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Checkfor updates Temporal ordering of cellular events offers fundamental insights into biological

phenomena. Although this is traditionally achieved through continuous direct
observations'? an alternative solution leverages irreversible genetic changes, such as
naturally occurring mutations, to create indelible marks that enables retrospective
temporal ordering®™. Using a multipurpose, single-cell CRISPR platform, we developed
amolecular clock approachto record the timing of cellular events and clonality in vivo,

withincorporation of cell state and lineage information. Using this approach, we
uncovered precise timing of tissue-specific cell expansion during mouse embryonic
development, unconventional developmental relationships between cell types and
new epithelial progenitor states by their unique genetic histories. Analysis of mouse
adenomas, coupled to multiomic and single-cell profiling of human precancers, with
clonal analysis of 418 human polyps, demonstrated the occurrence of polyclonal
initiationin 15-30% of colonic precancers, showing their origins from multiple normal
founders. Our study presents a multimodal framework that lays the foundation for
invivorecording, integrating synthetic or natural indelible genetic changes with single-
cell analyses, to explore the origins and timing of development and tumorigenesisin

mammalian systems.

Mammalian development from a fertilized egg (zygote) comprises
a highly orchestrated series of cell divisions and lineage diversifica-
tions®. The reconstruction of the Caenorhabditis elegans cell lineage
and discernment of the temporal history from the zygote stage rep-
resents an important milestone for the field of developmental biol-
ogy’. Tumorigenesis shares anumber of cellular and molecular events
with embryonic development that are yet to be fully understood®”’.
Fundamental to understanding these mechanisms is knowledge of
their cellular origins and temporal ordering’°. Previous work has used
non-reversible genetic alterations in tumours, such as mutations and
copy number changes, in either bulk or spatially resolved sequencing
to track temporal events™ 2, Although these analyses are applicable to
human tumour studies, they provide inferences of only chronological
order or clonality, lacking the precision to track associated change in
cell states or pathways.

Recent barcoding strategies in mammalian systems*5, when com-

bined with single-cell sequencing, have shown promise in unravelling
the origins and chronology of cellular events. However, their potential
for recording temporal events over the long term is constrained by
limited barcode diversity’ and loss of information due to large dele-
tion of multiple adjacent cut-sites”. More recently, studies have begun
to show phylogenetic relationships among cancer cells by applying
barcoding strategies to xenografts or chimeras'"., However, these
studies do notinclude tracking from normal cells, which would require
long-term labelling, thereby limiting the study of clonal origins and
evolutionary selection during spontaneous tumorigenesis. We present
amultimodal framework that pairs long-term temporal trackingin mice
with human single-cell multiomics data to address questions regard-
ing cellular origins and chronology in development and cancer. We
developed native single-guide RNA capture and sequencing (NSC-seq),
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Fig.1|Optimization of amultipurpose, single-cell capture platform.

a, gRNA capture schematic for the NSC-seq platform. The target site of gRNA
scaffold anneals to NSC-seq capture sequence (CS) witha cellular barcode
(blue) and unique molecularidentifier (green). Anadditional sequence (grey) is
addedtothe3-end of the complementary DNA viatemplate switching during
reverse transcription to enable downstream library amplification. This gRNA
capture approachis compatible with any type of gRNA (single-guide RNA
(sgRNA), hgRNA and self-targeting guide RNA) that contains the target site
sequenceinthescaffold (Extended DataFig.1). b, Cas9-induced mutation
recovery by direct hgRNA capture as compared with mutations detected in
DNA ofthe same samples. ¢, gRNA capture efficiency by NSC-seq assessed in
anexperimentinwhichall cells fromadrug-selected cell line should contain
sgRNAs.d, Comparative transcriptome capture efficiency between standard
inDrops and NSC-seq experiments. e, NSC-seq experiments performed on
developmentally barcoded whole embryos inwhich Cas9 is constitutively

acustom multipurpose, single-cell platform for concurrent capture of
messenger RNAs and guide RNAs (gRNA), that leverages self-mutating
CRISPR barcodes from homing guide RNAs (hgRNAs)*** for lineage
tracking and temporal recording by accumulative mutation patterns.
We use NSC-seq to decipher canonical developmental branching dur-
ing mouse gastrulation. We demonstrate the ability of this platform
to identify new embryonic progenitor cell populations and routes
of cellular differentiation, as well as to provide new insights into the
timing of tissue diversification. These results lay the foundation for
invivo multimodal recording for awide variety of applications. We fur-
ther leveraged this tracking approach by pairing it with genome-scale
analysis of human tissues toilluminate the cellular origins of colorectal
cancer. As part of the Human Tumor Atlas Network (HTAN), we col-
lected one of the largest multiomic atlasing datasets on human sporadic
polypsto date, comprising 116 polyps with single-cell RNA sequencing
(scRNA-seq) dataand 418 polyps with mutational data. Paired analysis
of human atlasing data, in conjunction with mouse intestinal tumour
models, showed the polyclonal origins of colorectal tumorigenesis.
Our multimodal framework, which pairs natural genetic changes in
humans with induced genetic changes in the mouse, illuminates the
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expressed (top). Accumulative mutations on homing barcoderegionsincrease
over time (bottom)>?°. f, Average mutation density over embryonic time points
(Extended DataFig. 2a). Black dots represent geometric mean foreach time
point,and Pvalues are derived from unpaired two-tailed t-tests. g, Somatic
mtVar calling from mitochondrial RNA (mtRNA) (top). Approach to filtering
informative mtVars for lineage tracking using hgRNA mutations as ground
truth (bottom) (Extended Data Fig.3b—d). h, Number of somatic mtVars per cell
over embryonic time points. Black dot represents geometric mean for each time
point,and Pvalues were derived from unpaired two-tailed ¢-tests. i, Pearson
correlation coefficient heat map of variant proportions combining hgRNAs and
mtVars for selected tissue types, presented as pseudobulk froman E9.5embryo
(Extended DataFig.4).j, Multimodal application of the NSC-seq platform.
a,e,g,j, Schematics created using BioRender (https://BioRender.com).
a.u.,arbitrary units; AUC, areaunder the curve; rep., replicate; prog., progenitor;
bp, base pairs.

complexities of cellular origins and temporal transitions, and their
relevance in early tumorigenesis.

A temporal recording platform

To enable CRISPR-based temporal recording at single-cell resolution,
we developed a custom capture platform for non-polyadenylated
hgRNAs that requires neither redesign of whole gRNA libraries® nor
indirect readouts® (Fig. 1a and Extended Data Fig. 1a-c). Nearly 80%
of gDNA mutations were detected in hgRNA with NSC-seq (Fig. 1b).
Using controlled cell and organoid passage experiments, we demon-
strated that hgRNA mutations are equivalent to gDNA mutations for
lineage tree reconstruction (Extended Data Fig. 1d). Adaptation of
NSC-seq to single-cell resolution demonstrated gRNA detection in
95% of cells, with transcriptome quality similar to a standard inDrops
experiment (Fig. 1c,d, Extended Data Fig. 1e-h and Supplementary
Methods). Previous work®and our results here showed that gDNA bar-
code mutation frequency—as defined by the ratio of mutated versus
wild-type barcodes—tracks linearly with cell or organoid culture time
when measuredinbulk (Extended DataFig. 2a-c). However, we found


https://BioRender.com

mutational frequency to be unusable for single-cell applications owing
tosingle-cell datasparsity, inwhich only afraction of barcodes canbe
detected on a per-cell basis. Therefore, we introduced a mutational
density metric, defined as the average number of mutations within
barcodes, whichis unaffected by single-cell data sparsity and also tracks
with timein organoid cultures and the intestinal epithelium (Extended
DataFig.2d,e). We observed that mutational density increases at afaster
rateinintestinal organoid cultures thaninintestinal epitheliuminvivo
(Extended Data Fig. 2f), confirming that epithelial cells under organoid
conditions are more proliferative. Although high Wingless-related
integration site (Wnt) activity in organoid culturing conditions mimics
injury-induced regeneration and induces stem/progenitor cell prolif-
eration, there may be additional in vitro factors that can marginally
affect mutationrates. Cellular turnover rates of common intestinal cell
types, asinferred by mutational density, were consistent with current
knowledge (Extended Data Fig. 2g). Specifically, tuft cells exhibited
amultimodal distribution of mutational densities, consistent with a
heterogeneous cell population with different lifetimes? (Extended
DataFig.2h).NSC-seqapplied to three mouse embryonic time points
for profiling of hgRNAs and messenger RNAs simultaneously also
showed mutation density to increase over time (Fig. 1e,f), driven by
cell type-specific changes (Extended Data Fig. 2i,j), that is not due to
celltypebiasin Cas9 expression or non-homologous end-joining activ-
ity (Extended Data Fig. 2k,1). Although mutation density per barcode
can be used for timing assessments, non-overlapping gRNA barcode
expression detected per cell limits information content used for cell
phylogeny reconstruction. We thus augmented hgRNA mutational
information with somatic mitochondrial variants (mtVars). In brief,
we filtered out germline mtVars using a custom ‘germline mtVars bank’
(Supplementary Methods) and then defined a lineage-determining
cut-off from mtVar distributions using paired hgRNA mutations as
‘ground truth’ somatic variants (Extended Data Fig. 3a-d). Using this
pipeline, we showed that mtVars also consistently increased over three
embryonic time points (Fig. 1g,h), similar to hgRNA mutations (Fig. 1f).
We further delineated the known developmental order of different
mouse brain layers before left-right brain segregation® (Extended
DataFig. 3e), and verified previously reported clonal relationships
between three human breast tumour regions (Extended Data Fig. 3f),
using mtVars on published spatial data. Single-cell analysis using
hgRNA, mtVars or both was able to accurately identify lymphoid and
myeloid cells as distinct lineages in peripheral blood mononuclear
cells (Extended Data Fig. 3g-j), and to distinguish embryonic tissue
types (Fig. 1i). Taken together, our findings demonstrate the efficacy
of acomprehensive pipeline of temporal and lineage tracking that is
coupled to single-cell transcriptomic analysis (Fig. 1j).

