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Population-specific putative causal variants 
shape quantitative traits

Satoshi Koyama    1,2,3,27, Xiaoxi Liu    4,27, Yoshinao Koike    4,5,6,27, Keiko Hikino    7, 
Masaru Koido    4,8,9, Wei Li    10, Kotaro Akaki10, Kohei Tomizuka4, Shuji Ito4,5,11, 
Nao Otomo4,5,12, Hiroyuki Suetsugu4,5,13, Soichiro Yoshino4,13, Masato Akiyama4,14, 
Kohei Saito15, Yuki Ishikawa    4, Christian Benner16, Pradeep Natarajan    2,3,17,18,19, 
Patrick T. Ellinor    2,3, Taisei Mushiroda7, Momoko Horikoshi    20, 
Masashi Ikeda    21, Nakao Iwata    21, Koichi Matsuda    22, Biobank Japan 
Project23,*, Shumpei Niida24, Kouichi Ozaki    1,24, Yukihide Momozawa    25, 
Shiro Ikegawa    4,5, Osamu Takeuchi    10, Kaoru Ito    1 & Chikashi Terao    4,15,26 

Human genetic variants are associated with many traits through largely 
unknown mechanisms. Here, combining approximately 260,000 Japanese 
study participants, a Japanese-specific genotype reference panel and 
statistical fine-mapping, we identified 4,423 significant loci across 63 
quantitative traits, among which 601 were new, and 9,406 putatively causal 
variants. New associations included Japanese-specific coding, splicing 
and noncoding variants, exemplified by a damaging missense variant 
rs730881101 in TNNT2 associated with lower heart function and increased 
risk for heart failure (P = 1.4 × 10−15 and odds ratio = 4.5, 95% confidence 
interval = 3.1–6.5). Putative causal noncoding variants were supported by 
state-of-art in silico functional assays and had comparable effect sizes to 
coding variants. A plausible example of new mechanisms of causal variants is 
an enrichment of causal variants in 3′ untranslated regions (UTRs), including 
the Japanese-specific rs13306436 in IL6 associated with pro-inflammatory 
traits and protection against tuberculosis. We experimentally showed that 
transcripts with rs13306436 are resistant to mRNA degradation by regnase-1, 
an RNA-binding protein. Our study provides a list of fine-mapped causal 
variants to be tested for functionality and underscores the importance of 
sequencing, genotyping and association efforts in diverse populations.

Genome-wide association studies (GWAS) have identified thousands 
of loci associated with diseases and traits and have contributed to our 
molecular understanding of human phenotypes1–9. However, for most 
of these loci, we still do not fully understand the causal mechanisms 
of the associations. This is partly because of insufficient resolution of 
associations and limited population sources of genetic associations. 
Non-European large-scale association studies with sufficient reso-
lution of variants would expand the causal mechanisms implicated 
by population-specific associations and variants. Additionally, the 
limited availability of sensitive fine-mapping strategies has hindered 

our understanding of causal variants10,11. Furthermore, a substantial 
fraction of the lead variants and their linked variants exist in noncoding 
regions, where functional interpretation is still challenging. Enrichment 
of causal variants in functional annotations would provide clues about 
the underlying mechanisms12.

To overcome these challenges and improve our understanding of 
causal genetic relationships, we adopted the following strategies. First, 
using 3,256 high-depth whole-genome sequencing (WGS) data from 
individuals of Japanese ancestry combined with the 1000 Genomes Pro-
ject13, we developed a new genotype imputation reference panel. This 
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individuals for 26 traits in another Japanese dataset (Methods, Extended 
Data Fig. 1, Supplementary Tables 1 and 2, and Supplementary Note 1). 
We observed a calibrated distribution of test statistics according to the 
polygenicity of these traits (median LD Score intercept = 1.06; Supple-
mentary Table 3) and high replication rates (Supplementary Note 2). 
We identified 4,423 genome-wide significant associated loci, including 
601 previously unreported loci (Supplementary Tables 4 and 5 and 
Supplementary Note 2). Statistical fine-mapping revealed 826 pheno-
type–variant pairs (associations) with a marginal posterior probability 
of inclusion (PPI) greater than 0.9 and 9,406 with a PPI greater than 
0.1 (Supplementary Note 3 and Supplementary Tables 6–12), which, 
as shown in previous studies14–16, included loci with multiple signals.

New associations with rare functional coding variants
We found rare Japanese-specific coding variants driving new asso-
ciations and directly implicating probable causal genes. One such 
example is a very rare missense variant rs730881101 in TNNT2 

high-quality reference panel enabled us to impute population-specific 
rare coding and noncoding variants with high accuracy at the popula-
tion scale. Second, we performed GWAS analyses in up to 260,000 
Japanese individuals. Third, we applied statistical fine-mapping to 
decompose the observed associations into independent causal signals, 
leveraging the precise linkage disequilibrium (LD) determined by our 
dense WGS reference panel. Lastly, we conducted comprehensive in 
silico analyses and follow-up biological experiments for functional 
interpretation of noncoding variants.

Results
GWAS for 63 quantitative traits
We compiled a new genotype imputation reference panel and used the 
WGS data to impute the genotypes of 203,216 Japanese individuals; 
we then performed GWAS analyses for 63 quantitative traits and up 
to 15,907,072 variants. To replicate the results and maximize statisti-
cal power to find new associations, we additionally analyzed 53,083 
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Fig. 1 | New rare putative causal coding variants associated with human 
quantitative traits implicate candidate causal genes. a, Deleterious coding 
variant in TNNT2 (rs730881101) showing strong associations with cardiac 
functions. The horizontal axis indicates the genomic coordinates; the vertical 
axis indicates the negative log10(P). Statistical significance was tested using a 
linear mixed model. The displayed P values are two-sided and not adjusted for 
multiple testing. b, Three-dimensional structure of Troponin-T and putative effect 
of the coding variant. c, β estimates, PPI and alternative allele frequency (AAF) of 
rs730881101. The error bar for the β estimates indicates the 95% CI. The number of 
individuals included in the analysis is shown after the trait names. d, A deleterious 
coding variant in TNFRSF17 (rs150352299) showing strong associations with 
AG ratio and non-ALB protein levels. The horizontal axis indicates the genomic 
coordinates; the vertical axis indicates the negative log10(P). e, β estimates, 
PPI and AAF of rs150352299. f, Bulk tissue expression of TNFRSF17 in the GTEx. 
The number of samples is shown after the organ name. The violin plots show 

the distribution of gene expression in transcripts per million (TPM). The box 
plot shows the median value as the centerline; the box boundaries show the 
first and third quartiles and the whiskers extend 1.5 times the interquartile 
range. g, OR for 29 diseases of rs150352299 in unrelated Biobank Japan (BBJ) 
participants. Case counts are shown after the outcomes (nTotal = 169,020). The 
squares indicate the OR; the error bars indicate the 95% CI. Statistical significance 
was tested using a logistic regression with two-sided test at P < 0.05/29. The 
displayed P values were not adjusted for multiple testing. h, Deleterious coding 
variant in RYR1 (rs192863857) associated with CK levels. i, β estimate, PPI and 
AAF of rs192863857. j, Bulk tissue expression of RYR1 in the GTEx. AFR, African; 
AMR, Admixed American; ASJ, Ashkenazi Jewish; Ca, cancer; FIN, Finnish; NFE, 
non-Finnish European; OTH, others. The AAF was obtained from the Genome 
Aggregation Database (gnomAD) dataset. The number of individuals included in 
the association analysis is found in Supplementary Table 1; the abbreviations for 
the phenotypes are found in Supplementary Table 2.
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(ENST00000509001:c.422G>A, p.R141Q), minor allele frequency 
(MAF) = 0.1%) associated with decreased systolic heart func-
tion (reduced ejection fraction (EF) and increased left ventricular 
end-systolic diameter (LVDS)) (MAF = 0.1%, βEF = − 0.925, PEF = 5.9 × 10−11, 
PPIEF = 0.50, βLVDS = 0.830, PLVDS = 2.7 × 10−9, PPILVDS = 0.50; Fig. 1a–c). 
Notably, the effect size of this variant was more than 80% of the s.d. 
TNNT2 is a causal gene for dilated cardiomyopathy and has not been 
reported for its association with cardiac function in a population-scale 
GWAS. We also found that this variant was strongly associated with the 
prevalence of heart failure with a large effect size (odds ratio (OR) = 4.5 
(3.1–6.5), P = 1.4 × 10−15).

