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Abstract 

One of the key challenges in Big Data for clinical research and healthcare is how to 
integrate new sources of data, whose relation to disease processes are often not well 
understood, with multiple classical clinical measurements that have been used by cli‑
nicians for years to describe disease processes and interpret therapeutic outcomes. 
Without such integration, even the most promising data from emerging technologies 
may have limited, if any, clinical utility. This paper presents an approach to address this 
challenge, illustrated through an example in Parkinson’s Disease (PD) management. We 
show how data from various sensing sources can be integrated with traditional clinical 
measurements used in PD; furthermore, we show how leveraging Big Data frame‑
works, augmented by Artificial Intelligence (AI) algorithms, can distinctively enrich 
the data resources available to clinicians. We showcase the potential of this approach 
in a cohort of 50 PD patients who underwent both evaluations with an Integrated 
Motion Analysis Suite (IMAS) composed of a battery of multimodal, portable, and wear‑
able sensors and traditional Unified Parkinson’s Disease Rating Scale (UPDRS)‑III evalu‑
ations. Through techniques including Principal Component Analysis (PCA), elastic net 
regression, and clustering analysis we demonstrate how this combined approach can 
be used to improve clinical motor assessments and to develop personalized treat‑
ments. The scalability of our approach enables systematic data generation and analysis 
on increasingly larger datasets, confirming the integration potential of IMAS, whose use 
in PD assessments is validated herein, within Big Data paradigms. Compared to exist‑
ing approaches, our solution offers a more comprehensive, multi‑dimensional view 
of patient data, enabling deeper clinical insights and greater potential for personalized 
treatment strategies. Additionally, we show how IMAS can be integrated into estab‑
lished clinical practices, facilitating its adoption in routine care and complementing 
emerging methods, for instance, non‑invasive brain stimulation. Future work will aim 
to augment our data repositories with additional clinical data, such as imaging and bio‑
specimen data, to further broaden and enhance these foundational methodologies, 
leveraging the full potential of Big Data and AI.
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Introduction
A new era of Big Data is dawning on clinical research and clinical care. New sources of 
data including portable and wearable clinical sensors, mobile healthcare technologies, 
and smartphones offer the potential to augment scarce and costly clinical measurements 
with continuously recorded signals reflecting a wider scope of patient activity. One of the 
key challenges is how to effectively integrate these new sources of data, whose relation to 
disease processes are often not well understood, with multiple classical clinical measure-
ments, and the expertise that clinicians have developed based on decades-long classical 
medical tradition-based definitions of disease, progression, treatment, and understand-
ing of outcomes. While this challenge is present across different medical specialties, it 
is exemplified in emerging approaches in PD clinical research and treatment develop-
ment, where engineers are increasingly proposing innovative methods for continuous 
patient monitoring in various settings, but innovations struggle to gain traction in clini-
cal practice, where clinicians still prefer traditional measures such as questionnaires and 
semi-quantitative clinical scales even though the latter offer a fraction of the resolution 
and advantages of new technologies. This paper presents an approach to addressing this 
challenge, illustrated through an example in PD management.

The paper is organized as follows. In the remainder of this section, we introduce PD 
and traditional clinical management approaches, highlighting their limitations and the 
need for novel strategies. We also explore the potential of emerging data sources, such 
as sensor data from wearable devices processed with AI and Big Data techniques, to 
enhance clinical practice, and we address the barriers to their adoption. In Sect. “Prob-
lem Definition”, we highlight the key challenge, and this paper’s primary focus, of inte-
grating these innovations with established clinical methods, crucial for fully harnessing 
their potential in advancing PD management. In Sect. “Existing Solutions”, we review the 
current state-of-the-art and show that existing approaches remain fragmented and do 
not fully address this core issue. Section  “Proposed Solution” introduces our solution: 
IMAS, which integrates multiple sensing technologies with conventional PD clinical 
assessments. Compared to existing approaches, IMAS provides a more comprehen-
sive and multi-dimensional view of patient data, offering deeper clinical insights and 
enhanced potential for personalized treatment strategies. Additionally, IMAS supports 
advanced decision-making through its use of machine learning and Big Data, allowing 
for integration into routine clinical care. Its design balances innovation with established 
practices, positioning IMAS as a significant step forward. Sect.  "Elaboration" presents 
experimental results from a study of 50 PD patients, demonstrating IMAS’s effective-
ness in addressing the integration challenge. Finally, Sect. "Conclusion" offers concluding 
remarks and recommendations for future research.

