcode 
detection limit, sequencing depth, number of cells captured per experiment, 
and time required to accumulate mutations. Bar plots, mean (n = 3 independent 
NSC-seq libraries); error bar, mean ± s.d. (d) Pearson correlation coefficient 
heat maps of variant proportions combining hgRNAs and mtVars for germ 
layers presented as pseudobulk. (e) Phylogenetic distance proportion was 

calculated (Supplemental method) from reconstructed lineage trees using 
reported approach70. Extraembryonic endoderm (EEndo) shows less distance 
from root compared to ectoderm or mesoderm across embryos, supporting 
nearby proximity to root (zygote). (f) Distribution of normalized phylogenetic 
distance (leaf to root) for annotated cell types. Wide distribution of the distance 
across cell types are found at E8.5 and E9.5 compared to E7.75, supporting 
minimal lineage divergence at E7.75 stage, similar to minimal tissue-specific 
proliferation reported before (Fig. 2d). (g) Estimated epiblast progenitor 
number calculated across embryos (n = 4) using reported approach71. Average 
number of epiblast progenitor field size is around 28, similar to previous report14. 
High variability may reflect embryo specific constrain in pluripotent cells 
number that contributes to somatic lineages72. Box plot shows the median,  
box edges represent the first and third quartiles, and the whiskers extend to  
a minimum and a maximum of 1.5 × IQR beyond the box. (h) Proportion of 
estimated progenitor population between ectoderm and mesoderm. It has 
been reported that the number of ectoderm progenitors is more than the 
number of mesoderm progenitors at the epiblast of the prestreak stage mouse 
embryo73. Panel b created using BioRender (https://BioRender.com).

https://BioRender.com


Extended Data Fig. 8 | Somite-derived hematopoiesis. (a) Force-directed 
layout of hematopoietic cell types and somite from E9.5 embryos. See Extended 
Data Fig. 4c for annotation. (b) Dot plots show overexpressed genes in EryPro1 
along with yolk sac (Icam2, Kdr, and Gpr182), or endothelial (Pecam1, and Cdh5) 
genes. EryPro1 doesn’t express a recently reported embryonic multipotent 
progenitor (eMMP) marker Flt374. (c) Heat map shows differentially expressed 
genes among the cell types. Cell type-specific selective list of genes are marked 
on the right. HSPCs, hematopoietic stem and progenitor cells. (d) A volcano 
plot represents differentially expressed genes (DEGs) between Erythroid and 
EryPro1(LCF > 2, p value < 0.05). P values derived from Wilcoxon rank-sum test, 
not corrected for multiple testing. Red dots are upregulated in EryPro1, blue dots 
are upregulated in Erythroid, and black dots are statistically not significant. 
(e) Enriched pathways in EryPro1 group. (f) Cells are marked by EryPro1 score. 
The list of genes for the signature score is shown in Supplemental table 3.  
(g) RNA velocity overlay shows direction from somites to EryPro1, supporting 
cell state transition. (h) MF of EEMs shows similar contribution (asterisk) to 
both somite and EryPro1, supporting similar early embryonic origin (Extended 