Lineage and cell division tracking

We then analysed the combined single-cell barcoding and transcrip-
tome data oftime point embryonic day (E)7.75,E8.5and E9.5 embryos
togleanbiological insights pertaining to early development. Cell type
annotation using conventional gene expression analysis showed canon-
ical cell types and germ layers at each of the time points'** (Extended
DataFig.4 and Supplementary Information). Consistent with the estab-
lished timeline of mammalian development, more defined cell types
emerged at E9.5 compared with earlier time points (E7.75/8.5), prompt-
ing two separate sets of cellular annotations (Extended Data Fig. 4a-h).
Our data corresponded well with previously generated scRNA-seq data
atE7.0and E8.0, supporting the premise that our single-cell embryonic
data were collected at the correct developmental times (Extended
Data Fig. 4i), with data quality typical of this experimental platform
(Extended Data Fig. 4j-1 and Supplementary Methods). Our quality
assessments focusing specifically on barcode mutations—including
distribution of mutations amongst cells, frequency of different types
of mutations, incidence of random collision mutations, number of

mutations as a function of cell type, barcode lengths and barcode
classifications—were consistent with previous reports® (Extended
Data Fig. 5a-f). We retrospectively investigated the initial phases of
development by analysis of early embryonic mutations (EEMs), which
manifest during the earliest cell divisions and are inherited by a sub-
stantial portion of cells within the embryo (Extended Data Fig. 5g,h).
The proportional presence of these mutations amongst cells, referred
to as the mosaic fraction, is an indicator of the cell generation when
these mutations originated (Extended DataFig. 5i,j). Progressive restric-
tion of EEMs shared in tissues enables the use of mosaic fractions to
model early divergence of germ layers and tissue types (Fig.2a). Mouse
primordial germcell (PGC) lineage segregated from other embryonic
and extra-embryoniclineages, supporting the early allocation of cells
to the PGC lineage that has been reported in mice?® and humans?. We
also found a similar mosaic fraction between mesoderm and ecto-
derm that supported a shared progenitor population, as previously
reported®. Notably, extra-embryonic endoderm (EEndo) and embry-
onicendoderm (Endo) cellsappeared to share origins, although these
arereported to originate from two distinct tissue layers, hypoblast and
epiblast, respectively. However, there is literature supporting some
degree of shared progenitors, lineage convergence and intermixing
between these tissues™*?*°, We also assessed the clonal contributions
of different EEMs towards germ layers (early) or tissue types (late) and
observed unequal contribution between different early clones (Fig.2b
and Extended Data Fig. 5k,1). We found unequal partitioning of first-cell
generation clones across different tissue types (Fig.2¢c; P=1.057 x 1073),
suggesting that the specific lineage commitment of early embryonic
progenitors is not predetermined, but rather subject to potential
stochastic processes (Extended Data Fig. 5m,n). This phenomenon
has previously been reported in mammals but was not observed in
C.elegans®*.

Regulation of organ size is a fundamental process of embryonic
development, primarily governed by organ-specific cell division rates
and, to alesser extent, by rates of apoptosis®*>*. Here, we developed a
catalogue of cell division histories of different organs to show insights
into the timing and scale of cell division across tissues during develop-
ment (Supplementary Methods). Using mutations within NSC-seq
barcodes, we quantified the cumulative number of cell divisions per tis-
suetype at three gastrulation time points (Extended Data Fig. 6a,b and
Supplementary Table 2). We observed that the relationship between
the number of cell divisions and known tissue mass differs among
various tissue types, which could be attributed to a number of vari-
ables, including differential progenitor field size, timing of progenitor
specification, cell death, cellular lifespan and cell competition across
tissue types®. In addition, our data showed a widening distribution
of tissue-specific cumulative cell divisions at both the E8.5 and E9.5
stages, whereas a narrow unimodal distribution was observed for the
E7.75 stage (Fig. 2d), suggesting that tissue-specific cell division and
diversification initiates after the E7.75 stage. In general, we observed
high proliferation of haematopoietic progenitors during gastrulation
whereas cardiomyocytes and endothelial cells showed low prolifera-
tion (Extended Data Fig. 6a,b). We noticed an emergence of various
intermediate haematopoietic progenitors at E9.5 with distinct cellular
turnover histories, supporting diverse roots of haematopoiesis during
early embryonic development as previously reported®*¥. Cumulative
cell division levels for forebrain progenitors were higher than those
for hindbrain progenitors (Extended Data Fig. 6b), supporting known
turnover kinetics that maintain relative sizes of brain regions during
mammalian neurogenesis®>*, In addition, we found a constant rate of
cell proliferation for gut endoderm over embryonic time points, simi-
lar to the turnover of the adult intestinal epithelium (Extended Data
Figs.2e and 6c¢). Overall, differential proliferation timing and kinetics
among organs during gastrulation were observed. These variations
mainly corresponded to organ size, although there were exceptions.
We also demonstrated that, for certaintissues, proliferation rates were
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set during gastrulation and persisted throughout life*. Overall, this
catalogue serves as a basis for the study of embryonic cellular prolif-
erationkinetics and adds a temporal axis in lineage diversification' to
complement lineage tracking.

Next, a single-cell phylogenetic reconstruction® (Supplementary
Methods) was conducted using NSC-seq data, which provided more
informative mutations for lineage analysis compared with previous
approaches (Extended Data Fig. 7a—c). Pseudobulk reconstruction of
embryonic tissue relationships generally reflected canonical knowl-
edge of germ layer development (Extended Data Fig. 7d). Phylogenetic
distance analysis fromasingle-cell tree supports the closer proximity
of EEndo to root compared with Endo or embryonic mesoderm (Meso)
to root (Extended Data Fig. 7e). A wider distribution of phylogenetic
distances across cell types was observed at E8.5and E9.5 compared with
E7.75 (Extended Data Fig. 7f), supporting the initiation of tissue-type
diversification following E7.75 as illustrated above (Fig. 2d). Further-
more, computational inference fromsingle-cell lineage tree topology
(Supplementary Methods) estimated the number of epiblast progeni-
tors (n of around 28) and extrapolated unequal progenitor field size
between ectoderm and mesoderm stemming from these progenitors
(Extended Data Fig. 7g,h). These data underscore the robustness of
usingatemporal and lineage-tracking approachin deriving newinsights
into early mammalian development and organogenesis.

Unconventional lineage diversification

We highlight three examples of unconventional lineage diversification
that we identified during embryonic development. Lineage analysis at
bothE8.5andE9.5indicated that erythroid progenitor 1(EryProl) shares
common ancestry with somite (Fig. 3a). We then reanalysed somite,
endothelium and haematopoietic cell types, all potential progenitors
to EryProl, and found that EryProl did not express yolk sac (lcam2,
Krd and Gpri182), endothelial (Pecam1I) or embryonic multipotent pro-
genitor markers (Flt3) (Extended DataFig. 8a-c). By contrast, EryProl
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expressed somite-specific markers (TwistI and Sox11) and showed

upregulation of Wnt signalling, which comprised an EryProl-specific

genesignature (Extended Data Fig. 8d-fand Supplementary Table 3).

Inaddition, RNA velocity, mosaic fraction of EEMs and clonal analyses

all supported a developmental relationship from somite to EryProl

(Extended Data Fig. 8g-i). Indeed, multiplex HCR RNA-fluorescence

in situ hybridization (FISH) of somite and erythroid markers showed

acluster of Kit" erythroid cells in the somite region of the E9.5 embryo

(Fig. 3b), supporting a somite-derived erythroid progenitor popula-
tion. The EryProl populationis presentat E8.5 but not at E7.75, whereas
somite cells were observable at E7.75 (Extended Data Fig. 8j—-m). Gene
expression analysis showed that some somite cells from E8.5 coex-
pressed haematopoietic transcription factors (Gatal and Gata2) and
low levels of the haemoglobin gene (Hbb-bt), suggesting a cell state
transition from somite to EryProl (Extended Data Fig. 8n,0). Finally,
pseudotime analysis showed adistinct developmental trajectory from
somiteto EryProl, in addition to the expected trajectory from somite to
sclerotome (Extended Data Fig. 8p). Thus, our datashow a previously
unidentified somite-derived haematopoietic population during late
gastrulation of mammalian development, with similarities to that of
zebrafish?,

We next sought to understand gut endoderm development in the
context of regionalization and the timing of progenitor specification.
Endoderm (definitive and visceral) cell populations fromE7.75and E8.5
embryos were plotted together to show region-specific markers as
early as E7.75,implying regionalization (spatial patterning) at that early
time point (Extended Data Fig. 9a-d). We then focused our analysis on
region-specific progenitors of the gut at E7.75. Analysis of the foregut
populationfromE7.75 showed three distinct clusters: hepatopancreatic
(HPC) progenitors (Hnf4a"), lung progenitors (Foxa2*) and thyroid/thy-
mus (TT) progenitors (Eyal) (Fig. 3c). Gene expression, regulon activity
and lineage analysis showed that the HPC population is relatively dis-
tinct from lung and thyroid/thymus progenitors (Fig.3d,e and Extended
DataFig. 9e,f). Similar progenitor populations from the foregut were
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found at E8.5 (Extended DataFig. 9g,h) but not at E7.5 (Extended Data
Fig. 9i), implying precise timing of progenitor specification at E7.75.
Analysis of the remaining definitive endoderm populations similarly
showed distinct gene expression patterns between midgut (Gata4, Pyy
and HoxbI) and hindgut (Cdx2, Cdx4 and Hoxc9) progenitors as early
as E7.75 (Fig. 3f and Extended Data Fig. 9j). Regulon analysis also sug-
gested distinct region-specific activities for midgut (Gata4, Foxal and
SoxII) and hindgut (Cdx2, Sox9 and Pax2) progenitors at this time point
(Extended DataFig. 9k). Pseudotime and CytoTRACE analyses resulted
inan expected developmental trajectory fromE7.75to E9.5 (Extended
DataFig.91). We found notable region-specific differences in Wnt and
bone morphogenetic protein (BMP) signalling over developmental
pseudotime (Extended Data Fig. 9m). Significantly higher Wnt signal-
ling activity was observed in hindgut compared with midgut progeni-
tors at E7.75 (Extended Data Fig. 9n,0). Consistent with the literature,
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(n=3embryos per group). Box plots show the median and first and third
quartiles, with whiskers extending to1.5x interquartile region beyond the box.
Unpaired two-tailed ¢-test. h, Wnt signalling score overlaid onto f. Pearson
correlation analysis between Wnt signalling score and VE intermix score.
Correlations and P values (by F-test) and 95% confidence intervals (shaded
area) areindicated. i, Pearson correlation coefficient heat maps of gut regions
with VEfromE7.75and E8.5embryos. j, Distribution of clones across cell types
inadult mouse smallintestinal epithelium (Extended Data Fig.11). The plot
(below) shows the fractions of parent and childless clones comprising each cell
type (Extended DataFigs.10jand 11). k, Violin plots of CBC- and pISC-rooted clone
sizes. Box plots within violins show the median value and box edges represent
thefirstand third quartiles; unpaired two-tailed t-test. EC, enterocytes;

EEC, enteroendocrine cells; TA, transit-amplifying cells; TT, thyroid/thymus.

the Wnt target gene LgrS5, a canonical intestinal stem cell marker, was
highly expressedin hindgut*® whereas Lgr4 and Lgré were expressed in
midgut (Extended DataFig. 9p). Our results showed early differential
usage of developmental signalling pathways between progenitors of
different regions, supporting an early progenitor specification model
during endoderm development*.