Another example is rs150352299 in TNFRSF17 (ENST00000053243: 
457G>A, p.A153T; Fig. 1d–g and Supplementary Table 5). This rare (MAF =  
0.38%) Japanese-specific missense variant was significantly associated 
with a higher albumin :globulin ratio (AG) (βAG = 0.306, PAG = 3.9 × 10−22), 
lower non-albumin protein (NAP) (βNAP = − 0.327, PNAP = 3.3 × 10−25) and 
lower total protein (TP) (βTP = − 0.183, PTP = 6.5 × 10−10). These asso-
ciations suggested decreased globulin concentration in the blood. 
TNFRSF17 encodes B cell maturation antigen (BMA), which is specifi-
cally expressed in mature B cells and is responsible for antibody produc-
tion (Extended Data Fig. 2a). Furthermore, we identified an increased 
risk of chronic obstructive pulmonary disease with rs150352299, which 

is consistent with several reports of primary immunodeficiency as an 
underlying cause of chronic obstructive pulmonary disease17. BMA is 
known to interact with B cell activating factor encoded by TNFRSF13B, 
in which we also identified a Japanese-specific rare loss-of-function 
variant, rs769165409, associated with the AG with high PPI (MAF = 0.1%, 
βAG = 0.353, PAG = 3.9 × 10−7; Supplementary Note 4.1). These results pro-
vide genetic evidence for critical roles of BMA–B cell activating factor 
interaction in the immunoglobulin production of B cells.

Other examples include associations with creatine kinase (CK) 
levels. RYR1 encodes the ryanodine receptor, a crucial calcium chan-
nel in muscle. rs192863857, a rare missense substitution in RYR1 
(ENST00000359596:c.5317C>T, p.P1773S), was associated with CK 
(MAF = 1.48%, βCK = 0.134, PCK= 2.5 × 10−15, PPICK = 0.67; Fig. 1h–j and 
Supplementary Table 5). We also identified a new missense variant 
associated CK levels in CACNA1S, which encodes the main subunit of the 
calcium channel (MAF = 3.5%, βCK = − 0.064, PCK= 1.5 × 10−9, PPICK = 1.00; 
Extended Data Fig. 2). These genes are specifically expressed in skel-
etal muscle (Extended Data Fig. 2b,c) and are involved in malignant 
hyperthermia (MH), a disease characterized by massive CK elevations 
precipitated by exposure to certain anesthetics. The results suggest 
that high serum CK levels in the absence of the causative stressors of 
MH may reflect the effects of variants in these causal genes.
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Fig. 2 | Noncoding rare variants associated with human quantitative traits 
represent a substantial fraction of putative causal variants. a, Enrichment 
of variants within the regulatory region in variants with high PPI. The vertical 
axis indicates the OR of variants in each PPI bin within the DHS/CFP or not in 
comparison with the variants with the lowest PPI bin (0–0.1). The error bars 
indicate the 95% CIs. The circles and stars indicate noncoding and coding 
variants, respectively. b, Higher predicted pathogenicity of noncoding putative 
causal variants. The vertical axis indicates the disease impact score predicted 
from its sequence changes (Methods). The box plot shows the median value 
as the centerline; the box boundaries show the first and third quartiles and the 
whiskers extend 1.5 times the interquartile range. c, A rare Japanese-specific 
noncoding variant rs146018792 in CCND3 strongly associated with MCV and 
MCH is in the CFP of the myeloid cell line K562. d, β estimates, PPI and AAF 

of rs146018792. The error bar for the β estimates indicates the 95% CI. The 
number of individuals included in the analysis is shown after the trait names. 
e, Distribution of the absolute β estimates of associations with a PPI > 0.9. 
The dashed line shows the median absolute β estimate of protein-truncating 
associations (median |βPTV | = 0.261). The colored dots indicate large effect 
associations with |β| > 0.261. f, Distribution of the MAFs of associations with a 
PPI > 0.9. The colored dots indicate the large effect associations defined in e. 
g, Proportion of population-specific variants within each PPI bin. The y axis 
indicates the fraction of variants found in only one population in each indicated 
PPI bin. The color indicates the population in which the variants were found. The 
AAF was obtained from the gnomAD dataset. The number of individuals included 
in the association analysis is found in Supplementary Table 1; the abbreviations 
for the phenotypes are found in Supplementary Table 2.
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Fig. 3 | Rare population-specific putative causal splice variants and 
pathogenic variants associated with human quantitative traits.  
a, Enrichment of putative cryptic splice variants among variants with high 
PPI. The vertical axis indicates the OR and 95% CI of the cryptic splice variants 
(Splice-AI delta score > 0.2) for each PPI bin (the horizontal axis) to the lowest PPI 
bin. The OR and 95% CI were estimated using a Fisher’s exact test. The number 
of variants included in the analysis is shown after the PPI bins. b, Schematic 
representation of the in vitro splicing assay. c–f, Schematic representation of 
alternative splicing, effect size, PPI and population frequency of the cryptic 
splice variant rs76080105 (FLT3, c,d) and rs141440582 (MMP2, e,f). The error bar 
for the β estimates indicates the 95% CI. The number of individuals included in the 
analysis is shown after the trait names. The horizontal axes indicate the genomic 
coordinate. The vertical axes indicate the exon coverage of the RNA sequence 
from the reference construct (top) and the alternate construct (bottom). Variant 

sites are indicated in red. g, Enrichment of ClinVar variants among variants with 
a high PPI. The vertical axis indicates the categories in ClinVar. The horizontal 
axis indicates the OR of a high PPI using benign variants as reference and the 
95% CI estimated using a Fisher’s exact test. The number of variants included in 
the analysis is shown after the variant annotations. h, Fraction of deleterious to 
tolerated variants evaluated using PolyPhen or sorting intolerant from tolerant 
(SIFT) in each PPI bin (horizontal axis). i, Schematic representation of the CD36 
locus where rs75326924 is located. j, β estimates, PPI and AAF of rs75326924.  
k, Schematic representation of the ABCG5 locus where rs119480069 is located. 
l, β estimates, PPI and AAF of rs119480069. The AAF was obtained from the 
gnomAD dataset. The number of individuals included in the association analysis 
is found in Supplementary Table 1; the abbreviations for the phenotypes are 
found in Supplementary Table 2.
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Another plausible example is a Japanese-specific rare deleterious 
missense variant of USP47 associated with glucose levels (Extended 
Data Fig. 3 and Supplementary Table 4). USP47 was reported to be 
associated with several cancers in humans, but was not reported in the 
context of glucose levels. To support this finding, knockout of Usp47 
in mice resulted in increased glucose levels (Supplementary Note 4.1).