PD significance and traditional clinical approaches to disease management

PD is the second most common neurodegenerative disorder globally [1] affecting ~ 8.5 
million people worldwide [2] and poses a significant public health challenge. PD preva-
lence is increasing worldwide [2]. Disability due to PD is increasing faster than for any 
other neurological disorder [3]. In 2019, PD resulted in 5.8 million disability-adjusted 
life years, an increase of 81% since 2000, and caused 329,000 deaths, an increase of over 
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100% since 2000 [4]. The economic burden of PD is also increasing (in the United States 
(U.S.), the estimated growth is from $51.9B in 2017 to $79B by 2037 [5]).

PD is a long-term degenerative disease that impacts patients through decades and 
typically presents with a slow progression and mounting disability through time. It is 
characterized by progressive motor and non-motor symptoms that primarily stem from 
the degeneration of dopaminergic cells of the substantia nigra pars compacta. Motor 
symptoms include tremor, rigidity, bradykinesia, and postural instability, which are often 
accompanied by distinct neuroimaging findings and genetic polymorphisms [6]. The 
phenotypic expression of these symptoms exhibits substantial inter-individual variabil-
ity, with each patient presenting a unique constellation of symptoms and rate of progres-
sion. The trajectory of symptom evolution is dynamic with a progressive variability that 
requires therapeutic adjustments. In addition, new motor and non-motor symptoms 
may arise during the progression of disease.

The continuum of care for PD patients (see Fig. 1) relies on a multi-disciplinary team 
that follows a series of critical steps that include initial assessments and diagnosis, treat-
ment planning, treatment execution, and ongoing monitoring, which comprises subse-
quent assessments, follow-up evaluations, and ancillary support services. Most of these 
steps still heavily rely on clinical observation and trial-and-error approaches. This reli-
ance introduces an additional dimension of variability (inter-observer) which stems 
from differences in the interpretation and evaluation of clinical findings among health-
care practitioners with varying degrees of expertise and experience.

Specifically, diagnosis and evaluation of disease severity and progression are still 
primarily based on subjective neurological exam findings of PD-characteristic motor 
symptoms. This approach entails several limitations, such as low sensitivity and high 
subjectivity, especially when exams are performed by professionals with a focus of prac-
tice beyond movement disorders such as primary care physicians or advanced practice 
providers. It is estimated that non-movement disorder specialists can make diagno-
sis errors upwards of ~ 30% of the time (e.g., diagnoses found incorrect upon autopsy 
examination or confirmed via longitudinal examinations) [7, 8], with similar limitations 
in continuing assessments [8–24]. These limited results may be explained by non-spe-
cialists’ limited exposure to PD and arguably due to their lack of ability to assess PD 
symptoms holistically and recognize disease patterns [10, 20]. While PD diagnoses and 
ongoing assessments by movement disorder specialists are more accurate [7, 23], data 

Fig. 1 PD continuum of care. After an initial diagnosis, primarily based on a history and motor examination, 
and potentially supplemented by neuroimaging and L‑Dopa challenge results, patients enter the care 
continuum. Symptoms are monitored periodically, and treatments are adjusted depending on patient 
response. Treatment depends on symptom type and severity and might include pharmacological, Physical 
Therapy (PT), neuromodulation, and/or surgical interventions. Continued assessments are a fundamental 
component of the PD care continuum
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shows that a significant percentage of patients receive their diagnoses and/or continu-
ing assessments from non-specialists [11, 12, 24–30]. Conversely, PD patients followed 
by neurologists have less risk of being placed in a nursing facility and less likelihood of 
death, yet less than 60% of PD patients receive any neurologist care [29, 31].

In clinical settings, PD severity and progression are assessed with subjective scales like 
the UPDRS, both classic and Movement Disorder Society (MDS) versions, with section 
III specifically evaluating motor symptoms. For example, the classic UPDRS-III assesses 
14 clinician-rated motor endpoints (e.g., tremor at rest, gait, posture), scoring each on a 
scale from 0 to 4 based on severity of impairment (with a 0 being normal performance 
or symptom absence). Although widely used, UPDRS evaluations are lengthy and suffer 
from limited resolution and high intra- and inter-rater variability [23, 32–34]. Ultimately 
these limitations impact patient care [11, 12, 19, 26, 29] and limit therapy customization 
[34–36], while also imposing significant resource requirements on PD clinical trials (e.g., 
large sample sizes, high costs, false positives or negatives) [37].