Data Fig. 5l). (i) Heat map represents shared clones (barcode mutations) across 
three cell types. ( j) UMAP co-embedding of blood progenitor cells (blue) from 
E8.5 (Extended Data Fig. 4a) with E9.5 cells (gray). Arrow shows EryPro1 cluster 
and arrowhead shows Erythroid cluster. EryPro1 cells from E9.5 are marked by 
red dotted line (right). EryPro1 population is present in E8.5 embryo. (k) Similar 
as panel j with blood progenitor cells from E7.75. There is insignificant 
overlapping population in EryPro1 cluster (arrow), implicating that EryPro1 is 
not present yet at E7.75 stage. (l) Force-directed layout of blood progenitor cell 
types with somites at E8.5. EryPro1 assigned from overlapping cluster (arrow) 
in j. (m) A list of gene upregulates in EryPro1 is shown as dot plot. (n) Force- 
directed layout of EryPro1 and somites and two time points using Harmony29 
and cells are colored by time points and cell types. (o) Expression of somites- 
and erythroid-specific genes are shown here. Somite to EryPro1 transitioning 
cells show transient expression of both hematopoietic (Gata1) and somite 
(Twist1) markers. Post-imputed (MAGIC) gene expression values are shown 
here75. (p) Force-directed layout of three cell types and three time points.  
Cells are colored by Palantir76 pseudo-time trajectory (right). See Fig. 3a,b.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Gut endoderm development and progenitor 
specification. (a) Force-directed layout of three endoderm clusters from 
Extended Data Fig. 4a. Cells are colored by two embryonic time points. (b) Gene 
expression of definitive endoderm (Sox2, Otx2, and Ccnd2) and visceral 
endoderm (Afp, Pla2g12b, and Fmr1nb) specific markers. (c-d) Based on region 
specific marker gene expression, DE (dotted line) is divided into three clusters, 
supporting regionalization of gut endoderm. Here, VE is the combination of 
embryonic visceral endoderm (emVE), extra-embryonic visceral endoderm 
(exVE), and yolk sac endoderm (YsE). Heat map of selective gut specific marker 
genes (y axis) as mean expression for each tissue type (x axis) are shown here  
in d. (e) Force-directed layout of foregut cells from E7.75 embryo. Three clusters 
are associated with three progenitor population. HPC, hepatopancreatic cells. 
Gene expression of HPC (Nkx6-1, Afp), lung (Pyy, Sp5), and thyroid/thymus 
(Foxe1, and Eye2) clusters are shown here. See Fig. 3c for more genes. (f) Regulon 
activity is shown across the three tissue types. (g-h) Force-directed layout of 
foregut cells from E8.5 embryo. Heat map of selective marker genes (y axis)  
as mean expression for each tissue type (x axis). (i) Force-directed layout of 
epiblast cells at E7.5. This scRNA-seq data and epiblast annotations are taken 
from a previous study29. Cells are colored by gut progenitor specific markers. 

( j) Force-directed layout of hindgut and midgut cells from three embryonic 
time points. Cells are colored by three time points and two corresponding 
tissue types. Midgut (Gata4, Pyy, and Hoxb1) and hindgut (Cdx2, Cdx4, and 
Hoxc9) specific markers are shown in the bottom. (k) Regulon activity of 
hindgut and midgut cells at E7.75. (l) Palantir pseudo-time76 and CytoTRACE 
score77 distribution in midgut and hindgut across three time points.  
(m) Normalized Wnt and Bmp signaling gene expression dynamics. X-axis 
trajectory over pseudo-time shown in l. Dot points below the plots are the 
pseudo-time coordinates of cells from each time point colored according  
to time point as in Fig. 3f. (n) Heat map shows differential gene expression 
between hindgut and midgut at E7.75. Cell type-specific selective list of genes 
are marked on the right. (o) Venn diagram of genes that were upregulated in 
both E7.75 and E8.5 time point of hindgut and midgut area. (p) Box plots 
representing normalized expression of Wnt signaling genes between hindgut 
and midgut for all three time points. Intestinal stem cell marker Lgr5 is 
overexpressed in hindgut, whereas Lgr4 and Lgr6 are overexpressed in midgut. 
Box plots show the median, box edges represent the first and third quartiles, 
and the whiskers extend to a minimum and a maximum of 1.5 × IQR beyond the 
box. P values are derived from unpaired two-tailed t-test.
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Extended Data Fig. 10 | Lineage convergence during gut endoderm 
development. (a) Force-directed layout of FACS enriched scRNA-seq data with 
cell type annotation at E8.75 embryos from a previous study29. Cells are marked 
by VE intermix signature that was developed from seven reported VE-specific 
marker genes (right). (b) Endoderm cells from E7.75 and E8.5 are marked by VE 
intermix score (see Extended Data Fig. 9c for annotation). High intermix score 
in hindgut area supports predominant VE intermix in hindgut25,30. VE marker 
gene Cthrc1, reported in a previous study25, preferentially marks VE intermix 
cells in hindgut (right). (c) Scatter plots representing Wnt signaling gene 
expression (y-axis) and VE-intermix score (x-axis). Blue line represents fitted 
linear regression line. Spearman correlation coefficient (ρ) and p value  
(by F-test) are indicated. Shaded area indicates 95% confidence intervals of the 
regression line. (d) Discordance in Lgr4 and Lgr5 expression pattern in DE- and 
VE-derived cells. Here we use data from a previous study29. Box plots show the 
median, box edges represent the first and third quartiles, and the whiskers 
extend to a minimum and a maximum of 1.5 × IQR beyond the box. P values are 
derived from unpaired two-tailed t-test. (e) Multiplex HCR-FISH co-staining of 
VE marker gene (Cthrc1) and Wnt target genes (Lgr5) at E9.5 embryo section. 
Inset is a posterior gut region adjacent to hindlimb. Results validated in more 
than three independent experiments. Scale bar, 300 μm. (f) Force-directed 
layout and re-clustering of two gut endoderm clusters from E9.5 embryos.  
(g) Lineage analysis of gut-derived progenitors. The large intestine (hindgut) 