We also found other new associations between quantitative traits 
and missense variants that are rare and specific to, or more prevalent 
in, East Asians (EAS). These include associations of ARHGAP36 with 
sodium levels, RFWD2 with basophil counts, S1PR4 with segmented neu-
trophil counts, EVC with estimated glomerular filtration rate (eGFR), 
MYCT1 with red blood cell count, EGLN1 with eGFR, STAB2 with activated 
partial thromboplastin time and SLC12A3 with chloride levels (Sup-
plementary Note 4.1 and Extended Data Fig. 3). These new associa-
tions deepen our understanding of mechanisms underlying complex 
traits by providing highly likely causal genes and variants. In line with 
these findings, putative causal variants (PPI > 0.9) were significantly 
enriched in protein-altering or protein-truncating variants (PTVs) 
(ORprotein-altering = 45 (95% CI = 37–55), P = 5.4 × 10−147; ORprotein-truncating = 106 
(95% CI = 56–184), P = 2.7 × 10−22; Extended Data Fig. 3 and Supplemen-
tary Tables 7 and 8).

New population-specific noncoding associations
We also found other new associations with noncoding variants, includ-
ing Japanese-specific rare variants. New associations of noncoding 
variants included genes whose functions are largely unknown or known 
in limited contexts that are not associated with quantitative traits. 
In particular, we could connect long noncoding RNAs with quanti-
tative traits. rs78568419 in LINC00670, an EAS-specific variant (also 
present at very low frequency in admixed American populations), 
was associated with platelet (PLT) count (Supplementary Table 4 and 
Extended Data Fig. 4). This long noncoding RNA is called cardinal and 
is expressed mainly in arterial tissues (coronary artery and aorta in 
the Genotype-Tissue Expression (GTEx) project12). In line with these 
findings, this variant showed a pleiotropic association with coronary 
artery disease (P = 0.001)7. Another example is the association of an 
EAS-specific variant in LINC01094 (long intergenic non-protein-coding 
RNA 1094) with total cholesterol (TC) and high-density lipoprotein 
cholesterol (HDLC) (Supplementary Note 4.1). LINC01094 has been 
associated with gastric cancer and renal cell carcinoma18. Other exam-
ples include associations of zinc-finger protein genes, such as ZNF365 
with HDLC, ZNF787 with basophil count, ZNF423 with hematocrit and 
hemoglobin, ZNF468 with eGFR and blood urea nitrogen and ZNF444 
with white blood cell (WBC) count (Supplementary Table 4 and Sup-
plementary Note 4.1).

Previously unreported associations of noncoding variants in genes 
of known function include the association of an upstream variant of 
CD118 with low-density lipoprotein cholesterol (LDL) levels (Extended 
Data Fig. 4); CD118 encodes a leukemia inhibitory factor receptor; this 
variant was not present in Europeans. Other examples include the 
association of hematocrit and hemoglobin with an upstream variant 
in HEY1 that is highly specific to Asians, and the association of eosino-
phils with an ETV6 variant (Extended Data Fig. 4 and Supplementary 
Note 4.1). HEY1 encodes a crucial transcription factor involved in the 
NOTCH pathway, which was suggested to have critical roles in erythro-
poiesis19. ETV6 is implicated in myeloid lymphoma; several ETV6 fusion 
protein-positive acute myeloid lymphomas have been associated with 
clonal eosinophilia20.

We also found new associations of noncoding variants in genes 
relevant to complex traits. These include an association between glu-
cose levels and an EAS-specific rare variant upstream of PAX4 (Extended 
Data Fig. 4 and Supplementary Note 4.1). As PAX4 is a master regulator 
of β-cells in the pancreas, this association suggests that this variant 
affects the development or function of β-cells via altered PAX4 expres-
sion or activity, resulting in increased glucose levels even in individuals 

without diabetes. Other examples include an association of an intronic 
variant in AQP1, more frequent in EAS than other populations, with 
eGFR and serum creatinine levels. AQP1 is a widely expressed water 
channel, especially in the kidney. Other associations include ATM with 
hemoglobin and hematocrit, SIRT1 with hemoglobin, RRAS2 with PLTs 
and CD163 with aspartate aminotransferase (AST) levels (Supplemen-
tary Table 4 and Supplementary Note 4.1).

Characterization of putatively causal noncoding variants
We found reasonable enrichment of noncoding causal variants for 
DNase I hypersensitivity sites (DHS) and consensus footprints (CFPs) 
(Fig. 2a). To further assess the functionality of these noncoding reg-
ulatory elements quantitatively, we applied a deep-learning-based 
method to predict the pathogenicity (disease impact score) of non-
coding variants. The disease impact score showed a strong positive 
association with PPI (P < 2.9 × 10−30; Fig. 2b, Extended Data Fig. 5 and 
Methods). A typical example was rs146018792 (MAF = 0.48%), a rare 
Japanese-specific noncoding variant in an intron of CCND3 significantly 
associated with red blood cell-related traits (mean corpuscular volume 
(MCV) and mean corpuscular hemoglobin (MCH); PMCV = 7.8 × 10−14, 
PPIMCV = 1.00; PMCH = 8.5 × 10−11, PPIMCH = 0.87). rs146018792 is in a CFP 
within a myeloid-specific DHS (Fig. 2c,d). This variant had one of the 
highest disease impact scores (99.98 percentile; Extended Data Fig. 5). 
Specifically, this variant strongly decreased the affinity of the cFos/JUN 
transcription factor in the myeloid cell line K562 (Extended Data Fig. 5).

High-impact variants were strongly constrained across 
protein-truncating, protein-altering and noncoding variants (Fig. 2e,f). 
Importantly, we found that these putative causal variants (especially 
those with high PPI) were highly specific to EAS (Fig. 2g). We observed 
an array of rare, noncoding variants with comparable effect sizes to 
coding variants. As an example, rs542962114, a Japanese-specific rare 
noncoding variant located upstream of LDHB, was significantly asso-
ciated with lactate dehydrogenase (LDH) levels with a large effect size 
(Extended Data Fig. 6; MAF = 1.13%, βLDH = − 0.317, PLDH = 1.6 × 10−70). 
As most causal variants are noncoding, if we compare the number of 
variants, more than twice as many noncoding high-impact associations 
as coding variants were observed (Supplementary Note 5). In line with 
this finding, among all the putative causal associations (PPI > 0.1), a 
noncoding variant showed the largest effect size (rs33981098 and MCV; 
βMCV = − 1.67, PMCV = 1.2 × 10−89, PPIMCV = 1.00). rs33981098 is a known 
noncoding pathogenic variant for β-thalassemia located upstream 
of HBB (hemoglobin B)21. These findings underscore the importance 
of clarifying the mechanisms underlying causal noncoding variants.

Thus, high-quality whole-genome imputation enabled us to assess 
the impact of these rare noncoding variants on human phenotypes and 
rare coding variants at the population scale.

New population-specific causal variants in known loci
We also found new EAS or Japanese-specific causal variants (coding 
and noncoding) in genes previously known for their associations with 
quantitative traits (variant-level new associations). We found seven 
signals in the PCSK9 locus associated with LDL (PPI > 0.1), including 
four population-specific rare coding variants. A very rare new noncod-
ing variant showed the strongest effect size among the seven variants 
(Extended Data Fig. 7 and Supplementary Note 4.2).