PD has no known cure. Available treatments aim to manage symptoms and include 
pharmacological (e.g., L-Dopa), PT, neuromodulation (e.g., Deep Brain Stimulation 
(DBS)), and/or surgical (e.g., pallidal-thalamotomy) methods. Similar to assessments, 
the selection of treatment(s) mostly relies on clinical observation, and it is complicated 
by the heterogeneity in symptomology. Treatment adjustments for PD, including in 
medication dosages, DBS settings, and PT plans, often rely on trial and error to man-
age the disease’s variable response. Personalized, tailored therapies are recommended to 
address PD’s complex, evolving symptoms, aiming for an individualized approach rather 
than a one-size-fits-all strategy [38]. However, in practice, personalized treatments often 
boil down to periodic adjustments based on clinical observations, comorbidities, and 
patient feedback.

While PD incidence and impact are growing, PD clinical care is also facing another 
problem, namely decrease in availability of trained neurologists. The aging global popu-
lation, combined with the scarcity of neurologists in the U.S. and internationally, espe-
cially outside metropolitan areas [11, 12, 19, 22, 39–47], is likely to exacerbate the issues 
of inaccurate assessments and sub-optimal treatment plans, increasingly compromising 
clinical care. Furthermore, other specialists, such as physical therapists and occupational 
therapists with PD-specific training are even less available [31]. To address  the above 
concerns, leading health organizations such as the MDS PD task force [10], the Ameri-
can Academy of Neurology [13], and other international bodies have issued recommen-
dations for the development of new, objective assessment tools [12, 19]. Specifically, the 
MDS PD task force states that PD assessments should account for all patient data and be 
systematized “so that they can be reproducible between clinicians (essential in research 
studies) and applied by clinicians with less expertise” [10]. Additionally, these advance-
ments could provide the basis for more customized therapeutic strategies for patients.

Harnessing sensing technologies, Big Data, and AI for enhancing PD management

Addressing these challenges requires the development of new methodologies that not 
only overcome the limitations of traditional methodologies employed in the clinic, but 
also adapt to understaffed environments. In this context, developing new technologies 
is a strategy that can comprehensively improve the clinical care pathway. Portable and 
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wearable sensors, mobile healthcare technologies, AI, and, more recently, Big Data are 
progressively being explored and used in PD and broader healthcare contexts [6, 48], 
offering a unique opportunity to address these multifaceted issues. Big Data techniques 
augmented by machine learning algorithms are particularly suited for addressing PD’s 
‘high-dimensional’ complexity and therapeutic response. They can exploit data variabil-
ity and heterogeneity to uncover patterns, correlations, and insights that are not appar-
ent through traditional analysis approaches, increase accuracy of prediction models, 
and facilitate the segmentation or clustering of data (which might serve as foundation 
to develop new treatments). However, despite their potential, in PD, Big Data and AI 
approaches remain largely underexplored or confined mostly to foundational research 
rather than progressing to studies with a clear path to clinical applicability. Many solu-
tions fail to specifically identify or target nodes within the clinical care continuum for 
integration, which hampers their clinical applicability. While specialist-based care will 
remain the gold-standard, integration of Big Data, AI, and sensing technology into clini-
cal research and patient care holds enormous potential to augment this care. Addition-
ally, these technologies can enhance the assessment, diagnostic accuracy, and efficiency 
of non-specialists (e.g., general practitioners or nurse practitioners), thereby improving 
patient outcomes and expanding access to effective treatment.

Problem definition
As traditional clinical methods face limitations in managing complex diseases like 
PD, there is a rise in the use of wearable and portable devices as well as AI, contribut-
ing to the growing complexity and volume of data. This trend amplifies the challenge 
of integrating these new data sources with established clinical measures. Effectively 
merging these new technologies with established clinical practice is crucial to leverag-
ing the extensive knowledge clinicians have accumulated through decades of research 
and patient management. Without such integration, even the most promising data from 
emerging technologies may have limited, if any, clinical utility. This paper addresses the 
core challenge of integrating data from these emerging technologies with traditional 
clinical data, with a focus on PD.