and the small intestine (midgut) are in different branch of the dendrogram.  
(h) NSC-seq experiment on an E14.5 embryo. UMAP plot of epithelial cells 
broadly identifies as large intestinal and small intestinal using gene expression. 
(i) Relative proportion of VE-derived cells in large intestine and small intestine 
clusters are shown here. ( j) Schematic of barcode-based clonal contribution 
analysis. If a barcode is present in more than one cell, it’s called as a parent clone 
(e.g., Barcode 1 and 2). Whereas, if a barcode is present in only one cell, it’s 
called as a childless clone (e.g., Barcode 3 and 4). Concept drawn from Bowling 
et al.15. The ratio of parent and childless clones is the indicator of relative 
contribution among the cell types. (k) VE-derived cells show high parent clone 
ratio, supporting high contribution to epithelial development. Villin+ cells and 
Smoc2+ cells are used as control. (l) VE-derived cells show relatively high 
mutation density corresponding to high cellular turnover. Box plots inside the 
violin show the median value (thick line), box edges represent the first and third 
quartiles. (m) Developmental lineage analysis of adult mouse gut-derived 
tissues from two biological replicates using bulk DNA barcodes. Hindgut 
(green), midgut (red), and foregut (yellow)-derived tissues in dendrogram 
colors. Hindgut is displayed as a distinct cluster compared to foregut and 
midgut. (n) Schematic of lineage relationship between definitive endoderm 
(DE) and visceral endoderm (VE). Dotted arrow represents intermix of VE and 
DE that eventually form gut tube. Schematic in n is adapted from ref. 29, Springer 
Nature Limited, and created using BioRender (https://BioRender.com).

https://BioRender.com


Extended Data Fig. 11 | Clonal dynamics of adult intestinal epithelium.  
(a) UMAP representation of adult mouse small intestinal epithelial cell types. 
Note that crypt-enrichment was done for normal intestinal samples to increase 
cell type diversity. EEC, enteroendocrine cells; CBC, crypt-based columnar cells; 
pISC, persister intestinal stem cells; EC; enterocytes; TA, transit-amplifying 
cells. (b) Dot plot showing expression of marker genes for annotated cell types. 
Dot size represents the fraction of cells expressing the gene, and dot color 
represents normalized mean expression level. (c) Cells are colored by mouse 
number. We excluded mouse 2 from barcode analysis due to limited number of 
hgRNA detection in NSC-seq experiment. (d) A list of genes (including Tob2) is 
used to produce the pISC signature, which could mark a unique epithelial 
population in UMAP. See Supplemental table 3 for the gene list. (e) pISC score 
marks enterocyte-related cells (black arrow) in a published study78. (f) Pseudo- 
bulk lineage analysis of mouse small intestinal epithelium. (g) MF of EEM (n = 9) 
from mouse 1 across annotated cell type. Box plots show the median, box edges 
represent the first and third quartiles, and the whiskers extend to a minimum 
and a maximum of 1.5 × IQR beyond the box. (h) Single-cell lineage tree of adult 
intestinal epithelium from mouse 1. Inset table shows the number of estimated 
progenitors identified from tree topology for major intestinal cell types.  