Among these associations, we found rare Asian-specific variants 
as probably causal via altered splicing. We observed strong enrich-
ment of predicted cryptic splicing variants by Splice-AI (predicted 
cryptic splice scores > 0.2) in variants with high PPI (PPI > 0.9, OR = 8.4 
(3.8–16.1), P = 2.1 × 10−6; Fig. 3a). rs76080105 is an intronic variant in 
FLT3 (ENST00000241453:c.2208-14A>G, MAF = 0.76%), which encodes 
a tyrosine kinase and whose distinct cryptic splicing variant was 
recently reported to cause autoimmune thyroid disease in Europeans22. 
rs76080105 was predicted to cause a splice acceptor loss; we found 
significant associations with several immunological traits supported 
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by high PPI (Supplementary Note 4.2). We also found that rs76080105 
was associated with rheumatoid arthritis and systemic lupus erythe-
matosus in the Japanese population23 (Supplementary Note 4.2). We 
experimentally validated this cryptic splice alteration (Fig. 3b–d; 
P = 1.26 × 10−6, Fisher’s exact test). Another example is rs141440582,  
a rare missense variant in MMP2 (ENST00000219070:c.1453A>T,  
p.I485F), MAF = 0.63%), which is associated with height (P = 6.9 × 10−9, 
PPI = 0.15). This missense variant is predicted to introduce a splice 
donor gain, resulting in a 25-bp frameshift deletion, which we validated 

experimentally (P = 2.9 × 10−11, Fisher’s exact test; Fig. 3e,f and Supple-
mentary Note 4.2). In agreement with our observation, Mmp2 knockout 
in mice resulted in short stature and abnormal bone formation24.

High PPI variants enriched in pathogenic variants
We observed a 15-fold enrichment of pathogenic variants in ClinVar 
among putative causal variants (PPI > 0.1, P = 2.2 × 10−10; Fig. 3g,h and 
Supplementary Table 9). All these clinically determined pathogenic 
variants were connected with quantitative trait-relevant diseases 
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triplicate. Statistical significance was assessed using two-sided t-test.  
d, Working hypothesis of rs13306436 altering the posttranscriptional regulation 
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stable (Supplementary Note 6.3). Short transcripts indicate degraded ones. e, OR 
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in Supplementary Table 1; the abbreviations for the phenotypes are found in 
Supplementary Table 2.
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(Supplementary Note 5.2). For example, rs75326924, a missense vari-
ant in CD36 and known to be causal for CD36 deficiency25, showed puta-
tive causal associations with multiple quantitative traits, including 
PLT count, fatty acids, ejection fraction and heart failure (Fig. 3i,j and 
Supplementary Note 5.2), in line with the biological functions of CD36. 
rs119480069, a known pathogenic missense variant in ABCG5, showed 
causal associations with TC and LDL (Fig. 3k,l).

Functional annotations for noncoding causal variants
To further elucidate the consequences of putative causal noncoding vari-
ants on functional annotations that are in line with previous studies26, we 
assessed the overlap of putative causal noncoding variants in DHS and 
CFP regions and found significant enrichment in a phenotype-relevant 
tissue-specific manner (Supplementary Table 11 and Extended Data 
Fig. 8). One of the most significant enrichments was observed in 
height-associated noncoding variants in musculoskeletal-specific 
DHS (ORHeight = 3.2 (2.4–4.1), PHeight = 7.2 × 10−15). Noncoding variants 
associated with hematological traits and antibody production were 
significantly enriched in myeloid-specific and lymphoid-specific DHS, 
respectively. We also found significant enrichment of causal variants for 
causal expression quantitative trait locus (eQTL) variants in the GTEx 
(Extended Data Fig. 9 and Supplementary Note 6.1).

We performed an enrichment analysis of functional annotations 
of noncoding variants neither in DHS nor CFPs to explore potential 
mechanisms. We found that such variants with high PPI are strongly 
enriched in the 3′ UTR or 5′ UTR of transcripts, suggesting crucial roles 
and distinct mechanisms of these regions on quantitative traits and 
underscoring diverse mechanisms of causal variants (Fig. 4a). These 
enrichments were also observed in the UK Biobank (UKB) (Extended 
Data Fig. 9 and Supplementary Note 6.2).

One such example was rs13306436, a rare EAS-specific variant 
in the 3′ UTR of IL6, associated with ten traits with high PPI (PPI > 0.9: 
fibrinogen (FBG), NAP, C-reactive protein (CRP), PLT, MCH and AG; 
PPI > 0.1: alkaline phosphatase (ALP), WBC, LDH and mean corpuscular 
hemoglobin concentration; Fig. 4b), concordant with the multipo-
tency of IL6. The direction of the effects of this variant suggested an 
increase in immunogenicity (increased FBG, CRP, NAP and WBC). This 
variant is located near the binding site of regnase-1, an RNA-binding 
protein targeting the 3′ UTR of transcripts to degrade mRNA and con-
trol protein levels27,28. We experimentally showed that a reporter car-
rying the IL6 mRNA 3′ UTR with the rare minor allele rs13306436 was 
resistant to degradation by regnase-1 (Fig. 4c), suggesting that the 
mRNA structure is altered by this variant, resulting in stable mRNA, 
increased interleukin-6 levels and consequently increased immuno-
genicity (Fig. 4d and Supplementary Note 6.3). We found that this 
variant decreased the risk of tuberculosis (Fig. 4e), in agreement with 
a previous report that identified an increased risk of tuberculosis infec-
tion in Il6 knockout mice29. As regnase-1 targets several immune-related 
genes, our results may suggest more potential 3′ UTR variants as targets 
of regnase-1. In line with these findings, genes in which we found prob-
able causal variants at the 3′ UTR showed enrichment for the target 
genes of regnase-1 (hypergeometric test, P = 5.2 × 10−5; Supplementary 
Note 6.3).

Possibility of drug repurposing
Genes with putatively causal coding variants were enriched in known 
genes causing monogenic disorders (genes with ‘pathogenic’ variants 
in the ClinVar database) or drug targets (Extended Data Fig. 10). These 
genes were more frequently included in protein–protein networks, 
regardless of genes with coding and noncoding variants (Extended Data 
Fig. 10). Genes encoding currently available drug targets that showed 
new associations in the current study included CACNA1S, RYR1, PDE10A, 
SIRT1 and CYP19A1 (Supplementary Tables 13 and 14). These raise the 
possibility of repurposing drugs currently available to other pheno-
types or diseases (or potential side effects of the currently available 

drugs), taking advantage of direct or indirect connections to drug 
targets via the molecular network.

Discussion
In the current study, we combined finely imputed genotypes with 
a high-density Japanese-orientated imputation reference panel, 
well-powered multi-trait GWAS in a homogeneous population, a sen-
sitive algorithm to determine the likelihood of causality of variants in 
the associated loci and in silico and experimental functional analyses. 
Together, these enabled us to detect many new associations especially 
specific to EAS, characterize putative causal genes and variants, and 
find new mechanisms for how causal noncoding variants affect complex 
traits, despite the bias of existing resources for these purposes toward 
European populations.

The new associations and putative causal associations in this study 
will be valuable for further functional follow-up studies for several traits 
with high sensitivity (Supplementary Note 4 and Data availability). Our 
study also provides several insights into the genetic architecture of 
causal associations, especially for coding variants. Discovery of many 
new associations in rare causal variants indicates the presence of many 
population-specific rare variants (both for coding and noncoding vari-
ants, in line with previous studies30,31) and the importance of deeply 
analyzing large-scale single populations. We also found that many 
new associations were driven by common variants in Japanese or EAS 
populations that were much more frequent in these populations, not 
limiting to rare variants (Supplementary Note 4).

We found a possible new mechanism underlying causal variants 
at 3′ UTRs. Further analyses would expand the yet-to-be-identified 
mechanisms of noncoding variants. The noncoding putative causal 
variants included rare variants having strong effect sizes on the 
phenotypes comparable with damaging-coding variants. As most 
associations are driven by noncoding causal variants, our observa-
tions suggest that we could drastically extend potential intervention 
targets as therapeutic or preemptive options targeting noncoding 
causal variants.