Wealso examined thelineage relationship betweenvisceral and defin-
itiveendoderm duringembryonic development. We derived a visceral
endodermscore using reported visceral endoderm infiltration-specific
marker genes and showed that this score could accurately mark sorted
visceralendoderm-derived cells (Extended Data Fig.10a). Application
of this score to our data identified cells demonstrating high visceral/
definitive endodermintermixinginthe developing hindgut (Fig.3g and
Extended Data Fig. 10b). We found that the visceral endoderm inter-
mixing score correlated witha Wnt signalling score and Wnt-response
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genes (Lgr5, Axin2 and Fzd10) (Fig. 3h and Extended Data Fig. 10c),
whichissupported by higher Lgr5expressioninsorted visceral thanin
definitive endoderm-derived cells (Extended Data Fig.10d). Multiplex
HCR RNA-FISH showed the presence of cells coexpressing Lgr5 and
thevisceral endoderm marker gene Cthrclinthe posterior gut region
(dottedline, Extended Data Fig. 10e). Lineage analysis using mutational
barcodes supports alineage relationship between hindgut and visceral
endoderm, probably resulting from visceral endoderm-derived cells
mixinginto the hindgut during gastrulation (Fig. 3i). Thisrelationship
persistsat E9.5, as supported by differential lineages between midgut
and hindgut (Extended Data Fig. 10f,g). To determine the role of vis-
ceral endoderm-derived cells post gastrulation, we analysed midgut
and hindgut tissues at the E14.5 time point and found that the hindgut
epithelium has a higher visceral endoderm intermix score than that
of the midgut (Extended Data Fig. 10h,i), consistent with the results
above. We then assessed the ability of these cells to contribute to epi-
thelial development by performing a ‘parent-childless’ clonal analy-
sis using an established approach® (Extended Data Fig. 10j). Visceral
endoderm-derived cells have a high parent clone fraction, implying
that they have a higher potential to give rise to progeny (Extended
Data Fig. 10k). Mutation density analysis also demonstrated that vis-
ceral endoderm-derived cells accumulated more divisions at E14.5
compared with other definitive endoderm-derived cells, highlighting
their post-gastrulation activities (Extended Data Fig. 101). Finally, we
performed mutational barcode analysis of adult tissues derived from
foregut, midgut and hindgut and found that hindgut-derived tissues
maintain aseparate lineage branch from midgut- and foregut-derived
tissues, eveninto adulthood (Extended DataFig.10m). Thus, our data
support previous reports of visceral endoderm-derived cells intermix-
ing with definitive endoderm (Extended Data Fig.10n) predominantly
inthe hindgut®, and their potential contribution to gut epithelial devel-
0pmentl4'25'29'3°.

Persisting progenitors of the gut

Itisgenerally accepted that crypt-based columnar cells (CBCs) marked
by Lgr5serve asthe homeostatic stem cell population driving continual
renewal inthe adultintestinal epithelium, and can be a cell of origin of
tumours*2, However, the embryonic origin of adult stem/progenitor
cellsremains elusive. Using NSC-seq, we identified aunique cell popu-
lation related to enterocytes that persisted into the adult from their
embryonic developmental origins; we have termed this population
persister intestinal stem cells (pISCs) (Extended Data Fig.11a-c). Agene
signature derived from this cell population was also able to identify
the same cells in another publicly available dataset (Extended Data
Fig.11d,e). Mutational lineage analysis demonstrates adevelopmental
relationship between CBCs and pISCs, indicating that they potentially
derive fromeach other (Extended Data Fig. 11f). However, pISCs exhibit
a higher mosaic fraction, implying that they are derived from much
earlier cell generations compared with CBCs, which develop relatively
late during fetal intestinal development*® (Extended Data Fig. 11g).
Asmaller number of progenitors that give rise to these cells, asinferred
from single-cell lineage tree topology (Extended Data Fig. 11h), sup-
portstheir earlier specification stemming from the fewer progenitors
available at earlier development. Clonal contribution analysis using
hgRNA mutations demonstrates that the pISC population possesses
alarger clone ssize, thus contributing more progenies to the intestinal
epithelium than CBCs (Fig. 3j,k). This finding was consistently observed
(Extended Data Fig.11i-n), supporting the premise that the pISC popu-
lationacts as astem/progenitor-like population during intestinal devel-
opment. Tob2 was identified as a selective marker of pISC cells, and
Tob2' cellswerelocated at the bottom of adult smallintestinal crypts by
immunofluorescence analysis (Extended Data Fig.110,p). We propose
that pISCs can act as stem/progenitor-like cells to populate the gut
during embryogenesis, in contrast to the limited contribution of the
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CBC population at that time*. A study characterizing this population
isin preparation.

Clonal analysis of colorectal precancers

Tumours are often thought to form through aberrant developmen-
tal gene programs**. An unresolved issue in colon cancer is whether
tumours arise from a single stem cell or from multiple progenitor
cells to result in complex tissue systems. Thus, we used NSC-seq, in
approaches akin to what we used to study developmental origins,
to investigate the origins of tumorigenesis in the gut. The prevailing
model, withsupportfromhuman colorectal cancer data, is the mono-
clonal model, in which a tumour is initiated from a single stem cell®.
However, selection and clonal sweeps that occurin advanced cancers
tend to erase clonal histories occurring earlier in tumorigenesis*®.
Furthermore, lineage-tracing studies in the mouse have shown that
some tumours can be initiated from multiple ancestors, resulting in
tumours with multiple lineage labels*. We thus applied single-cell
barcode tracking to delineate clonality during intestinal tumour ini-
tiation in Apc™™* mice, in which tumorigenesis occurs as a result of
random mutationsinactivating the second allele of Apc. We found that
these tumours were composed of both normal and tumour-specific
cells, similar to humanadenomas in a previous study*® (Extended Data
Fig.12a-cand Supplementary Methods). Evaluation of tumour-specific
cellsusing NSC-seq demonstrated increased proliferation signature,
stemness, fetal gene expression (Marcksl1) and clonal contribution
compared with normal CBCs (Extended Data Fig. 12d,e), consistent
with the transformed features of these cells. Examination of pheno-
typically normal cells within the tumour showed normal-like prog-
enies of tumour-specific cells, which can be distinguished from their
normal counterparts by their higher barcode mutation densities and
shared barcode mutation profiles with tumour cells (Extended Data
Fig.12f). These progenies consisted of enterocytes and Paneth cells,
consistent with Wnt-restricted aberrant differentiation of intestinal
tumour cells*. To delineate clonality, we first used shared barcode
mutations in lymphocytes, demonstrating that tumour-infiltrating
lymphocytes had expanded clonally compared with peripheral blood
lymphocytes, which were mostly polyclonal (Extended Data Fig.12g).
Asimilar analysis showed three founder clones within tumour-specific
cells (Fig. 4a). The three clones were distinct in many characteristics,
including mutation density, clonal contribution, biased differentiation
and gene expression signatures (Fig. 4b and Extended Data Fig. 12h-k).
Moreimportantly, single-cell phylogenetic analysis showed independ-
ent tumour founder clones arising from distinct normal epithelial
ancestors (Extended Data Fig. 121). Next, we performed whole-exome
sequencing (WES) of 13 mouse intestinal tumours to assess the number
of Apc mutations. Loss-of-function mutationsin both APCalleles that
resultin Wnt pathway activation are considered the initiating event
in the majority of sporadic human colorectal tumours®. Thus, the
number of unique Apc mutations can be used to assess clonality dur-
ingintestinal tumour initiation®. Inadiploid genome, amonoclonally
initiated tumour should present at most two unique Apc mutations that
lead to loss of function of both alleles, given that there is no selective
advantage for additional mutations. We found that five of the 13 mouse
intestinal tumours had three or more unique mutationsin the Apcgene,
implying multiple founder clones (Fig. 4c). Moreover, around 40% of
mouse tumours showed evolutionary selection pressure comparable to
human adenomas (see below and Extended Data Fig.12m). The normal
cell of origin of tumour cells can also be examined by early embryonic
clonalintermixing using barcode mutations in both tumour and adja-
cent normal tissues from the same mouse®?. Early embryonic clonal
intermixing was seen in four out of five mouse polyclonally initiated
tumours (Extended Data Fig.12n,0 and Supplementary Table 4), indi-
cating that barcode mutations used to determine polyclonality were
alsofoundinadjacent normal cells. A concurrent study demonstrates
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Fig.4|Clonal origin of colorectal precancer. a, Pearson correlation
coefficient heat maps of variants from mouse intestinal tumour (Apc"™*)-
derived single cells. Distinctly correlated regions are marked by three clones
within the same tumour (Extended Data Fig.12). b, Estimated mutation density
forthethreeassigned clonesina.Blacklines represent the median for each
clone, unpaired two-tailed t-test. ¢, OncoPrint plot representing the number of
Apcmutations across mouse tumours using WES. d, Overview of experimental
design for profiling of clonal origin across multiple human datasets. e, Bar plots
summarizing the number of APC mutations per polyp using targeted DNA
sequencing and WES (Extended DataFig.13). f, Top, multiregion (punch biopsy)
WES of ahuman CRC sample representing distinct APC mutations; bottom,
Pearson correlation coefficient heat map of somatic mutations within regions
of interest (ROI)". Scale bar,2 mm. g, Expected median VAF distribution under

similar intrapatient embryonic clone sharing among multiple familial
polyps within the same patient, demonstrating the possibility of poly-
clonal intestinal tumour formation in humans®, which supports our
observations in mice.