Existing solutions
In this section, we review published studies that have utilized wearable/portable sen-
sors, machine learning, and Big Data in applications for PD. Subsection “Sensor-based 
solutions” focuses on solutions based on camera-based, inertial, and force sensors, 
namely the sensing sources used by IMAS (but different than our approach, not used 
in an integrated manner). Subsections “Integration with machine learning algorithms 
for prediction of clinical scales” and “Integration with Big Data”  focus on studies on 
machine learning and Big Data for predicting UPDRS-III scores or for clustering. Sub-
section  “Summary” summarizes the state-of-the-art of existing solutions, highlighting 
their limitations.

Sensor‑based solutions

Several researchers have explored the use of sensor-based measurements to gener-
ate more accurate, less variable motor exams and to assess clinical findings with higher 
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resolutions than classic clinical scales [49]. Wearable inertial sensors, such as acceler-
ometers and gyroscopes, have been used to assess movement in PD patients (see [50, 
51] for a review) and specifically to measure a body segment’s linear acceleration [34, 
52–54] and angular velocity respectively, to indirectly characterize postural sway, gait, 
and tremor [53, 55–71]. For example, Cancela et al. used a network of accelerometers 
attached to patients’ limbs and belt to assess PD gait [58]; Lopane et al. assessed feasibil-
ity of using a waist-worn inertial sensor for discriminating between Levodopa-induced 
dyskinesias and physiological sway in PD patients [56]; and Hssayeni et  al. used iner-
tial sensors to measure PD patients’ tremor recorded during free body movements [72]. 
Cameras have also been used to assess PD. For example, Kahn et al. used a computer-
vision approach to track and quantify index-finger motion during finger tapping [73]; 
Rocha et al. evaluated a Red Green Blue-Depth (RGB-D) camera (Microsoft Kinect) and 
found that among several quantitative gait parameters, the variance of the center shoul-
der velocity presented the highest discriminative power to distinguish between non-PD, 
On, and Off states [74]. Force plates have been used to assess PD [54, 75] via force and/
or pressure measurements (e.g., body’s center-of-pressure (CoP)) to indirectly character-
ize balance and postural sway [76–79]. Examples of commercial, sensor-based systems 
include Kinesia (Great Lakes Neurotechnologies, Cleveland, OH) which integrates Elec-
tromyography (EMG) with data from accelerometers and gyroscopes, Physilog (Gait Up, 
Renens, Switzerland) which is an ambulatory system for body motion analysis though 
inertial sensors, Personal KinetiGraph (Global Kinetics) which is a wrist-worn device 
that provides a continuous measure of movement, Mobility Lab (Ambulatory Parkin-
son’s Disease Monitoring), and the Portable Motus System (Motus Bioengineering)—see 
also [80] for a review.

Most existing systems, including commercial systems, have primarily relied on a single 
sensing modality and/or focused on single disease signs and/or single body segments/
joints [50–52, 80–84]. This approach has several issues. First, it does not capture the 
systemic PD disease state; instead, it only provides limited snapshots of single specific 
disease findings [34, 52, 80]. Second, each sensing modality suffers from specific tech-
nical limitations. For example, despite many advantages such as portability, low power 
consumption, and no need for a clear line of sight for measurements (as required by 
cameras), signals taken from accelerometers cannot uniquely characterize the spatial 
position of joints/body segments, which severely limits their exclusive use for compre-
hensive motor assessments [85]. In fact, accelerometers can only measure acceleration 
(along axes that are constantly changing when worn by a moving patient [85]), but veloc-
ity and displacement can only be estimated via integration, a process severely limited by 
drifts and non-zero fluctuating offsets [85]. Gyroscopes have similar issues [85]. Force 
plates can only characterize balance and postural sway indirectly [76–79] but cannot 
provide the detailed information on joint position or coordination [86, 87] necessary to 
fully assess posture and balance control, which in fact rely on multi-joint (e.g., ankle and 
hip [88]) coordination strategies [89, 90]. This severely limits assessments, as significant 
postural changes often occur in PD [91]. Furthermore, CoP-based metrics alone do not 
seem to correlate with UPDRS [55]. Cameras can directly record spatial positions from 
multiple body segments, from which velocity, acceleration, and higher order derivatives 
can be computed [92, 93]. However, limitations including line of sight requirements 
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[94, 95], low positioning repeatability [94, 96, 97], noise due to background movement 
[98], sensitivity to reflections and/or lighting conditions, and the need for at least 2 cam-
eras (and/or markers [99, 100]) to track the position of a body segment in 3 dimensions 
[92, 101] severely limit cameras’ use for biomechanical assessments [92–96, 102, 103]. 
Finally, metrics used by these systems are often designed ad-hoc and their correlation 
with standard clinical scales is unclear. This limits their clinical usability, arguably pre-
venting the widespread adoption of sensor-based systems for PD assessment into clinical 
settings.