Our results coincide with the current effort to transition from  
whole-exome to whole-genome space32. Continuous efforts to 
expand WGS in single populations by leveraging large sample sizes 
and extending to the global population would uncover further 
population-specific associations and variants, from which we can 
identify causal variants and mechanisms and advance efforts toward 
personalized medicine.
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Methods
Ethics oversights
All participants provided written informed consent according to the 
protocols approved by following institutional ethical committees: the 
RIKEN Center for Integrative Medical Sciences; the Institute of Medical 
Sciences; the University of Tokyo; the National Center for Geriatrics 
and Gerontology (NCGG); the Tohoku University Graduate School of 
Medicine; and Iwate Medical University.

Study cohorts
First, we included three different datasets constructed from the contem-
porary Japanese population (BBJ first cohort, BBJ second cohort, NCGG 
cohort). We subjected these datasets to imputation using our reference 
panel (described below) to obtain the results for harmonized variants 
and then meta-analyzed the results. Additionally, to maximize statistical 
power to identify new signals especially specific to the EAS population, 
we also analyzed the quantitative trait data of 53,083 individuals from the 
Tohoku Medical Megabank Organization (ToMMo) community-based 
cohort study (67K; Extended Data Fig. 1 and Supplementary Note 1).

The BBJ33,34 is a nationwide hospital-based biobank with 12 collabo-
rating medical institutions. The first cohort targeted 47 diseases and 
recruited 200,000 people between 2003 and 2013; the second cohort 
targeted 38 diseases and recruited 67,000 people between 2013 and 
2018 (https://biobankjp.org/en/index.html). In this study, 12,098 people 
with available genotypes were included from the BBJ second cohort. The 
NCGG Biobank is a hospital-based biobank maintained by the NCGG 
since 2012. Participants were recruited from the NCGG hospital and 
nearby medical institutes (https://www.ncgg.go.jp/english/index.html). 
ToMMo is a population-based cohort in which study participants were 
recruited from the health checkups conducted in two prefectures of 
Northeastern Japan: Miyagi (n = 32,459) and Iwate (n = 20,906).

WGS and creation of the imputation reference panel
The procedures for WGS and reference panel construction are described 
elsewhere35. The 3,256 individuals sequenced are from the BBJ cohort. 
Briefly, 1,502 individuals were sequenced aiming at a 30× coverage (high 
coverage) and 1,786 at a 15× coverage (medium coverage) with a HiSeq 
2500 (Rapid mode or V4, Illumina) or HiSeq X Five platform. Samples with 
low sequence quality or from closely related individuals were removed. 
Sequenced reads were aligned to a human reference genome (hg19) 
using the Burrows–Wheeler Aligner36; duplicated reads were removed. 
Then, we conducted joint genotype calling using HaplotypeCaller and 
GenotypeGVCFs implemented by the Genome Analysis Toolkit37 (v.3.5-0, 
v.3.8-0 for high coverage, v.3.6-0 for medium coverage, v.3.8-0 for joint 
calling) according to germline short variant discovery best practice 
workflows. We removed variants with: (1) read depth (DP) < 5 from high 
coverage samples; DP < 2 from medium coverage samples; (2) genotype 
quality (GQ) < 20; (3) DP > 60 and GQ < 95 from high coverage; (4) failed 
in variant quality score recalibration. The procedures for reference panel 
construction were as follows. From WGS VCF files generated as above, 
we removed multiallelic or monomorphic sites, singleton variants and 
variants deviating from Hardy–Weinberg equilibrium (P < 1 × 10−6). The 
genotypes from the 1000 Genomes Project13 (phase 3, v.5) were similarly 
processed. Then, these datasets were merged using IMPUTE2 (ref. 38) 
v.2.3.2. For the X chromosome, we used BEAGLE39 v.4.1 to merge the male 
WGS genotypes, and then combined them with the female genotypes. 
For the ToMMo dataset, the 3,552 Japanese genomes in ToMMo were 
sequenced using the HiSeq platform and the sequenced reads were 
aligned to the human reference genome (GRCh37). Genotypes were 
called using the Genome Analysis Toolkit best practice pipeline and used 
as a reference panel (ToMMo 3.5KJPNv2)40.

Haplotype phasing and imputation
Genotypes were determined using either (1) the Illumina HumanOm-
niExpressExome BeadChip or (2) a combination of Illumina 

HumanOmniExpress and HumanExome arrays for the BBJ first cohort. For 
the BBJ second cohort, genotypes were determined using the HumanOm-
niExpressExome BeadChip; for the NCGG cohort, genotypes were deter-
mined using the Illumina AsianScreeningArray (the NCGG data were 
obtained from the NCGG Biobank database). Quality control (QC) was 
performed by removing individuals who withdrew consent, had call rates 
lower than 98%, gender mismatch or non-East Asian ancestry. Any sam-
ples overlapping with those in the reference panels were also removed. 
QC on variants excluded those with a call rate lower than 99%, fewer than 
five heterozygotes, extreme deviation from the Hardy–Weinberg equilib-
rium (P < 1 × 10−6) and palindromic variants. We also compared the array 
genotype and WGS to exclude variants with a concordance rate lower 
than 99.5%. After QC, the BBJ first cohort, BBJ second cohort and NCGG 
cohort were separately phased using SHAPEIT2 (ref. 41) (BBJ first cohort, 
v.2.837) or EAGLE2 (ref. 42) (BBJ second cohort and NCGG cohort, v.2.39), 
followed by whole-genome imputation using Minimac4 (ref. 43) (v.1.0.0).

For the ToMMo dataset, the array dataset in PLINK binary for-
mat (659,326 SNPs) and the imputed genotype dataset in the Oxford 
BGEN format (54,041,917 variants) for 53,365 study participants were 
obtained. The genotyping and imputation procedures have been 
described elsewhere40. All samples were genotyped using the Affym-
etrix Axiom Japonica array. After QC, autosomal variants were phased 
using SHAPEIT2 (v2.R837) and subsequently imputed using IMPUTE2 
(v.2.3.2). We conducted further QC and excluded samples with (1) an 
array call rate lower than 97% or (2) non-Japanese ancestry identified 
using principal component analysis with all samples from the 1000 
Genomes Phase III dataset. For variants, we excluded variants with an 
imputation INFO score lower than 0.3 from the downstream analysis. 
The final dataset consisted of 37,167,587 variants for 53,083 individuals.

Variant annotation
We used VEP44 v.87 to annotate the tested variants. To obtain a single anno-
tation for a variant, we used the --pick option to prioritize annotation on 
the canonical transcript. rsIDs were assigned using VEP; if an rsID was not 
assigned, we annotated the variant as chromosome:position:reference 
allele:alternate allele. The summary and definition of variant annotation 
are summarized in Supplementary Table 15.