Whereas embryonic clone mixing can be leveraged only in hereditary
diseases such as familial adenomatous polyposis, we sought to find
evidence of polyclonalinitiation in the two most common subtypes of
humansporadic colonic precancer. We expect polyclonalinitiation to
occurinonly aminor subset of polyps, thusrequiring alarge sample size
analysis for our study. We therefore collected new scRNA-seq datasets,
resulting inatotal of 116 polyp datasets (adenomas (AD), 70; serrated
polyps (SER), 42; unknown (UNK), 4) from three different cohorts of
patients at Vanderbilt University Medical Center (VUMC)*® (Fig.4d and
Extended Data Fig. 13a). Out of these, 96 polyps (AD, 63; SER, 33) had
matching WES data. These data were generated from distinct regions
of the colon from a distribution of 96 patients of diverse racial back-
grounds and ages (Supplementary Table 4). In addition, we analysed
targeted DNA sequencing from 300 polyps from the Tennessee Colo-
rectal Polyp Study to assess APC mutations*. Using Tennessee Colo-
rectal Polyp Study data, we found that roughly 20% of polyps showed
three or more unique APC mutations, implying more than one founder
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different clonal architectures. h, Mosaic X chromosome (chrX) inactivation
patternsin female polyps candelineate the clonal origin of cells using
expression-based, X-linked somatic clonal SNVs. Male polyps are considered
monoclonal due to the single male X chromosome (Extended Data Fig.14d-f
and Supplementary Methods. i, Box plots representing distribution of X-linked
clonal SNVs (%) between male and female polyps. Box plots show the median, box
edgesrepresent the firstand third quartiles and whiskers extend to aminimum
and maximum of 1.5x interquartile range beyond the box. Red dashed lineisa
cut-offtoassign clonality in female polyps (Extended DataFig.14g,h).j, Summary
of median VAF-based polyp profiling.a,d,g,h, Schematics created using
BioRender (https://BioRender.com). H&E, haematoxylin and eosin; asterisk,
polyclonal tumour; FS DEL, frameshift deletion; FSINS, frameshiftinsertion;
STOP, stop codon.

clone in those polyps (Fig. 4e and Extended Data Fig. 13b). Similar to
these results, WES data from our VUMC polyp dataset showed that
potential polyclonalinitiation occurred in approximately 15% of polyps
(Fig.4e, Extended Data Fig.13cand Supplementary Table 4). Although
our study is mainly focused on precancers, we also performed APC
mutation analysis using published multiregional WES in a cohort of
23 colorectal carcinoma (CRC) samples from VUMC", which showed
only one specimen exhibiting potential polyclonalinitiation (Fig. 4f),
consistent with other multiregional sequencing data that demonstrated
adecreasein polyclonality in advanced cancer®. Thisis consistent with
the occurrence of clonal sweeps during tumour progression—as seen
in external cohort datasets—that erases the clonal history of tumour
initiation® (Extended Data Fig.13d).

To provide additional clonality evidence, we called somatic
single-nucleotide variations (SNVs) from single-cell transcriptomics
dataof colorectal polyps using two independent pipelines (Extended
Data Fig. 14a,b). Clonal composition was then assessed using the
variant allele frequency (VAF) distribution of somatic SNVs (Sup-
plementary Methods). If a polyp is derived from a single founder
clone, the VAF distribution of its somatic SNVs would be higher than
that of apolypinitiated by multiple clones due to a higher fraction of
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shared SNVs across a single founder-derived population®** (Fig. 4g).
We calculated the median VAF from polyps (n = 86) and found wide
variation across them, implying the existence of both monoclonal
and polyclonal polyps (Extended Data Fig. 14c). To establish a poly-
clonality cut-off based on VAF distribution, we leveraged the con-
cept of X-linked inactivation in female polyps (n = 46). During early
embryonic development in female individuals, one X chromosome
insomatic cells becomes randomly silenced to balance X-linked gene
dosage. This pattern persists in daughter cells, creating a mosaic
of inactivated X chromosomes in adult female tissues. Therefore,
somatic SNVs within X-linked transcripts can be used as developmen-
tal markers to track the clonal origin of cells in female individuals®
(Fig. 4h and Supplementary Methods). In male individuals with a
single X chromosome, mosaic expression of X-linked genes is absent
and thus male polyps can stand in as ‘monoclonally initiated’ when
considering only X-linked SNVs (Extended Data Fig.14d). We thus used
simulations, mixing male polyps to establish baseline distributions
of X-linked SNVs, to distinguish between monoclonally and poly-
clonally initiated polyps. As anticipated, the proportion of X-linked
clonal SNVs decreased in relation to the degree of polyclonality (as
simulated by the number of mixed male polyps) (Extended Data
Fig. 14e). Examination of female polyps on the same scale showed a
substantial number potentially to be initiated polyclonally (Fig. 4i);
many of these were also classified as polyclonally initiated from
APC mutation assessment (Extended Data Fig. 14f). A wide distri-
bution of clonal X-linked SNVs in female polyps also indicated the
potential for different numbers of founder clones (Fig. 4i). To extend
the analysis to all single-cell SNVs in addition to X-linked SNVs, we
examined VAF distributions in female polyps previously assigned
as either monoclonally or polyclonally initiated based on X-linked
SNVs. Assigned monoclonal polyps exhibited higher median VAF com-
pared with polyclonally initiated polyps, and we were able to estab-
lish a median VAF distribution cut-off of 0.20 to identify polyclonal
initiation (Extended Data Fig. 14g,h and Supplementary Table 4).
Applying VAF distribution analysis to all polyps, we found approxi-
mately 29% to be polyclonally initiated (Fig. 4j and Supplementary
Table 4), comparable to APC mutation-based assessments (Fig. 4e).
Thus, analysis of multiple data types supports the premise that a
substantial subset of human colorectal precancers arise from multiple
non-cancer ancestors.

For additional orthogonal confirmation, we applied WES datato a
linear model that distinguishes between neutral and selective evolu-
tion*¢ (Extended Data Fig. 14i,j). We found that a higher proportion of
the assigned monoclonal polyps showed asignature of clonal selection
(R?<0.98) compared with the assigned polyclonally initiated polyps
(Extended Data Fig. 14k). Using this analysis, about 60% of polyps overall
showed clonal selection (Extended DataFig.141), suggesting a subset of
polyclonally initiated tumours to be transitioning towards clonal selec-
tion, consistent with previous reports of selective pressures exerted
during malignant progression***>. Moreover, adenoma-specific cells
of assigned monoclonal polyps showed higher expression of genes
associated with cell cycle, nucleic acid synthesis and protein transla-
tion signatures than polyclonal polyps, which can be attributed to a
highly proliferative, stem cell-expansion phenotype that may drive
selection® (Extended Data Fig. 14m-q). In addition, we found a sig-
nature of T cell exhaustion in the tumour microenvironment that is
lowest in polyclonal polyps, intermediate in monoclonal polyps and
highestin cancer, consistent with a transitional process of the tumour
microenvironment (Extended Data Fig. 14r). These data suggest that
selection canoccur at the premalignant stage, withincreased selective
pressures potentially resulting in decreased polyclonality, which may
provetobeahallmark of the transition from precancer to cancer. Taken
together, our results generated from human and mouse precancers
provide insights into the evolutionary dynamics at the earliest stage
of tumorigenesis in the mammalian colon.
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Discussion

Identification of the origins of cellsis animportant endeavourin both
developmental biology and cancer studies. This challenge becomes
particularly pronounced when the progenitor cell isembedded within
aspecific subset of agiven cell type. As an example, tumours can arise
fromasubset of normal cells in aseemingly random fashion or under the
influence of factors that push them towards this fate. Using single-cell
genomic information from 116 human colorectal polyps, we present
orthogonal evidence from different analyses to demonstrate the sub-
stantial number of instances in which colorectal polyps emerge from
multiple distinct clonal origins. Note that the frequency of polyclonal
polyps reported in this study is probably an underestimation due to
avariety of factors affecting the detection of polyclonality, includ-
ing sequencing depth, and that a subset of polyps may be driven by
mutationsindependent of APC (such as those seenin serrated polyps).
In addition, monoclonal conversion in polyps may also have erased
polyclonal history during tumourinitiation, lowering detection rates.
However, results from this study and the concurrent study by Schenck
etal.® demonstrate that polyclonal initiation is not only possible, but
also perhaps common, for human colorectal polyps in both familialand
sporadic settings. It is likely that the normal cells of origin arise from
multiple monoclonal crypts, althoughitis possible that they may have
arisen from the same crypt due toincomplete crypt purification®. This
finding in the gut is in line with recent reports on polyclonal human
breast cancer initiation®. The decrease in polyclonality observed in
advanced cancer, coupled with clonal selection that canbe observedin
some, but notall, polyps, raises anintriguing possibility that the subset
of polyps undergoing a selection process may be primed to progress
tocancer. Hence, future research may elucidate whether clonality can
serve as a predictive biomarker for precancers that will advance to
malignancy, in contrast to polyps that maintain polyclonality. Neverthe-
less, approaches to functional study of the origins of predetermined
cellfatesinmodel systems are lacking. Here, we additionally leveraged
clonal progeny generated by synthetic barcode mutationsinasingle-cell
platformto enable retracing of cell lineage origins backwards in time.