(i) UMAP representation of an independent mouse small intestinal epithelium. 
( j) Dot plot shows expression of marker genes for annotated cell types.  
(k) Distribution of cell types across top 22 clones. (l) Distribution of hgRNA 
barcode mutations (clones) across cell types. Number at the top represents  
the total number of detected clones per cell type. Heat map color represents 
the number of cells found comprising a clone within a given cell type. A plot 
(below) showing the fraction of parent and childless clone comprising each cell 
type. (m) Violin plots represent CBC-rooted and pISC-rooted clone size. Box 
plots inside the violin show the median value (thick line), box edges represent 
the first and third quartiles. P value from unpaired two-tailed t-test. See Fig. 3j,k 
for more details. (n) The proportion of estimated progenitor populations 
among three cell types in two independent mice. Here, mouse 1 is from a and 
mouse 2 is from i. (o) Tob2, one of the pISC signature genes, expression in CBC 
and pISC population. Box plots inside the violin show the median value (thick 
line), box edges represent the first and third quartiles. P value from unpaired 
two-tailed t-test. (p) Whole-mount antibody staining of pISC marker gene Tob2 
in mouse small intestinal crypt. Results validated in more than three independent 
experiments. Scale bar, 50 μm.
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Extended Data Fig. 12 | Tracking clonal composition of murine intestinal 
adenomas. (a) Hematoxylin and eosin (H&E) staining of ApcMin/+ -driven mouse 
intestinal tumor. This mouse model generates low grade tumors that are 
equivalent to human adenoma or precancer. (b-c) UMAP embedding of barcoded 
intestinal tumor cells from NSC-seq experiment. Tumor cell cluster is assigned 
based on expression of tumor-associated marker genes as shown in the dot plot 
in panel c. (d) Cell cycle status, CytoTRACE score, and fetal gene (Marcksl1) 
expression79 across annotated cell types. (e) Clonal contribution analysis for 
CBCs and Tumor cells. (f) Box plots represent number of mutations per homing 
barcodes (hBC) across major annotated cell types. Based on mutation density, 
EC and Paneth cells are divided into two groups: red (T) and green (N) doted 
circles. Box plots show the median, box edges represent the first and third 
quartiles, and the whiskers extend to a minimum and a maximum of 1.5 × IQR 
beyond the box. Lineage analysis of EC and Paneth cells subsets with Tumor 
cells supports tumor cell-derived Paneth and enterocyte population49. (g) Heat 
map represents pairwise barcode mutations correlation for lymphocytes. 
Peripheral blood lymphocytes are from Extended Data Fig. 3g and tumor 
infiltrating lymphocytes are from panel b. (h) Three clones are projected  
onto the UMAP. See Fig. 4a for clone assignment. (i) Differential parent clone 
fraction is shown for the three representative clones. ( j) Dot plots represent 
differential distribution of pISC score, epiHR score, and coreHRC score across 
three clones80. (k) Differential distribution of enterocyte proportion, CytoTRACE 
score, and iCMS2 score across clones. Box plots (middle and right panels) show 
the median, box edges represent the first and third quartiles, and the whiskers 
extend to a minimum and a maximum of 1.5 × IQR beyond the box. P value from 

unpaired two-tailed t-test. (l) Single-cell lineage tree is reconstructed using cells 
from panel b. Clones are labeled by same color as in h. See Supplemental 
methods for lineage tree reconstruction. (m) WES of mouse tumors. Average 
germline VAF (~0.5) across the tumors supports diploid genome of these tumors. 
Box plots show the median, box edges represent the first and third quartiles, 
and the whiskers extend to a minimum and a maximum of 1.5 × IQR beyond the 
box. P value from unpaired two-tailed t-test. WES based tumor evolution model 
also supports selective evolutionary pressure in mouse tumors (bottom).  
See Fig. 4c for Apc mutation. (n) Schematic of early embryonic clonal intermix- 
based clonal initiation assessment. Some tumors could show mosaic early 
embryonic mutations, supporting possible polyclonal initiation (more than 
one early embryonic clones). (o) Heat map shows mosaic distribution of early 
embryonic mutations across regionally distinct tumors and adjacent normal 
tissues from the same mouse using DNA barcode sequencing. Color represents 
the proportion of mutant barcode. First four mutations are widely present 
across tissues, representing their initiation before endoderm development.  
Four of the five polyclonally initiated tumors (asterisk and assigned by the 
number of Apc mutation) show intermix of multiple early embryonic clonal  
that are also found in adjacent normal epithelium. This data suggests early 
intermixing of clones during mouse gut epithelial development and consistent 
with polyclonal origins of tumors attributed in human colorectal polyps53.  
See Supplement table 4 for location of tumors and adjacent normal tissues 
across intestinal epithelium. Panel n and o created using BioRender (https://
BioRender.com).

https://BioRender.com
https://BioRender.com


Extended Data Fig. 13 | APC mutation assessment of human colorectal 
polyps. (a) Distribution of human polyps across cohorts. New cohort polyp 
samples are generated for this study. Old cohorts (DIS and VAL) are reported 
before48 and re-analyzed collectively. See Supplemental table 4 for extended 
sample description. (b) Here, the number of APC gene mutations per polyp is 
shown using targeted DNA sequencing approach. Polyps without any APC 

mutations are not shown here. Note that TCPS cohort is predominantly 
conventional adenomas, as shown in48 See Fig. 4e and Supplemental table 4.  
FS DEL, frameshift deletion; INS, insertion. (c) OncoPrint plot represents the 
number of APC mutations across human polyps using WES. Here we only show 
polyps with at least one deactivating APC mutation. (d) Quantification of the 
number of APC mutation in three public CRC datasets81.
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Extended Data Fig. 14 | See next page for caption.