Integration with machine learning algorithms for prediction of clinical scales

Several studies have explored the use of sensor-based measurements to predict PD 
patients’ UPDRS or MDS-UDPRS or their subscores. For example, Liu et al. predicted 
tremor subscores of MDS-UPDRS-III from automatically analyzed videos and reported 
an accuracy greater than 85% (N = 130) [104]. Metha et al. predicted bradykinesia, and 
postural instability and gait UPDRS-III subscores from videos of sit-to-stand tasks auto-
matically analyzed (N = 32) via deep learning-based methods and reported that their 
models outperformed two clinician video-raters benchmarked against in-clinic assess-
ments [105]. Parisi et al. used 3 wearable inertial sensors (mounted on chest, and thighs) 
to record patient movements during leg agility, sit-to-stand, and gait tasks for automatic 
assignment of the corresponding MDS-UPDRS-III subscores (N = 34) [106]. Safarpour 
et  al. used 3 inertial sensors to collect data during two standing balance tasks (in the 
lab) and gait and turning (in daily life) and predict rigidity and postural instability and 
gait difficulties (PIGD) MDS-UPDRS-III subscores (N = 31) and reported that predic-
tions were significantly correlated with the subscores (r = 0.49 and r = 0.61, respectively) 
[107]. As part of PERFORM European project, Cancela et al. used accelerometers (limbs, 
trunk, and belt) to record unconstructed, daily living activities to predict UPDRS-III 
bradykinesia scores (N = 20) and reported accuracy in the range of 70%-86% [58]. Pan 
et al. used smartphone 3D accelerometers to predict hand resting tremor and gait dif-
ficulty UPDRS-III subscores (N = 40; r = 0.74 and r = 0.79, respectively [108]). Exley 
et al. used force plate data to predict subscores of postural stability (r = 0.599; p = 0.014; 
 R2 = 0.35) among other subscores (N = 42 patients and N = 43 controls) [109]. Islam et al. 
analyzed finger tapping tasks recorded from a webcam and predicted finger tapping 
MDS-UPDRS-III subscores (scale 0–4, N = 250), and reported a lower mean absolute 
error (MAE) of 0.58 points vs the MAE of 0.83 obtained as average across raters with 
various levels of expertise (but higher error compared to the most expert neurologists 
(MAE of 0.53)) [110].

Only a few studies investigated prediction of the total UPDRS-III (or MDS-UPDRS-
III) score. Zia Ur Rehman et  al. measured gait during a 2-min continuous walk over 
a 25  m oval circuit over multiple sessions (longitudinal assessments were made every 
18  months up to 72  months) with an accelerometer positioned on the lower back to 
predict total MDS-UPDRS-III (for training (N = 70) and testing (N = 46) the average 
MDS-UPDRS-III was 37.56 (12.13) and 38.11 (13.38), respectively). Results showed 
that scores predicted with a convolutional neural network (CNN) model correlated 
(r = 0.82) with true values (MAE of 6.29 points) when making predictions from the 
72 month data based on models developed from the 36 month data and subsequently 
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tuned on the patients’ 54 month data [111]. Eguchi et al. investigated whether videos of 
gait (with participants walking toward the camera, turning around, and walking away) 
analyzed with CNNs could predict total UPDRS-III score (and axial symptoms, brad-
ykinesia, rigidity, and tremor subscores) (N = 74) [112]. They made predictions on 10% 
of the patients, based on models developed from 80% of the patients, and tuned on 10% 
of the patients. For the total UPDRS-III score, they reported varying MAEs for differ-
ent score ranges: 0–10, 11–20, 21–30, 31–40, and 41–108. These MAEs ranged from 
4.2 to 14.0, depending on the UPDRS-III score grouping, but with an overall  R2 of 0.59.  
Lobo et al. predicted MDS-UPDRS-III from 59 features of gait extracted from a 10 m 
walk monitored with two accelerometers (wrist and lower back) and reported a Leave-
One-Out Cross Validation (LOOCV) of 11.5 MAE (N = 74, average MDS-UPDRS-III 
score 40.92 (14.31) [113]. Sotirakis et al. measured walking (2 min) and postural sway 
(30 s, eyes-closed) using six inertial sensors and predicted MDS-UPDRS-III (N = 74, 7 
visits spaced 3 months apart, average MDS-UPDRS-III 24.4 (12.0) at visit 1). Their best 
model obtained a root mean square error (RMSE) of 10.02 (0.88) with 29 features via 
fivefold cross validation [114]. Hssayeni et al. used two inertial sensors (wrist and ankle) 
to record free body/Activity of Daily Living (ADL) movements and using ensemble deep 
learning models predicted UPDRS-III and reported a statistically significant correlation 
between the clinical scores and the predicted scores (r = 0.79) and an MAE of 5.95 points 
via LOOCV on an ensemble of 3 models [115].