We first applied this lineage-tracking platform to study mamma-
lian development over different time scales from zygote to adult. Our
analysis of gut endoderm development showed that regionalization of
endoderm and progenitor specificationinitiated earlier than previously
appreciated, and suggested that these two processes may occur simul-
taneously*. In addition, our gut lineage analysis showed convergence
of cells from extra-embryonic origin toanembryonic endoderm state,
supporting previous observations****3° and extending the contri-
bution of extra-embryonic cells to gut epithelial development. More-
over, temporal analysis of embryonic development showed a shiftin
tissue-specific cell expansion after E7.75. Hence, our study provides
clues about developmental timing of lineage diversification that can
prompt studies into extrinsic and/or intrinsic signalling that govern
cellular turnover and organ size during development®>*, Lastly, clonal
analysis and temporal recording applied to the Apc"™* mouse model
functionally validated the possibility of polyclonal tumour initiation,
to the extent that barcoded mutations can be traced back to multiple
normal epithelial cell ancestors. Integrative analysis of the HTAN colo-
rectal precancer atlasand mouse barcoding data allowed us to delineate
factorsthat affect the earliest stages of tumour development, including
clonal composition and molecular signatures influencing the clonal
fitness landscape®****°, Amodel consistent with our resultsimplies that
selective pressures during tumour progression modulate transition
from polyclonal composition in the early precancer stage towards a
monoclonal composition®¢°, However, polyclonal compositions do exist
at the cancer stage, albeit rarely, and may even confer new biological
functions to the tumour. Charting these complex, multistep evolution-
ary processes characterizing precancer-to-cancer transitionsin human
specimens may illuminate strategies for early interventionin the future.
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Extended DataFig.1|Design and validation of NSC-seq platform.

(a) Schematicrepresentation of canonical CRISPR-Cas9 (left) and homing/
self-targeting CRISPR-Cas9 (right). Inhoming CRISPR, Cas9-hgRNA complex
targets the DNA locus encoding the hgRNA itself. (b) Schematic representation
oflineage tracking during development using Cas9-induced mutations.

(c) Target site for NSC-seq capture sequence (green), along with quality metrics
of'the capture sequence primer. (d) Experimental design of control lineage
tracking experiments using homing CRISPR-barcoded HEK293FT cell line and
mouseintestinal organoids (MARC1;Cas9), where the hierarchy of the cultures
areknown through passage sampling. Similar lineage trees are observed from
bothbulk DNA and bulkhgRNA barcodesin this experiment (bottom). Celllines
were passaged after 1 week, whereas organoids were passaged after 3 days.
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(e) Overview of single-cell experiment using NSC-seq platform simultaneously
capturingbothgRNA and mRNA within the same droplet. Custom hydrogel
beads are designed for NSC-seq experiment using inDrops®. See supplemental
tablelfor primersequences. (f) Workflow delineating two separate library
preparations (GRNA and mRNA) of NSC-seq. (g) Different cDNA size selection
approachesyield varying sgRNA capture efficiencies. The use of two separate
library preparationapproachesin (f) results inimproved capture efficiency.
(h) Comparative transcriptome (mRNA) capture efficiency between inDrops
and NSC-seq experiments (see Fig.1d and supplemental method). Schematic
inaadapted fromref. 62, Springer Nature America, and schematicsina,b,d, e,
and fcreated using BioRender (https://BioRender.com).
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Extended DataFig.2|Overview of temporal recording. (a) Schematic
representation of increasing mutation density and mutation frequency
overtime in self-mutating CRISPR system*>?°. Mutation frequency denotes

the proportion of wild-type barcodes at agiven time. Mutation density is the
number of unique mutations per mutated barcode. Color indicates different
timepoints. Insertion (capital), deletion (dotted line) and base substitution
(underline) mutations are shown here. Theoretical expected mutation frequency
and mutation density are function of time (bottom). (b) Schematic of in vitro
smallintestinal (SI) organoids culture over 6 weeks and subsampled to analyze
accumulative mutations. (c-d) Mutation frequency and mutation density exhibit
alinearincrease overtime. () Mutation density fromadult mouse duodenum
(SI) displays alinear increase overtime (in vivo). Pearson’s coefficient of
determinant (R?) and p value (by F-test) are indicated in c-e. (f) Comparative
mutation density increasesin mouse Slbetweenin vivo andin vitro. Values
derived from previouslinear model (d and e) to plot under same coordinate.
Slope (m) indicates relative rate of cell division. Invitro cell divisionrate in
intestinal organoidsis almost 4 times higher than the in vivo intestinal epithelial
cell division. (g) Comparative cell division (mutation density) across different

smallintestinal epithelial cell types (see Extended Data Fig.11i). Here, each
dotisatechnicalreplicate (NSC-seq library) from the same mouse. Box plots
show the median, box edges represent the first and third quartiles, and the
whiskers extend to amaximum and maximum of 1.5*IQR beyond the box.

TA, Transit-amplifying; and EEC, enteroendocrine; Stem, CBC. These data
supportthe expected notion that enterocyte turnover is higher than Paneth
cells. (h) Distribution of mutation density per tuft cell reflects only asmall
fraction of this cell type shows turnover signature, as reported before®.

(i-j) Comparative mutation density between cycling (blood) and non-cycling/
less-cycling (brain) tissue types over two time points. These datasupport
thatincreasing mutation density is cell division dependent. Here, repl and
rep2areindependentbiological replicates and bulk DNA barcode-based
mutation density assessment. Box plotsinside the violin show the median
value (thick line), box edges represent the first and third quartiles. P value
from unpaired two-tailed t-test. (k) Cas9 expressionis uniformacross
embryonic celltypes (E7.75and E8.5). (I) Nonhomologous end joining (NHEJ)
activity scoreisalsouniformacross cell types. Panelaandb created using
BioRender (https://BioRender.com).
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Extended DataFig. 3 | Mitochondrial variants detection and validation for
lineage analysis. (a) Schematic of mitochondrial variants (mtVars) based lineage
analysis®. (b) Arepresentative plot of mtVars (green) and hgRNA mutations (red)
fromsame selective group of intestinal cells (top). Validation of a few mtVars
using targeted deep sequencing using previously reported targeted enrichment
(bottom)®. Box plots (bottom right) show the median (n =9 cells), box edges
representthe firstand third quartiles, and the whiskers extend to aminimum
and amaximum of 1.5xIQR beyond the box. Heatmaps (bottom left) color
represents unique reads per cell. See Supplemental methods for details.

(c-d) Pairwise shared hgRNA mutation proportion for each mtVar (c) and
density plot of mtVars across dataset (d). mtVars distributed inasmaller
number of cells (1% of dataset) are more informative for lineage inference.
Regressionline (c) drawn from defaultlocal polynomial regression fit (loess)
inRandshaded areaindicates confidenceinterval. (e) mtVars calling from an
adult mouse brain (coronal section) special transcriptomics (ST) data®®.
Pearson correlation coefficient heat map of mtVars proportions for distinct
tissue layersin mouse left (L) and right (R) brain. Olfactory nerve layer (ONL)
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inbetween leftand rightis marked as middle (M). Annotations from original
study are used here. Lineage tree suggests that tissue layers are established
before L-R axis commitment during brain development. (f) Dendrogram of
Pearson correlation coefficient heat map using only mtVars (10X ST data) from
human breast cancer®. mtVars canidentify clonal relationship in human breast
cancertissues corresponding to copy number based clonal relationship: clone
2and clone 3 are closely related compared to clone 1¥”. Duct annotations from
original study are used here and the dendrogram- corresponding heat map
isnotshown here. (g) NSC-seq encapsulation of mouse peripheral blood

(PB) cells, followed by cell type annotation using marker genes (dot plot).

(h) Pearson correlation coefficient heat map of variant proportions using
mtVars for selected cell typesis presented as pseudobulk. (i) Pearson correlation
coefficientheat map of variant proportions combining hgRNAs and mtVars for
selected celltypesis presented as pseudobulk. (j) Reconstruction of single cell
lineage tree using custom LinTiMaT pipeline®. See supplemental methods and
GitHub page. Cellsintheleafare broadly colored by lymphoid and myeloid
lineages. Panelaand b created using BioRender (https://BioRender.com).
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Extended DataFig. 4 |See next page for caption.



Extended DataFig. 4| Cell-type annotationand data quality control metrics
for mouse embryos. (a) Uniform manifold approximation and projection
(UMAP) embedding shows cell populations from two embryos. Cells are
colored by annotated cell types. See supplemental note for embryonic cell type
annotation. (b) Cells are colored by two embryonic time points. (c) UMAP
embedding of two E9.5 embryos and cell type annotation. (d) Cells are colored
by embryo number. (e-f) Heat map of mean expression of selective marker genes
(y axis) for each cell type (x axis). Counts are normalized to median library size
andlogtransformed. Separate heatmaps eand fare correspondingtoaandc,
respectively. (g-h) Dot plots of representative germ layers specific marker genes.
Annotated cell types are grouped into germ layers for E7.75&E8.5 (g) and E9.5
(h) embryos. Thesize of the circle denotes the fraction of marker-positive cells,

and color intensity indicates normalized group mean. (i) Box plots representing
tissue proportions fromE7.0,E7.75,and E8.0. Only E7.75 embryo is from this
study. The proportion of shared selective cell types from wild-type embryos
(E7.0and E8.0) are calculated from GSE122187. Box plots show the median
(n=3embryos), box edges represent the first and third quartiles, and the
whiskers extend to aminimum and a maximum of 1.5 x IQR beyond the box.
(j-k) UMAP plots are colored by unique molecular identifiers (UMIs), number
of unique genes detected per cell, percentage of mitochondrial gene counts
per cell, and predicted doublet score (Scrublet)®®. See supplemental method
and GitHub section for further datafilter and quality control approaches.

(I) UMAPsrepresent cell cycle status.