Extended Data Fig. 14 | Multi-omic analysis of human colorectal polyps.  
(a) Schematic representation of mutation calling from polyp-derived single 
cells. Here, we use transcriptionally assigned abnormal cells (ASC/SSC) to call 
somatic mutations (SNVs) as pseudo-bulk, with polyp infiltrating immune cells’ 
(IMM) SNVs as reference to remove germline variants from polyps. (b) Two 
independent approaches show similar somatic mutation detection from 
scRNA-seq dataset82,83. Spearman correlation coefficient (ρ) and p value  
(by F-test) are indicated. See Supplemental method for more details. (c) Density 
plot represents wide distribution of median VAF in polyps using SComatic82.  
(d) VAF distribution of X-linked SNVs in a male (M) polyp. Red line indicates cut-
off (0.6) for clonal and subclonal SNVs. (e) Simulation experiment, intermixing 
cells from two or three independent male polyps, shows reduced clonal SNVs (%) 
depending on the number of polyps intermixed. Note that different polyps 
have different number of ASC/SSC cell types. Data (dot plots in the right) are 
mean ± s.d. (f) Frequency plots showing proportion of clonal SNVs (%) in two 
female (F) polyps with known number of APC mutations. (g) Scatter plot shows 
significant correlation between median VAF and X-liked clonal SNVs (%)84 in 
female polyps. Spearman correlation coefficient (ρ) and p value (by F-test) are 
indicated. Shaded area indicates 95% confidence intervals of the regression 
line. (h) Box plots show median VAF per monoclonally and polyclonally initiated 
female polyps (assigned in Fig. 4j). Red line shows medina VAF cut-off (<0.2)  
to assign clonality to all polyps, including male. Box plots show the median,  
box edges represent the first and third quartiles, and the whiskers extend to a 
minimum and a maximum of 1.5 × IQR beyond the box. P value from unpaired 

two-tailed t-test. (i-j) Linear regression model for allele frequency distribution 
of sub-clonal mutations46 that can differentiate between neutral (R2 ≥0.98) and 
selective (R2 < 0.98) evolutionary processes in tumor. Here we use SNVs from WES 
data. These two polyps are assigned as monoclonal and polyclonally initiated 
using the number of APC mutations in WES data. Pearson’s coefficient of 
determinant (R2) is indicated. (k) Monoclonal polyps show higher proportion 
of selective evolution compared to polyclonally initiated polyps. (l) Overall, 
~60% of the polyps show selective clonal evolution. (m) ASC cells from three 
cohorts. See Chen et al. for cell type assignment48. (n) Volcano plot shows 
differential gene expression between monoclonal and polyclonally initiated 
ASC cells. A selective list of genes is labeled here. X-axis is truncated for 
monoclonal ASC. Only top and bottom median VAF polyps (10–12 polyps per 
group) derived cells are compared here (See Supplemental table 4). P values 
derived from Wilcoxon rank-sum test, not corrected for multiple testing.  
(o) Pathway analysis using DEG shows distinct molecular programs between 
monoclonal and polyclonally initiated polyps85. (p) High CytoTRACE score in 
monoclonal ASC cells compared to polyclonal ASC cells supports higher stem 
cell expansion phenotype in monoclonal polyps contributing to proliferative 
advantage and subsequent clonal selection. (q) Expression of canonical stem 
cell marker LGR5 (log10) between two groups. Box plots inside the violin show 
the median value (thick line), box edges represent the first and third quartiles.  
P value from unpaired two-tailed t-test. (r) Dot plot representing exhausted 
T cell signature in monoclonal, polyclonal polyps, as well as CRCs infiltrating 
immune cells48. Schematic in a created using BioRender (https://BioRender.com).

https://BioRender.com
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deposited to the HTAN Data Coordinating Center Data Portal at the National Cancer Institute: https://data.humantumoratlas.org/ (under the HTAN Vanderbilt 
Atlas). HTAN dbGaP (phs002371). We used reference genome human-hg38, mouse-mm10. TCGA data from cBioportal. GENIE data from AACR GENIE portal.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Patient subjects were deidentified. Sex and gender information was self reported.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Patient subjects were deidentified. Race and ethnicity information was self reported.