Quantitative phenotype curation, QC and normalization
Quantitative phenotypes were extracted from the BBJ participant health 
records. The NCGG phenotype data were obtained from the NCGG 
Biobank database. The ToMMo data were obtained from the ToMMo 
database. Raw phenotype data were filtered using the mean ± four s.d. 
Then, phenotype-specific corrections were applied as follows. For indi-
viduals taking a lipid-lowering agent, TC and LDL were divided by 0.8 
and 0.7, respectively. For individuals taking antihypertensive agents, 
systolic and diastolic blood pressure were added (15 and 10 mmHg, 
respectively). Phenotype-specific exclusion criteria were also applied 
as follows. Individuals taking an antiuremic agent were excluded from 
the uric acid analysis; individuals taking warfarin were excluded from the 
prothrombin time analysis; and individuals with diabetes were excluded 
from the HbA1c and blood sugar analyses. The raw phenotypes were 
regressed and residualized according to age, sex and principal compo-
nents (PCs) 1–10 used as covariates. Additionally, we introduced 47 target 
disease statuses for the BBJ first cohort, 38 target disease statuses for BBJ 
second cohort and prefecture of enrollment for the ToMMo cohort into 
the model6. Then, residuals were inverse-rank-normalized and used as 
quantitative phenotypes. After normalization, we conducted association 
analysis using the BOLT-LMM algorithm without covariates. The distribu-
tions of phenotypes are summarized in Supplementary Tables 1 and 2.

Quantitative and case-control association analysis and 
meta-analysis
For the quantitative phenotypes, we applied BOLT-LMM45 (v.2.3.4) 
for the single-variant association test in each cohort separately. 
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When the model was not converged, we applied a linear regression 
model implemented in PLINK2 (ref. 46) software excluding related 
individuals (defined as PI-HAT > 0.25). For the X chromosome, 
males and females were tested separately and meta-analyzed using 
inverse-variance-weighted fixed-effect meta-analysis implemented 
in the METAL47 software. The applied model is summarized in Supple-
mentary Table 1. Then, the results were meta-analyzed with the METAL 
software using an inverse-variance-weighted fixed-effect meta-analysis. 
After the meta-analysis, the variant with an overall MAF < 0.1% or P value 
for heterogeneity < 1 × 10−6 were excluded from the results. For the 
case-control analysis, we conducted the logistic regression analysis 
implemented in PLINK2 to associate the genetic dosage and case-control 
status registered in the BBJ first cohort, introducing age, sex and PCs 
1–10 as covariates excluding related individuals (PI-HAT > 0.25).

LD Score regression
Lambda GC, LD Score regression intercept and its ratio were deter-
mined using the LDSC software48 (v.1.0.1). We used the LD Score cal-
culated from the 1000 Genomes Project EAS individuals using the 
LDSC software.

Locus definition
Genome-wide significant loci were determined as follows: (1) extract-
ing variants with P < 5 × 10−8; (2) adding a 5 × 105 base length to each 
position of these variants bilaterally; (3) merging any overlapping 
regions. For the variants located in the major histocompatibility com-
plex region (defined as chromosome 6 coordinates from 25000000 to 
35000000), 1× 106 base length was added to the position of variants with 
genome-wide significance. If the locus did not contain coordinates with 
previously reported genome-wide significant variants, the locus was  
annotated as a new.

Statistical fine-mapping
We applied FINEMAP49 (v.1.4) for each genome-wide significant locus. 
We used the meta-analysis results of the primary datasets (BBJ first, 
BBJ second and NCGG; Supplementary Note 1). We uniformly used the 
genotype dosage of the first cohort of the BBJ to calculate LD matrices 
using the Ldstore software (v.2.0) as it was the largest cohort in this 
study. The maximum number of causal variants in the locus was used 
as ten in the first round. If the number of causal variants was estimated 
at ten, we reran FINEMAP using 20 as the maximum number of causal 
variants (Supplementary Note 3). To control fine-mapping quality, 
we first excluded 48 loci overlapping the major histocompatibility 
complex region (chromosome 6 25000000–35000000) because 
of its extensive LD structure50. In addition, we removed 16 loci where 
the causalities of the variants were not supported by the conditional 
analysis. In total, we completed statistical fine-mapping for 3,309 of the 
3,390 genome-wide significant loci (97.6%). The marginal PPI was used 
for each variant throughout the study. Detailed processes are described 
in Supplementary Note 3. For the UKB, we downloaded the summary 
statistics generated previously (http://www.nealelab.is/uk-biobank) 
for 37 corresponding phenotypes. We used the LD matrix calculated 
using the dosage data for White British individuals in the UKB using 
LDstore. Otherwise, we defined the loci, ran FINEMAP and processed 
the output data as described for the BBJ.

Estimation of enrichment and PPI
For each PPI bin, the ORs of the variants annotated as ‘high’ or ‘mod-
erate’ (Supplementary Table 15) by the VEP software to the variants 
annotated as ‘modifier’ were calculated in comparison with the lowest 
PPI bin (0–0.1) and tested using a Fisher’s exact test.

ClinVar annotation
We downloaded the VCF file from the ClinVar51 website (https://www.
ncbi.nlm.nih.gov/clinvar, 27 January 2020). For each PPI bin, the ORs of 

variants with each level of clinical significance to variants with ‘benign’ 
annotation were calculated in comparison with the lowest PPI bin 
(0–0.1) and tested using a Fisher’s exact test.

Protein visualization
We used the PyMOL software (https://pymol.org/2) to visualize the 
three-dimensional (3D) structure of proteins. We obtained the 3D 
protein structures from the Protein Data Bank website (https://www.
rcsb.org). The following accession codes were used for the visualiza-
tion: 6KN8, 5LGD and 5DO7 for Troponin-T, CD36 and ABCG5/ABCG8, 
respectively.

Drug target
The list of genes encoding drug targets was defined using a previous 
report52. We counted the number of genes with high-PPI coding and 
noncoding variants overlapping such drug target genes. A Fisher’s exact 
test was used to estimate the OR and 95% CI. The P value was calculated 
by comparing genes with the highest PPI > 0.1 and highest PPI ≤ 0.1.

Protein–protein interactions
Protein–protein interaction data were downloaded from the STRING53 
website (https://string-db.org/). High-confidence protein–protein 
interactions were determined using a combined score greater than 
0.9. We counted the number of edges from each gene within this set 
of interactions. Then, we computed the mean number of interactions 
for genes in each PPI bin. A Wilcoxon rank-sum test was used to test 
the difference in the number of protein–protein interactions between 
genes with a gene PPI > 0.1 and genes with a gene PPI ≤ 0.1.

DeepSEA and disease model
We applied the DeepSEA-based disease impact score predicting model54 
to all noncoding variants in genome-wide significant loci (n = 7,289,211, 
https://hb.flatironinstitute.org/asdbrowser/about). The baseline Deep-
SEA55 model returned the probability differences for 2,002 epigenetic 
features. Then, the disease impact score was estimated from these 
predicted probability differences as a single scalar value for each vari-
ant. We estimated the effect sizes of PPI on the disease impact score; we 
conducted linear regression modeling in the variants with the highest 
PPI in the loci as follows:

Disease impact score ∼ β1minor allele frequency + β2PPI

Splice-AI
We downloaded the precomputed Splice-AI score (https://basespace.
illumina.com). The precomputed score file contained all the substitu-
tions around the exon–intron boundary, provided the delta score and 
predicted the position for the alternative splicing for these substitu-
tions. We annotated all the variants in the genome-wide-significant loci 
using the score. As the cutoff, we applied a delta score greater than 0.2 
(high sensitivity cutoff56).