Integration with Big Data

In PD, Big Data approaches remain relatively underexplored [6]. Among the few studies 
that have explored the use of wearable/portable sensors for recording motor behavior, a 
significant portion has focused on home assessments via consumer electronics for lon-
gitudinal evaluations. For instance, the i-Prognosis project employs smartphones and an 
app for longitudinal assessments aimed at aiding diagnosis and developing strategies for 
improving patients’ quality of life [116]; Cohen et al. explored the use of a Pebble watch 
to measure metrics such as gait, activity level, nighttime activity, and tremor [117]; and 
Prince et al. showed how finger tapping and memory test data from the mPower data-
base collected with smartphones could be used to monitor the longitudinal behavior of 
both PD patients and healthy subjects [118]. A few studies have investigated identifica-
tion of PD subtypes via AI-based clustering techniques, but they have mostly focused on 
datasets different than motor symptoms, such as genetic and neuroimaging data, or on 
motor symptoms assessed via clinical scales (e.g., see [119–121]). As above, the few stud-
ies that have employed sensor-based data for clustering purposes have mainly aimed at 
developing methods for longitudinal evaluations via home-based or mobile technologies 
to quantify impairment and discriminate between pathological and healthy behavior. For 
example, Williamson et al. used supervised learning on wrist-worn accelerometer data 
in the U.K. Biobank (409 subjects including 218 PD subjects) to detect abnormalities 
in longitudinal assessments for symptoms early detection and severity tracking [122]. 
Surangsrirat et  al. analyzed finger tapping data from the mPower database (N = 8,003 
subjects) and using a K-means algorithm identified 3 clusters, each with different char-
acteristics possibly related to PD severity (as measured by mPower survey data and 
PDQ-8 scores) [123]. Nguyen et  al. used unsupervised algorithms to identify clusters 
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from features extracted from inertial sensors data collected during gait and assessed 
their power to discriminate severity of impairment, as measured by the UPDRS-III “gait” 
and “postural stability” subitems (N = 119 PD subjects) [124].

Summary

Prior art on sensor-based solutions aimed at improving PD care has mainly focused 
on specific types of portable/wearable sensors (e.g., camera, inertial, or force sensors) 
used in isolation, primarily for data capture and feature extraction to facilitate moni-
toring in research settings. Machine learning applications that predict UPDRS-III or 
MDS-UPDRS-III from this type of data have several limitations. Only a few studies pre-
dict the total UPDRS-III or MDS-UPDRS-III score, with the majority targeting specific 
dimensions of motor impairments, e.g., gait, thus omitting a full assessment of patient 
motor status [115]. Additionally, these applications often rely on feature engineering 
[111] and many are unclear on model tuning and/or generalization. Among Big Data 
analytics, the integration of portable/wearable sensors data primarily focuses on smart-
phones for home-based and longitudinal monitoring. Yet, the methodology for integrat-
ing these solutions into PD care remains unclear, posing significant challenges for data 
synchronization and patient care coordination. In summary, our analysis of the state-of-
the-art indicates that while numerous studies offer valuable insights, they remain frag-
mented and fail to comprehensively address the fundamental challenge outlined in Sect. 
"Problem Definition", namely integrating emerging technologies with traditional clinical 
methodologies.