Population characteristics Patient subjects were deidentified. Population information was self reported.

Recruitment Individuals were recruited from those undergoing colonoscopy. Individuals who gave consent were recruited. No other 
selection criteria were used. Age (41-75) and other informations can be found in supplemental table 4.

Ethics oversight TCPS was approved by the VUMC and VA Institutional Review Boards and the VA Research and Development Committee. 
HTAN study was approved by the VUMC Institutional Review Board. All animal experiments were performed under protocols 
approved by the Vanderbilt University Animal Care and Use Committee (M1600047) and in accordance with NIH guidelines.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size In this study, sample size was not calculated, rather the reported number of embryos were dependent on variability of embryos at the 
experimental time frame known by our group via experience. Each embryo accumulates stochastic mutations through developmental time 
point and required to analyze independently. Embryo reproducibility was accomplished by analytical approaches like proportion of progenitor 
field size, normalized mosaic fraction, lineage tree, and distribution of mutation density.  For human single-cell studies, sample size was 
determined previously using power calculations in the Chen et al. study [48].  We targeted the number of tumors to greater than the number 
from the previous study in all conditions. 

Data exclusions We excluded one adult mouse intestinal epithelium dataset for clonal dynamic analysis. There is insufficient barcodes (hgRNAs) found in this 
dataset, possible failure in library preparation step. 

Replication We demonstrate the reproducible nature of our findings like asymmetric contribution of early embryonic cells across embryos. However, 1st 
cell's contribution that we reported at E7.75 embryo is not reproducible in other embryos, as we didn't get any mutation at that early stage of 
the development. This is because indel mutation accumulation is random and we can't control to have a mutation at 2-cell stage to calculate 
that contribution from 1st cell generation. However, this doesn't invalidate our general asymmetric contribution conclusion, given that other 
studies also reported similar conclusion. For HCR-FISH and Ab staining, we performed at least 3 replicates per condition. Note that, not all 
replication attempts were successful. This is due to the fact that 8 um embryo section may not always contain the right tissue sections 
(somites or gut epithelium).

Randomization Our study does not follow a hypothesis driven design, and as such, no groupings of embryos or adult mouse were made therefore 
randomization was not applicable.
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Blinding Single-cell lineage tree reconstruction and cell state assignments operate with the same parameters independently of the embryo, therefore, 
no need to blind the investigator to the data being handled. We did minor exception for E7.75 tree due to large cell number, mutation 
number, and increased processing time that we reported in the method section. Human studies were blinded to initial annotation of tumors, 
but were subsequently unblinded because that information is not critical to the study examining poly or mono-clonality.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Tob2 antibody (Invitrogen, Catalog # PA5-62923)

Validation This antibody has been validated by the manufacturer (https://www.thermofisher.com/antibody/product/TOB2-Antibody-Polyclonal/
PA5-62923). 

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) The HEK293 and EpH4 cell lines originated from ATCC. Please find details of these cell line in supplemental methods section.

Authentication None

Mycoplasma contamination Cell lines tested negatively for mycoplasma

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified lines were used in this study

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals MARC1 mouse from MMRRC (https://mmrrc.ucdavis.edu/featured-strains-marc1-the-barcoding-lines/). Cas9 mouse 
(Gt(ROSA)26Sortm1.1(CAG=cas9*,EGFP)Fezh/J strain mouse) from Jackson labs. The age of the barcoded adult mice (MARC1;Cas9) 
was mentioned in the supplemental methods and corresponding figure legends. ApcMi/+ mouse  was 4 months old. Mouse data in 
Extended Data Fig. 11i is from 18 months old. Mouse data from Extended Data Fig. 2i-j, 10m, and 11a was <3 months old. 

Wild animals None

Reporting on sex Both male and female mice were used in this study. Sex is not relevant to results shown.

Field-collected samples None

Ethics oversight All animal experiments were performed under protocols approved by the Vanderbilt University Animal Care and Use Committee 
(M1600047) and in accordance with NIH guidelines. Animals were humanely euthanized at the end of experiments according to 
approved guidelines. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants
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