Splicing assay
The precise method for the in vitro alternative splicing assay was 
described elsewhere57. Briefly, we cloned exon–intron–exon struc-
tures harboring reference and alternate alleles for the predicted 
cryptic splice variant on the minigene construct. Each construct 
was transfected into HEK 293T cells. After 24 h of incubation, RNA 
was extracted and sequenced using the Illumina MiSeq platform. 
Sequenced reads were processed using our open-source software 
(https://github.com/SplicingVariant/SplicingVariants_Beta) to 
quantify the number of non-splicing, normal splicing and aberrant 
splicing. We calculated the P value using a Fisher’s exact test by 
normalizing the analyzed reads to 100 for each allele. The oligonu-
cleotide sequences used in this study are provided in Supplementary 
Table 24.
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Regulatory element and tissue enrichment analysis
We obtained the definitions of DHS and CFP from the ENCODE3 pro-
jects58; then, we mapped the positions of these elements to the hg19 
coordinates using the liftOver software. Next, we counted the overlap 
of variants with each regulatory element and calculated the OR of 
variants in each PPI bin to the lowest PPI bin. For each DHS–phenotype 
pair, we created a contingency table including: (1) variants with a high 
PPI (0.1–1.0] and located in the DHS of interest; (2) variants with a high 
PPI and not located in any DHS; (3) variants with a low PPI [0–0.1] and 
located in the DHS of interest; (4) variants with a low PPI and not located 
in any of the DHS. We tested the OR using a Fisher’s exact test. For the 
tissue enrichment analysis, P values were Bonferroni-adjusted; only 
the associations with an adjusted P < 0.05 were considered significant 
and are displayed in Extended Data Fig. 8.

For noncoding variants not in CFP or DHS, we tested the enrich-
ment of functional annotations. The ORs of variants with a high PPI 
((0.1–0.9] and (0.9–1.0]) in reference to the intergenic variants with a 
low PPI [0–0.1] were tested using a Fisher’s exact test.

Population-specific alleles defined using gnomAD
We download the site VCF files, including the allele frequency infor-
mation, from the gnomAD59 website (v.2.1.1, https://gnomad.broa-
dinstitute.org/downloads). We extracted the variants of interest; 
if a variant was found only in a single population, we defined it as a 
population-specific variant. We excluded variants found only in the 
Japanese WGS (current dataset) from the analysis.

Plasmids
To construct the luciferase reporter vector, the human IL6 3′ UTR 
sequence (1–428) was amplified using genomic DNA derived from HeLa 
cells as a template and was inserted into the pGL3-Promoter vector 
(Promega Corporation) using the In-Fusion HD Cloning Kit (Takara Bio). 
The rs13306436 point mutation was introduced using the QuikChange 
Lightning Site-Directed Mutagenesis Kit (Agilent Technologies). The 
regnase-1 expression vector was constructed by inserting the coding 
sequence of regnase-1 into the pcDNA3.1(+) vector (Invitrogen).

Luciferase assay
Both IL6 WT and IL6 rs13306436 mutant reporter plasmids were 
cotransfected with Renilla luciferase plasmid into HeLa cells using Lipo-
fectamine 2000 (Invitrogen) according to the manufacturer’s instruc-
tions. A pGL3-Promoter vector without IL6 3′ UTR (empty) was used as the 
control. After 24-h incubation, cells were lysed and the luciferase activity 
was determined using the Dual-Luciferase Reporter Assay system (Pro-
mega Corporation). We further examined the luciferase activity under 
regnase-1 overexpression. The fold of repression due to regnase-1 was cal-
culated by normalizing the luciferase level of regnase-1-overexpressing 
cells with that of empty vector transfected cells.

Statistical analysis of luciferase assay and enrichment for 
target genes of regnase-1
Data are presented as the mean ± s.d. Statistical significance was cal-
culated with a Student’s t-test. The significance level at P < 0.05 (*) is 
shown. We analyzed the enrichment of genes where causal variants 
were in 3′ UTR for the target genes of regnase-1, which were experimen-
tally validated28. We used a hypergeometric test for this enrichment 
(Supplementary Note 6.4).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The GWAS summary statistics and the results of statistical fine-mapping 
are available without any restriction at the Japanese ENcyclopedia 

of GEnetic associations by Riken website (http://jenger.riken.jp/en) 
and the National Bioscience Database Center (https://biosciencedbc.
jp/en) under research ID hum0014. The imputation reference panel 
containing the 3,256 high-depth Japanese individuals will be made 
available to researchers at the National Bioscience Database Center 
under research ID hum0014 after approval by the Human Data Review 
Board. The protein 3D structure data were obtained from the Protein 
Data Bank (https://www.rcsb.org/). The human tissue expression data 
were obtained from the GTEx Portal (https://www.gtexportal.org/
home/). The DNase1 hypersensitivity site and transcription factor foot-
prints were obtained from public repositories (https://zenodo.org/
records/3838751 and https://zenodo.org/records/3905306, respec-
tively60,61). The chromatin immunoprecipitation data were obtained 
from the ENCODE website (https://www.encodeproject.org/). The allele 
frequency information for the diverse human populations was obtained 
from the gnomAD project website (https://gnomad.broadinstitute.
org/). The list of clinically curated pathogenic variants was obtained 
from the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/).

Code availability
Standalone software to create the LD matrix (LD store) and conduct 
the statistical fine-mapping (FINEMAP) is available at http://www.
christianbenner.com/. We deposited the custom analysis codes for 
the association analysis and fine-mapping at https://doi.org/10.5281/
zenodo.10934238 (ref. 62). Further detailed scripts are available upon 
reasonable request to the corresponding author.
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Extended Data Fig. 1 | Schematic of the study design. BBJ, Biobank Japan; NCGG, National Center for Geriatrics and Gerontology; TOMMO, Tohoku Medical 
Megabank Organization; MHC, Major histocompatibility complex. The numbers of study participants (n) are those after quality control.
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Extended Data Fig. 2 | B cell-specific expression of TNFRSF17 and muscle-
specific expression of RYR1 and CACNA1S. a, Single-cell expression status of 
TNFRSF17 in 31,021 human peripheral blood mononuclear cells. In the right panel, 
TNFRSF17-expressing cells are highlighted. Color intensity indicates TNFRSF17 
expression level. The left panel shows the cell population. Data were obtained 
from Single Cell Portal (Single Cell Comparison: PBMC data). b,c, Muscle-specific 
expression of RYR1 (b) and CACNA1S (c). Numbers of samples are shown after the 
organ name. Violin plots show distribution of gene expression in TPM. Boxplot 
shows the median value as the centerline; box boundaries show the first and 

third quartiles and whiskers extending 1.5 times the interquartile range. d, Strong 
association of CACNA1S with creatine kinase (CK) levels. Regional plot, beta 
estimate, PPI, and AAF of rs3850625 are indicated. The numbers of individuals 
included in the analysis are shown after the trait names. PPI, posterior probability 
of inclusion; AAF, alternate allele frequency; BBJ, Biobank Japan; EAS, East Asian; 
AFR, African; AMR, Admixed American; ASJ, Ashkenazi Jewish; FIN, Finnish; NFE, 
non-Finnish European; OTH, others. AAF was obtained from the gnomAD dataset. 
The numbers of individuals included in the association analysis are found in 
Supplementary Table 1.
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Extended Data Fig. 3 | Rare population-specific coding variants in novel 
gene-phenotype pairs. a, The EAS-specific rare missense variant in USP47, 
rs138329346, is strongly associated with blood glucose levels. b, The Japanese-
specific rare missense variant in ARHGAP36, rs773732451, is strongly associated 
with blood sodium and chloride levels. c, The EAS-specific rare missense variants 
in RFWD2, rs75124417, is associated with basophil counts. Beta estimates, PPI, 
and AAF of the associated variants are also indicated in each panel. The error bar 
for beta estimates indicates 95% confidence interval. The numbers of individuals 
included in the analysis are shown after the trait names. d, Enrichment of 

coding deleterious variants in variants with high PPI. The numbers of variants 
included in the analysis are shown after the PPI bins. PPI, posterior probability 
of inclusion; AAF, alternate allele frequency; BBJ, Biobank Japan; EAS, East Asian; 
AFR, African; AMR, Admixed American; ASJ, Ashkenazi Jewish; FIN, Finnish; 
NFE, non-Finnish European; OTH, others. AAF was obtained from the gnomAD 
dataset. The numbers of individuals included in the association analysis are 
found in Supplementary Table 1, and abbreviations for phenotypes are found in 
Supplementary Table 2.
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Extended Data Fig. 4 | Non-coding variants much more frequent in East 
Asians than Europeans in novel gene-phenotype pairs. a, The non-coding 
variant in the LINC00670 region, rs78568419, which is much more frequent in 
EAS than EUR, is associated with platelet counts. b, The non-coding variant in 
the LIFR region, rs6451398, quite rare in Europeans, is associated with LDL levels. 
c, The non-coding variant in the HEY1 region, rs3841187, which is much more 
frequent in EAS than the other populations (almost absent in Europeans), showed 
an association with hemoglobin and hematocrit. d, The non-coding variant in the 
PAX4 region is associated with blood glucose levels. While this variant is similarly 
frequent between EAS and EUR, this association was not previously reported. 