Proposed solution
To address the challenge outlined in Sect. "Problem Definition"  and the fragmentation in 
current solutions described in Sect. "Existing Solutions", we propose the IMAS. Devel-
oped by our group, IMAS integrates sensor data collected via an array of multi-modal 
portable and wearable sensors with traditional clinical information using machine learn-
ing algorithms. IMAS processes locally collected sensor data, with potential for incorpo-
rating external datasets, to enhance the algorithms’ performances and broaden research 
and clinical capabilities (e.g., for data-guided treatment personalization). Specifically, 
IMAS was designed to: improve objectivity of clinical assessments by using quantita-
tive, sensor-based measures which can be systematically collected during patient visits; 
predict traditional clinical assessments such as UPDRS-III; and aid treatment customi-
zation. Below, we detail the components and operation of IMAS, and discuss how it dif-
fers from existing methodologies through both technological innovation and conceptual 
advancement.

IMAS includes multiple sensing modalities (3D motion capture camera, inertial sen-
sors, and a force plate); a set of computational algorithms for data reduction, modeling, 
and prediction; and a patient-tracking database (see Fig. 2). It is postulated that move-
ment disorder specialists assess PD motor systems in their entirety, with pattern recog-
nition capabilities that non-expert clinicians lack [10, 20]. IMAS attempts to mirror this 
process by acquiring a broad picture of the disease state by combining multiple sens-
ing modalities across multiple joints. However, it is not sufficient to simply collect data 
from multiple sensor types; a full picture of the disease state requires careful analysis to 
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integrate and distill information across sensors. To this end, the sensing sources are cou-
pled with algorithms for signal pre-processing and machine learning for data reduction 
and prediction/classification for a variety of purposes including clustering patients and 
predicting outcomes. While the IMAS was originally designed as an ancillary technology 
for objective motor evaluations to be coupled with a novel neuromodulation technology 
our group is developing for treating PD [125, 126], its algorithms can evaluate, track, 
and/or predict outcome of various treatments (e.g., PT administered as a single treat-
ment or in combination with neuromodulation). Finally, the patient-tracking database, 
characterized by a Big Data architecture, allows recording and visualization of patient 
improvements through time as well as exploration of data clusters and identification of 
trends (e.g., groups of patients who respond well to a certain treatment) (see Fig. 3).

Five key design choices should be highlighted that incorporate both innovative and 
established approaches, distinctly positioning IMAS within the existing literature and 
enhancing its capabilities beyond those of existing systems within the literature: (1) com-
bination of multi-modal sensors to overcome the limitations of each sensing modality 
and acquire a more comprehensive picture of the disease state across multiple joints; (2) 
prediction of clinical scales widely used in clinical practice [127] (UPDRS-III herein) to 
adhere to data representations that are readily interpretable by clinicians; (3) use of sen-
sor-based metrics alongside predictions of traditional clinical scales data to allow further 
analysis such as classification/prediction; (4) a Big Data architecture that not only helps 
clinicians understand which treatments are likely to be most effective for patients with 
similar profiles but also supports personalized treatment planning and facilitates inte-
gration with current clinical practices and patient flow, ranging from Electronic Health 

Fig. 2 IMAS. During IMAS assessments patients are monitored with a battery of sensors, including 
camera‑based, inertial, and force sensors. IMAS recorded signals: Integrating different sensor modalities 
allows recording the patient’s motor status and overcomes the limitations associated with using a single type 
of sensor. Notably, the camera‑based system is equipped with a computer‑vision software that generates 
a skeleton core of the patient and monitors the position of 20 or more joints in real‑time. All signals are 
synchronized. IMAS AI core: The AI core is equipped with a battery of algorithms for off‑line processing, 
including data reduction and machine learning. Parts of this figure are adapted from Fig. 5 in our paper [6] 
and Creative Commons licensed images
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Records (EHRs) to data fusion (including imaging data and biospecimens); and (5) a 
streamlined, modular, and robust design to enable IMAS to integrate new technologies, 
as well as facilitate use outside of clinical settings (e.g., the home).