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122187
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Extended DataFig. 5| Temporalrecordingreveals asymmetric contribution
of early embryonic clonestogermlayersand tissue types. (a) The histogram
represents the number of cells in which each mutant allele is observed across
three embryonic time points (3-ETP). (b) The top mutation frequency
distributionis shown fromarepresentative 21 bp long barcode of two E9.5
embryos. The mutation code along the x-axisis as follows: barcode number
(BC), barcode position (P), mutation type (insertion, I; deletion, D; mismatch,
M), and mutated base(s). (c) Proportion of shared and unique mutations across
3-ETP. (d) Scatter plot shows the proportion of unique mutations within each
annotated celltypesbetween E7.75and E8.5embryos. Pearson’s correlation (r)
and p value (by F-test) areindicated. Shaded areaindicates 95% confidence
intervals of the regression line. See Extended Data Fig. 4 for cell type annotation.
(e) Relatively fast mutation accumulationin small length hgRNAs, as reported
before?. Data pointsare calculated from 3-ETP; p value is derived from unpaired
two-tailed t-test. (f) Average hgRNA activity across time points. Box plotsine
and fshow the median, box edges represent the first and third quartiles, and
the whiskers extend to aminimumand amaximum of 1.5 x IQR beyond the box.

MF per cell type

(g) Aphylogenetictree schematic represents early embryonic development.
Mosaic fraction (MF) of somatic early embryonic mutations (EEMs) that are found
acrossall three germlayers tracks cell generation (CG) stage®>*°. MF represents
the fraction of single cells that carry a certain mutation. (h) Distribution of
hgRNA mutations thatare shared between > 2tissue typesatE7.75. Theearlier a
mutation arises during development; the more tissue types would share that
mutation. (i) Relationship between MF and CG (CG = log, (1/MF)). (j) EEMs

and corresponding approximate CG for E7.75 embryo. Due to possible dropout
insingle-cell mutation detection, CG was assigned to the next closest CG

stage as shownini. (k) Unequal contribution of EEMs towards specific germ
layers at E8.S. (I) MF distribution of 10 EEMs (found in >50% of tissue types)
showing unequal contributions to specific tissue typesat E9.5. The fraction

of cellsin eachtissue contributed by clones C1to C10 normalized by summing
t0100%. (m) Simulated data representing symmetric (left) and asymmetric
(right) contribution of first two clones (blastomeres) to tissue types during
embryogenesis. (n) Asymmetric contribution of first two clones calculated from
E7.75embryo (Fig.2c). Panel g created using BioRender (https://BioRender.com).


https://BioRender.com
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Extended DataFig. 6 | Catalog of cellular turnover across embryonic from alternative high proliferating progenitors. (b) Cellular turnover across
timepoints. (a) Comparative mutation density that corresponds to cellular celltypesat E9.5 embryo. Hematopoietic cell types show relatively high cellular
turnover between two time points (E7.75and E8.5). Here we show only aselective turnover compared to other somatic cell types. (c) Consistentincrease of gut
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implies that this cell typeis highly proliferating and/or this cell type is derived intervals of theregressionline.
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Extended DataFig.7|Lineage reconstruction of mouse embryogenesis.

(a) Reconstructedsingle-cell lineage tree from E7.75embryo. Leaf cells are
colored by germ layer colors and the proportions of cellsin the tree are shown
asapiechart(inset). Nodes are colored by dark gray. Each branchrepresents an
independent mutation event. Non-binary single-cell trees for allembryos and
adulttissues canbe foundin NSC-seq GitHub page. (b) Table summarizing the
lineage informative mutations (shared between >2 cells) detected between
two studies (Chen etal.™ and this study) that performed similar whole mouse
embryoniclineage tracking using constitutive Cas9. Here, we compared only
thebestreported embryo databetween two studies. (c) After combining
mtVars with hgRNA mutations, number of cells with lineage informative
mutationsincreases for single-cell lineage tree reconstruction. Note that there
are highvariabilitiesin the proportion of cell that can be used for lineage tree
reconstructionamong samples due to multiple reasons, including the barcode
detection limit, sequencing depth, number of cells captured per experiment,
and time required toaccumulate mutations. Bar plots, mean (n =3 independent
NSC-seq libraries); error bar, mean + s.d. (d) Pearson correlation coefficient
heat mapsof variant proportions combining hgRNAs and mtVars for germ
layers presented as pseudobulk. (e) Phylogenetic distance proportion was

calculated (Supplemental method) fromreconstructed lineage trees using
reported approach’. Extraembryonic endoderm (EEndo) shows less distance
fromroot compared to ectoderm or mesodermacross embryos, supporting
nearby proximity to root (zygote). (f) Distribution of normalized phylogenetic
distance (leaftoroot) for annotated cell types. Wide distribution of the distance
acrosscelltypesarefound at E8.5and E9.5 compared to E7.75, supporting
minimallineage divergence at E7.75 stage, similar to minimal tissue-specific
proliferation reported before (Fig. 2d). (g) Estimated epiblast progenitor
number calculated across embryos (n =4) using reported approach”’. Average
number of epiblast progenitor field size is around 28, similar to previous report™.
High variability may reflect embryo specific constrainin pluripotent cells
number that contributes to somatic lineages’. Box plot shows the median,
box edgesrepresent the first and third quartiles, and the whiskers extend to
aminimum and amaximum of 1.5 x IQR beyond the box. (h) Proportion of
estimated progenitor population between ectoderm and mesoderm. It has
beenreported that the number of ectoderm progenitors is more than the
number of mesoderm progenitors at the epiblast of the prestreak stage mouse
embryo”. Panel b created using BioRender (https://BioRender.com).
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Extended DataFig. 8| Somite-derived hematopoiesis. (a) Force-directed
layout of hematopoietic cell types and somite from E9.5 embryos. See Extended
DataFig. 4cforannotation. (b) Dot plots show overexpressed genesin EryProl
along with yolk sac (Icam2, Kdr, and Gprl82), or endothelial (Pecam1, and Cdh5)
genes. EryProl doesn’t express arecently reported embryonic multipotent
progenitor (eMMP) marker FIt37. (c) Heat map shows differentially expressed
genesamongthe cell types. Cell type-specific selective list of genes are marked
ontheright. HSPCs, hematopoietic stem and progenitor cells. (d) Avolcano
plotrepresents differentially expressed genes (DEGs) between Erythroid and
EryProl(LCF > 2, p value < 0.05). P values derived from Wilcoxon rank-sum test,
not corrected for multiple testing. Red dots are upregulated in EryProl, blue dots
areupregulatedin Erythroid, and black dots are statistically not significant.
(e) Enriched pathwaysin EryProl group. (f) Cells are marked by EryProlscore.
Thelist of genes for the signature score isshown in Supplemental table 3.

(g) RNA velocity overlay shows direction from somites to EryProl, supporting
cell state transition. (h) MF of EEMs shows similar contribution (asterisk) to
bothsomite and EryProl, supporting similar early embryonic origin (Extended
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s
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DataFig.5l). (i) Heat map represents shared clones (barcode mutations) across
threecelltypes. (j) UMAP co-embedding of blood progenitor cells (blue) from
E8.5 (Extended DataFig.4a) with E9.5 cells (gray). Arrow shows EryProl cluster
and arrowhead shows Erythroid cluster. EryProl cells from E9.5 are marked by
red dotted line (right). EryProl populationis presentin E8.5embryo. (k) Similar
as paneljwith blood progenitor cells from E7.75. There isinsignificant
overlapping populationin EryProl cluster (arrow), implicating that EryProlis
notpresentyetat E7.75stage. (I) Force-directed layout of blood progenitor cell
typeswithsomites at E8.5. EryProlassigned from overlapping cluster (arrow)
inj.(m) Alist of gene upregulatesin EryProlis shownas dot plot. (n) Force-
directed layout of EryProl and somites and two time points using Harmony?
and cellsare colored by time points and cell types. (0) Expression of somites-
and erythroid-specific genes are shown here. Somite to EryProl transitioning
cellsshow transient expression of both hematopoietic (Gatal) and somite
(Twistl) markers. Post-imputed (MAGIC) gene expression values are shown
here”. (p) Force-directed layout of three cell types and three time points.
Cellsare colored by Palantir’ pseudo-time trajectory (right). See Fig. 3a,b.
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Extended DataFig. 9|See next page for caption.




Extended DataFig.9|Gutendoderm development and progenitor
specification. (a) Force-directed layout of three endoderm clusters from
Extended DataFig.4a. Cells are colored by two embryonic time points. (b) Gene
expression of definitive endoderm (Sox2, Otx2, and Ccnd2) and visceral
endoderm (Afp, Pla2g12b, and Fmrlnb) specific markers. (c-d) Based onregion
specific marker gene expression, DE (dotted line) is divided into three clusters,
supporting regionalization of gutendoderm. Here, VE is the combination of
embryonicvisceralendoderm (emVE), extra-embryonic visceralendoderm
(exVE), and yolk sac endoderm (YsE). Heat map of selective gut specific marker
genes (y axis) as mean expression for each tissue type (x axis) are shown here
ind. (e) Force-directed layout of foregut cells from E7.75embryo. Three clusters
areassociated with three progenitor population. HPC, hepatopancreatic cells.
Gene expression of HPC (Nkx6-1, Afp), lung (Pyy, Sp5), and thyroid/thymus
(Foxel,and Eye2) clusters are shown here. See Fig. 3c for more genes. (f) Regulon
activityisshownacrossthe threetissue types. (g-h) Force-directed layout of
foregut cells from E8.5embryo. Heat map of selective marker genes (y axis)
asmean expression for each tissue type (x axis). (i) Force-directed layout of
epiblast cellsat E7.5. This scRNA-seq data and epiblast annotations are taken
fromaprevious study®. Cells are colored by gut progenitor specific markers.

(j) Force-directed layout of hindgut and midgut cells from three embryonic
time points. Cells are colored by three time points and two corresponding
tissue types. Midgut (Gata4, Pyy, and Hoxb1) and hindgut (Cdx2, Cdx4, and
Hoxc9) specific markers are shown in the bottom. (k) Regulon activity of
hindgut and midgut cells at E7.75. (I) Palantir pseudo-time’ and CytoTRACE
score’ distributioninmidgut and hindgutacross three time points.