Beta estimates, PPI, and AAF of the associated variants are also indicated in 
each panel. The error bar for beta estimates indicates 95% confidence interval. 
The numbers of individuals included in the analysis are shown after the trait 
names. PPI, posterior probability of inclusion; AAF, alternate allele frequency; 
BBJ, Biobank Japan; EAS, East Asian; AFR, African; AMR, Admixed American; ASJ, 
Ashkenazi Jewish; FIN, Finnish; NFE, non-Finnish European; OTH, others. AAF was 
obtained from the gnomAD dataset. The numbers of individuals included in the 
association analysis are found in Supplementary Table 1, and abbreviations for 
phenotypes are found in Supplementary Table 2.
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Extended Data Fig. 5 | In silico functional assessment of rs146018792,  
a blood-trait associated non-coding rare variant. Functional prediction of 
a very rare putative causal variant rs146018792 by DeepSEA. a, Distribution of 
disease impact score of 7,289,211 non-coding variants in the 3,309 fine-mapped 
loci. b, Distribution of probability differences caused by rs146018792 in 2,002 

regulatory features implemented in the DeepSEA model. The inset is a zoomed 
plot of the top 9 features negatively dysregulated by rs146018792. c, Distribution 
of probability differences of K562|c-Jun caused by 7,289,211 variants. PPI, 
posterior probability of inclusion.
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Extended Data Fig. 6 | High impact non-coding variant in the LDHB locus. 
a, Regional association plot for the LDHB locus. The horizontal axis indicates 
genomic coordinates, and the vertical axis shows the negative log10 P-value.  
b, Beta estimate, PPI, and allele frequency in the global population of 
rs542962114. c, Schematic representation of LDHB locus where rs542962114 
is located. The horizontal axis shows the genomic coordinate. d, Machine 
learning derived feature for rs542962114 (Methods). PPI, posterior probability 

of inclusion; AAF, alternate allele frequency; BBJ, Biobank Japan; EAS, East Asian; 
AFR, African; AMR, Admixed American; ASJ, Ashkenazi Jewish; FIN, Finnish; 
NFE, non-Finnish European; OTH, others. AAF was obtained from the gnomAD 
dataset. The numbers of individuals included in the association analysis are 
found in Supplementary Table 1, and abbreviations for phenotypes are found in 
Supplementary Table 2.
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Extended Data Fig. 7 | A novel rare non-coding variant in the PCSK9 locus 
confers very strong association with LDLC levels. a, Estimated causal 
variant configuration at the PCSK9 locus for serum LDLC. The horizontal axes 
indicate genomic coordinates. Beta and P-value were determined by LDLC 
GWAS (n = 111,048). PPIs were determined by FINEMAP (Methods). The very 
rare non-coding variant rs188211891 showed a very strong association with the 
LDLC levels with high PPI. b, Pairwise linkage disequilibrium matrix of 7 putative 
causal variants in PCSK9 locus for LDLC association. Numeric values inside 
the rectangles indicate r2. c, Population frequencies of seven putative causal 

variants in this locus. Population frequencies were obtained from the gnomAD 
database. Chromatin immune-precipitation data were obtained from ENCODE 
portal. LDLC, low-density lipoprotein cholesterol; MAF, minor allele frequency; 
PPI, posterior probability of inclusion; AAF, alternate allele frequency; BBJ, 
Biobank Japan; EAS, East Asian; AFR, African; AMR, Admixed American; ASJ, 
Ashkenazi Jewish; FIN, Finnish; NFE, non-Finnish European; OTH, others. AAF was 
obtained from the gnomAD dataset. The numbers of individuals included in the 
association analysis are found in Supplementary Table 1, and abbreviations for 
phenotypes are found in Supplementary Table 2.
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Extended Data Fig. 8 | Tissue-specific enrichment of putative causal variants 
in regulatory elements. The horizontal axes indicate the odds ratio of high 
PPI (0.1–1.0] variants within tissue-specific DHS to low PPI [0.0–0.1] variants. 
We display only DHS-vocabulary and trait pairs which showed significant 
associations after multiple-testing adjustment. Each point and error bar 

shows the odds ratios and 95% confidence intervals. The odds ratio and its 
95% confidence interval were estimated by Fisher’s exact test. The numbers of 
variants included in the analysis are shown after the trait names. The numbers of 
individuals included in the association analysis are found in Supplementary Table 
1, and abbreviations for phenotypes are found in Supplementary Table 2.
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Extended Data Fig. 9 | Enrichment of high PPI variants for causal eQTL 
variants and comparable enrichment of causal variants for functional 
annotations between UK and Japan. a, Enrichment of causal eQTL variants 
in GTEx for variants with high PPI in the current study. The fine-mapped eQTL 
variants are obtained from results using DAP-G as a representative. Each point 
and error bar shows the enrichment odds ratios and 95% confidence interval. The 
odds ratio and its 95% confidence interval were estimated by Fisher’s exact test. 
The numbers of variants included in the analysis are shown after the PPI bins.  
b, Comparable distribution of credible set sizes between UKB and BBJ.  

c, Enhanced enrichment of causal variants in functional annotations in high 
PPI variants and comparable enrichment for functional annotations between 
Japanese data and UKB data. Each point and error bar shows the enrichment 
odds ratios and 95% confidence interval. The odds ratio and its 95% confidence 
interval were estimated by Fisher’s exact test. The numbers of variants included 
in the analysis are shown after the variant annotations (BBJ/UKB). d, Correlations 
of functional enrichment between UK and Japan in both sets of variants with 
different PPI. PPI, posterior probability of inclusion; BBJ, Biobank Japan; UKB UK 
Biobank; UTR, untranslated region; TF, transcription factor.
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Extended Data Fig. 10 | Enrichment of coding and non-coding causal variants 
in druggable genes. a, Enrichment of drug-target genes for fine-mapped genes 
with variants with high PPI for coding and non-coding variants. b, Enrichment 
of genes in protein-protein networks for genes with variants with high PPI for 
coding and non-coding variants. c, Enrichment of genes containing pathogenic 
variants in the ClinVar for fine-mapped genes with variants with high PPI for 

coding and non-coding variants. Error bars indicate the first and third quartiles. 
Annotated P-value was estimated comparing genes with the highest PPI > 10% to 
the highest PPI ≤ 10% by two-sided Fisher’s exact test (a,c) and Wilcoxon rank-sum 
test (b). The numbers of variants included in the analysis are shown after the PPI 
bins. PPI, posterior probability of inclusion.

http://www.nature.com/naturegenetics
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