(m) Normalized Wntand Bmp signaling gene expression dynamics. X-axis
trajectory over pseudo-time showninl. Dot points below the plots are the
pseudo-time coordinates of cells from each time point colored according

to time pointasin Fig. 3f. (n) Heat map shows differential gene expression
between hindgutand midgutat E7.75. Cell type-specific selective list of genes
aremarked on theright. (o) Venndiagram of genes that were upregulated in
bothE7.75and E8.5 time point of hindgut and midgut area. (p) Box plots
representing normalized expression of Wnt signaling genes between hindgut
and midgut for all three time points. Intestinal stem cell marker Lgr5is
overexpressedinhindgut, whereasLgr4 and Lgré are overexpressed in midgut.
Box plots show the median, box edges represent the first and third quartiles,
and the whiskers extend toa minimum and amaximum of 1.5x IQR beyond the
box. P values are derived from unpaired two-tailed t-test.
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Extended DataFig.10|Lineage convergence during gutendoderm
development. (a) Force-directed layout of FACS enriched scRNA-seq data with
celltype annotation at E8.75 embryos from a previous study?. Cells are marked
by VE intermix signature that was developed from seven reported VE-specific
marker genes (right). (b) Endoderm cells fromE7.75and E8.5are marked by VE
intermixscore (see Extended DataFig. 9c for annotation). High intermix score
inhindgut area supports predominant VE intermix in hindgut®>°. VE marker
gene Cthrcl, reportedinaprevious study®, preferentially marks VE intermix
cellsin hindgut (right). (c) Scatter plots representing Wnt signaling gene
expression (y-axis) and VE-intermix score (x-axis). Blue line represents fitted
linear regressionline. Spearman correlation coefficient (p) and p value

(by F-test) areindicated. Shaded areaindicates 95% confidence intervals of the
regression line. (d) Discordancein Lgr4 and Lgr5 expression patternin DE-and
VE-derived cells. Here we use data from a previous study?. Box plots show the
median, boxedgesrepresentthe firstand third quartiles, and the whiskers
extend toaminimum and amaximum of1.5 x IQR beyond the box. P values are
derived from unpaired two-tailed t-test. (e) Multiplex HCR-FISH co-staining of
VE marker gene (Cthrcl) and Wnt target genes (Lgr5) at E9.5 embryo section.
Insetis aposterior gut region adjacent to hindlimb. Results validated in more
thanthreeindependent experiments. Scale bar,300 pm. (f) Force-directed
layout andre-clustering of two gutendoderm clusters from E9.5 embryos.

(g) Lineage analysis of gut-derived progenitors. The large intestine (hindgut)
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(h) NSC-seq experiment on an E14.5embryo. UMAP plot of epithelial cells
broadly identifies aslarge intestinal and small intestinal using gene expression.
(i) Relative proportion of VE-derived cellsin large intestine and small intestine
clusters are shown here. (j) Schematic of barcode-based clonal contribution
analysis. Ifabarcodeis presentinmore thanonecell, it’s called as a parentclone
(e.g.,Barcodeland2). Whereas, ifabarcodeis presentinonly onecell, it’s
called asachildless clone (e.g., Barcode 3 and 4). Concept drawn from Bowling
etal.’®. Theratio of parent and childless clonesis the indicator of relative
contributionamongthe cell types. (k) VE-derived cells show high parent clone
ratio, supporting high contribution to epithelial development. Villin+ cells and
Smoc2+ cells are used as control. (I) VE-derived cells show relatively high
mutation density corresponding to high cellular turnover. Box plotsinside the
violinshow the median value (thick line), box edges represent the first and third
quartiles. (m) Developmental lineage analysis of adult mouse gut-derived
tissues from two biological replicates using bulk DNA barcodes. Hindgut
(green), midgut (red), and foregut (yellow)-derived tissuesin dendrogram
colors. Hindgutis displayed as a distinct cluster compared to foregut and
midgut. (n) Schematic of lineage relationship between definitive endoderm
(DE) and visceralendoderm (VE). Dotted arrow represents intermix of VE and
DE that eventually form gut tube. Schematicinnisadapted fromref. 29, Springer
Nature Limited, and created using BioRender (https://BioRender.com).
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Extended DataFig.11|Clonal dynamics of adultintestinal epithelium.

(a) UMAP representation of adult mouse small intestinal epithelial cell types.
Note that crypt-enrichment was done for normal intestinal samples toincrease
celltypediversity. EEC, enteroendocrine cells; CBC, crypt-based columnar cells;
pISC, persister intestinal stem cells; EC; enterocytes; TA, transit-amplifying
cells. (b) Dot plot showing expression of marker genes for annotated cell types.
Dotsizerepresents the fraction of cells expressing the gene, and dot color
represents normalized mean expression level. (c) Cells are colored by mouse
number. We excluded mouse 2 from barcode analysis due to limited number of
hgRNA detectionin NSC-seq experiment. (d) Alist of genes (including Tob2) is
used to produce the pISC signature, which could mark a unique epithelial
populationin UMAP.See Supplemental table 3 for the gene list. (e) pISC score
marks enterocyte-related cells (black arrow) in a published study’®. (f) Pseudo-
bulk lineage analysis of mouse smallintestinal epithelium. (g) MF of EEM (n = 9)
frommouselacross annotated cell type. Box plots show the median, box edges
representthe firstand third quartiles, and the whiskers extend to aminimum
and amaximum of 1.5xIQR beyond the box. (h) Single-cell lineage tree of adult
intestinal epithelium from mouse 1. Inset table shows the number of estimated
progenitorsidentified from tree topology for majorintestinal cell types.
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(i) UMAPrepresentation of anindependent mouse smallintestinal epithelium.
(j) Dot plot shows expression of marker genes for annotated cell types.

(k) Distribution of cell types across top 22 clones. (I) Distribution of hgRNA
barcode mutations (clones) across celltypes. Number at the top represents
thetotalnumber of detected clones per cell type. Heat map color represents
the number of cells found comprising aclone withina given cell type. A plot
(below) showing the fraction of parent and childless clone comprising each cell
type. (m) Violin plots represent CBC-rooted and pISC-rooted clone size. Box
plotsinside the violin show the median value (thick line), box edges represent
the firstand third quartiles. P value from unpaired two-tailed t-test. See Fig. 3j,k
formoredetails. (n) The proportion of estimated progenitor populations
amongthreecell typesintwoindependent mice. Here, mouse 1is fromaand
mouse2isfromi. (o) Tob2, one of the pISC signature genes, expressionin CBC
and pISC population. Box plots inside the violin show the median value (thick
line), box edges represent the firstand third quartiles. P value from unpaired
two-tailed t-test. (p) Whole-mount antibody staining of pISC marker gene Tob2
inmouse smallintestinal crypt. Results validated inmore than three independent
experiments. Scale bar, 50 pm.
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Extended DataFig.12|Tracking clonal composition of murineintestinal
adenomas. (a) Hematoxylin and eosin (H&E) staining of Apc™™* -driven mouse
intestinal tumor. Thismouse model generates low grade tumors thatare
equivalenttohumanadenoma or precancer. (b-c) UMAP embedding of barcoded
intestinal tumor cells from NSC-seq experiment. Tumor cell cluster is assigned
based onexpression of tumor-associated marker genes as shownin the dot plot
inpanelc. (d) Cell cyclestatus, CytoTRACE score, and fetal gene (MarckslI)
expression’” across annotated cell types. (e) Clonal contribution analysis for
CBCs and Tumor cells. (f) Box plots represent number of mutations per homing
barcodes (hBC) across major annotated cell types. Based on mutation density,
ECand Paneth cellsare divided into two groups: red (T) and green (N) doted
circles. Box plots show the median, box edges represent the first and third
quartiles, and the whiskers extend to aminimum and amaximum of 1.5 x IQR
beyond thebox. Lineage analysis of EC and Paneth cells subsets with Tumor
cells supports tumor cell-derived Paneth and enterocyte population®. (g) Heat
map represents pairwise barcode mutations correlation for lymphocytes.
Peripheral blood lymphocytes are from Extended Data Fig. 3g and tumor
infiltrating lymphocytes are from panelb. (h) Three clones are projected

onto the UMAP. SeeFig. 4a for clone assignment. (i) Differential parent clone
fractionisshown for the three representative clones. (j) Dot plots represent
differential distribution of pISCscore, epiHR score, and coreHRC score across
three clones®. (k) Differential distribution of enterocyte proportion, CytoTRACE
score,and iCMS2 score across clones. Box plots (middle and right panels) show
the median, box edges represent the first and third quartiles, and the whiskers
extend toaminimum and amaximum of 1.5 x IQR beyond the box. P value from

unpaired two-tailed t-test. (I) Single-cell lineage tree isreconstructed using cells
from panel b. Clones are labeled by same color asin h. See Supplemental
methods for lineage tree reconstruction. (m) WES of mouse tumors. Average
germline VAF (-0.5) across the tumors supports diploid genome of these tumors.
Box plots show the median, box edges represent the first and third quartiles,
and the whiskers extend to a minimum and amaximum of 1.5 x IQR beyond the
box. P value fromunpaired two-tailed t-test. WES based tumor evolution model
alsosupportsselective evolutionary pressure in mouse tumors (bottom).
SeeFig. 4cfor Apc mutation. (n) Schematic of early embryonic clonal intermix-
based clonalinitiation assessment. Some tumors could show mosaic early
embryonic mutations, supporting possible polyclonalinitiation (more than
one early embryonic clones). (0) Heat map shows mosaic distribution of early
embryonic mutations across regionally distinct tumors and adjacent normal
tissues from the same mouse using DNA barcode sequencing. Color represents
the proportion of mutantbarcode. First four mutations are widely present
acrosstissues, representing their initiation beforeendoderm development.
Four ofthe five polyclonally initiated tumors (asterisk and assigned by the
number of Apc mutation) show intermix of multiple early embryonic clonal
thatarealsofoundinadjacent normal epithelium. This datasuggests early
intermixing of clones during mouse gut epithelial development and consistent
with polyclonal origins of tumors attributed in human colorectal polyps®.

See Supplementtable 4 for location of tumors and adjacent normal tissues
acrossintestinal epithelium. Panelnand o created using BioRender (https://
BioRender.com).
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Extended DataFig.13| APC mutation assessment of human colorectal
polyps. (a) Distribution of human polyps across cohorts. New cohort polyp
samples are generated for this study. Old cohorts (DIS and VAL) are reported
before*®and re-analyzed collectively. See Supplemental table 4 for extended
sampledescription. (b) Here, the number of APC gene mutations per polyp is
shownusingtargeted DNA sequencing approach. Polyps without any APC

N samples (SER)

mutations are not shown here. Note that TCPS cohortis predominantly
conventional adenomas, as shownin*® See Fig. 4e and Supplemental table 4.
FSDEL, frameshift deletion; INS, insertion. (c) OncoPrint plot represents the
number of APC mutations across human polyps using WES. Here we only show
polypswithatleast one deactivating APC mutation. (d) Quantification of the
number of APC mutationin three public CRC datasets®’.
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Extended DataFig. 14 |See next page for caption.



Extended DataFig. 14 | Multi-omic analysis of human colorectal polyps.

(a) Schematicrepresentation of mutation calling from polyp-derived single
cells. Here, we use transcriptionally assigned abnormal cells (ASC/SSC) to call
somatic mutations (SNVs) as pseudo-bulk, with polyp infiltrating immune cells’
(IMM) SNVs as reference to remove germline variants from polyps. (b) Two
independentapproaches show similar somatic mutation detection from
scRNA-seq dataset®®. Spearman correlation coefficient (p) and p value

(by F-test) areindicated. See Supplemental method for more details. (c) Density
plotrepresents wide distribution of median VAF in polyps using SComatic®.
(d) VAF distribution of X-linked SNVs in amale (M) polyp. Red line indicates cut-
off (0.6) for clonaland subclonal SNVs. (e) Simulation experiment, intermixing
cellsfromtwo or threeindependent male polyps, shows reduced clonal SNVs (%)
depending onthe number of polypsintermixed. Note that different polyps
have different number of ASC/SSC cell types. Data (dot plotsin the right) are
mean ts.d. (f) Frequency plots showing proportion of clonal SNVs (%) in two
female (F) polyps with known number of APC mutations. (g) Scatter plot shows
significant correlation between median VAF and X-liked clonal SNVs (%)% in
female polyps. Spearman correlation coefficient (p) and p value (by F-test) are
indicated.Shaded areaindicates 95% confidence intervals of the regression
line. (h) Box plots show median VAF per monoclonally and polyclonally initiated
female polyps (assigned in Fig. 4j). Red line shows medina VAF cut-off (<0.2)

to assign clonality to all polyps, including male. Box plots show the median,
box edgesrepresent the first and third quartiles, and the whiskers extend to a
minimum and a maximum of 1.5 xIQR beyond the box. P value from unpaired

two-tailed t-test. (i-j) Linear regression model for allele frequency distribution
of sub-clonal mutations*® that can differentiate between neutral (R>>0.98) and
selective (R?<0.98) evolutionary processes in tumor. Here we use SNVs from WES
data. These two polyps are assigned as monoclonal and polyclonally initiated
using the number of APC mutations in WES data. Pearson’s coefficient of
determinant (R? isindicated. (k) Monoclonal polyps show higher proportion
of selective evolution compared to polyclonally initiated polyps. (I) Overall,
~60% of the polyps show selective clonal evolution. (m) ASC cells from three
cohorts. See Chenetal. for cell type assignment*®, (n) Volcano plot shows
differential gene expression between monoclonal and polyclonally initiated
ASCcells. Aselective list of genes s labeled here. X-axis is truncated for
monoclonal ASC. Only top and bottom median VAF polyps (10-12 polyps per
group) derived cells are compared here (See Supplemental table 4). P values
derived from Wilcoxon rank-sum test, not corrected for multiple testing.

(o) Pathway analysis using DEG shows distinct molecular programs between
monoclonaland polyclonally initiated polyps®. (p) High CytoTRACE score in
monoclonal ASC cells compared to polyclonal ASC cells supports higher stem
cell expansion phenotype in monoclonal polyps contributing to proliferative
advantage and subsequent clonalselection. (q) Expression of canonical stem
cellmarker LGRS (log10) between two groups. Box plots inside the violin show
the median value (thickline), box edges represent the first and third quartiles.
Pvalue from unpaired two-tailed t-test. (r) Dot plot representing exhausted

T cell signature in monoclonal, polyclonal polyps, as well as CRCs infiltrating
immune cells*®. Schematicinacreated using BioRender (https://BioRender.com).
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Data collection  scRNA-seq data was processed and aligned using DropEst pipeline with STAR aligner. The filtered gene-barcode matrices were then processed
in scanpy v1.9.6 (https://pypi.org/project/scanpy/) as AnnData object and normalized to median library size and log transformed,
dimensionality reduction (PCA), and generation of umap plots, which use the number of principal components calculated by elbow method
(https://github.com/haotian-zhuang/findPC). Additional code used to align and to process scRNA-seq data can be found at https://
github.com/Ken-Lau-Lab/STAR_Protocol. Moreover, an example data processing notebook deposited in GitHub (https://github.com/Ken-Lau-
Lab/NSC-seq).

Data analysis Data was analyzed using using open source and custom softwares. Detailed software version and github link can be found in Supplemental
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Mouse scRNA-seq and WES data is available in GEO with accession number GSE235119. Single cell lineage tree is available in GitHub: https://github.com/Ken-Lau-
Lab/NSC-seq. All figures use raw data generated in this project. E7.0 and E8.0 data is from GSE122187. E8.75 data is from GSE123046. Human data have been
deposited to the HTAN Data Coordinating Center Data Portal at the National Cancer Institute: https://data.humantumoratlas.org/ (under the HTAN Vanderbilt
Atlas). HTAN dbGaP (phs002371). We used reference genome human-hg38, mouse-mm10. TCGA data from cBioportal. GENIE data from AACR GENIE portal.
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Reporting on sex and gender Patient subjects were deidentified. Sex and gender information was self reported.

Reporting on race, ethnicity, or Patient subjects were deidentified. Race and ethnicity information was self reported.
other socially relevant

groupings

Population characteristics Patient subjects were deidentified. Population information was self reported.

Recruitment Individuals were recruited from those undergoing colonoscopy. Individuals who gave consent were recruited. No other
selection criteria were used. Age (41-75) and other informations can be found in supplemental table 4.

Ethics oversight TCPS was approved by the VUMC and VA Institutional Review Boards and the VA Research and Development Committee.

HTAN study was approved by the VUMC Institutional Review Board. All animal experiments were performed under protocols
approved by the Vanderbilt University Animal Care and Use Committee (M1600047) and in accordance with NIH guidelines.
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Sample size In this study, sample size was not calculated, rather the reported number of embryos were dependent on variability of embryos at the
experimental time frame known by our group via experience. Each embryo accumulates stochastic mutations through developmental time
point and required to analyze independently. Embryo reproducibility was accomplished by analytical approaches like proportion of progenitor
field size, normalized mosaic fraction, lineage tree, and distribution of mutation density. For human single-cell studies, sample size was
determined previously using power calculations in the Chen et al. study [48]. We targeted the number of tumors to greater than the number
from the previous study in all conditions.

Data exclusions We excluded one adult mouse intestinal epithelium dataset for clonal dynamic analysis. There is insufficient barcodes (hgRNAs) found in this
dataset, possible failure in library preparation step.

Replication We demonstrate the reproducible nature of our findings like asymmetric contribution of early embryonic cells across embryos. However, 1st
cell's contribution that we reported at E7.75 embryo is not reproducible in other embryos, as we didn't get any mutation at that early stage of
the development. This is because indel mutation accumulation is random and we can't control to have a mutation at 2-cell stage to calculate
that contribution from 1st cell generation. However, this doesn't invalidate our general asymmetric contribution conclusion, given that other
studies also reported similar conclusion. For HCR-FISH and Ab staining, we performed at least 3 replicates per condition. Note that, not all
replication attempts were successful. This is due to the fact that 8 um embryo section may not always contain the right tissue sections
(somites or gut epithelium).

Randomization  Our study does not follow a hypothesis driven design, and as such, no groupings of embryos or adult mouse were made therefore
randomization was not applicable.
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Blinding Single-cell lineage tree reconstruction and cell state assignments operate with the same parameters independently of the embryo, therefore,
no need to blind the investigator to the data being handled. We did minor exception for E7.75 tree due to large cell number, mutation
number, and increased processing time that we reported in the method section. Human studies were blinded to initial annotation of tumors,
but were subsequently unblinded because that information is not critical to the study examining poly or mono-clonality.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z| |:| ChlP-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Plants

Antibodies

Antibodies used Tob2 antibody (Invitrogen, Catalog # PA5-62923)
Validation This antibody has been validated by the manufacturer (https://www.thermofisher.com/antibody/product/TOB2-Antibody-Polyclonal/
PA5-62923).

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) The HEK293 and EpH4 cell lines originated from ATCC. Please find details of these cell line in supplemental methods section.
Authentication None
Mycoplasma contamination Cell lines tested negatively for mycoplasma

Commonly misidentified lines  no commonly misidentified lines were used in this study
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals MARC1 mouse from MMRRC (https://mmrrc.ucdavis.edu/featured-strains-marcl-the-barcoding-lines/). Cas9 mouse
(Gt(ROSA)26Sortm1.1(CAG=cas9*,EGFP)Fezh/J strain mouse) from Jackson labs. The age of the barcoded adult mice (MARC1;Cas9)
was mentioned in the supplemental methods and corresponding figure legends. ApcMi/+ mouse was 4 months old. Mouse data in
Extended Data Fig. 11iis from 18 months old. Mouse data from Extended Data Fig. 2i-j, 10m, and 11a was <3 months old.

Wild animals None

Reporting on sex Both male and female mice were used in this study. Sex is not relevant to results shown.

Field-collected samples  None

Ethics oversight All animal experiments were performed under protocols approved by the Vanderbilt University Animal Care and Use Committee

(M1600047) and in accordance with NIH guidelines. Animals were humanely euthanized at the end of experiments according to
approved guidelines.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Authentication Describe-any-authentication-procedures for-each seed stock-used-ornovel-genotype generated.-Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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