Below, we present experiments conducted with IMAS, aimed at assessing: (1) the 
dimensional complexity of the IMAS dataset, specifically its variable diversity and struc-
tural intricacies; (2) the efficacy of predictive UPDRS-III modeling, utilizing elastic 
net regression for its robust variable selection capabilities, which leverage the intrinsic 
properties of the dataset; and (3) the dataset’s capability for segmentation into distinct 
clusters, as demonstrated through the use of a Self-Organizing Map (SOM), followed by 
hierarchical clustering. While these experiments are not exhaustive representations of 
IMAS full capabilities, they illustrate how a multi-modal sensor system, when integrated 
with a computational framework, can implement Big Data strategies to improve progno-
sis, treatment optimization, and care of PD, while also demonstrating how IMAS can be 
integrated into the PD clinical care pathway.

Elaboration
Methods

Experiments

Our dataset was collected as part of the baseline assessments for a randomized con-
trolled trial investigating non-invasive brain stimulation for the treatment of PD 
(ClinicalTrials.gov Identifier: NCT01615718). Not all the patients examined herein 
entered the main trial, and the dataset was developed from the first 50 patients 
that underwent baseline assessments. Experiments took place at Spaulding Reha-
bilitation Hospital (SRH), Charlestown, MA. All procedures were approved by the 

Fig. 3 Integration of IMAS with Big Data. IMAS motor assessments can be performed in diverse settings 
(e.g., clinics, PT offices, or the patient’s home). We are building a database of IMAS data collected from PD 
patients at different times (“t” in the figure) and undergoing different treatments, including neuromodulation, 
PT or a combination thereof, as well as data from other patient cohorts with limited mobility (see  Fig. 8). 
Engineered to facilitate systematic, quantitative data recording, along with software for automated data 
analysis, IMAS ensures the production of homogenous datasets. This homogeneity facilitates implementation 
of clinical protocols, enhances the comparability of results across clinical sites, and enhances statistical 
analysis for instance by reducing bias
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Institutional Review Board of SRH, and written informed consent was obtained from 
all participants prior to participation.

As part of the study, subjects’ UPDRS-III motor scores (UPDRS Q18-31) were 
assessed and summed for the total score [128]. Evaluations were performed during 
‘On’ periods (defined per [129, 130]). Subjects were then asked to perform a series 
of motor tasks designed to assess bradykinesia, ability to perform complex move-
ments, tremor, postural instability, and gait, while their movements were tracked 
using our IMAS. For the foregoing analysis, IMAS assessments focused on subjects’ 
most affected side.

Patients were asked to perform a series of 7 motor tasks: (1) elbow flexion–exten-
sion, (2) hand opening-closing, (3) sequence of hand opening-and-closing and elbow 
flexion/extension, (4) hand touch nose, (5) hand  held still, (6) modified Romberg, 
(7) 10  m walks. The specific details of these tasks were completed as follows: 1A) 
continuous elbow flexion/extension movements: subject was instructed to move as 
fast as possible, keeping the wrist stable, palm up, beginning at level of waist/hip, 
going up to shoulder without touching it or overextending, and keeping the elbow 
stable but not pressed to the side [10 repetitions]; 1B) discrete elbow flexion/exten-
sion movements: similar to 1A), but stopping for 2  s at the end of each movement 
without letting the hand flop, and going as fast as possible in between; 2A) hand 
opening/closing at shoulder level: subject was instructed to fully open and close 
their hand fully in a fist (not clenching hard) as fast as possible, keeping the hand at 
the shoulder level (10 repetitions) starting with the hand open; 2B) hand opening/
closing at hips/waist level: similar to the test described in 2A); 3) complex motor 
sequence involving multi-joint movements: subject was instructed to perform the 
hand opening/closing movements at the waist/hip and shoulder, and the flexion/
extension movements as fast as possible in between with the hands open (10 repeti-
tions); 4) hand-to-nose: keeping the arm/elbow at shoulder level, subject was asked 
to bring their hand (horizontal, palm down) almost to their nose without touching 
it and to extend it all the way to the side again, beginning with the arm outstretched 
and moving at their natural pace (10 repetitions); 5A) hand resting on table: subject 
was asked to rest their hand and forearm on a table, with the arm relaxed, for 30 s 
while visually fixating on  the evaluator’s index finger swinging back and forth; 5B) 
hand resting in front of face: with arm/elbow at shoulder level, subject was asked 
to take their hand close to their nose and keep the hand there for 15 s while visually 
fixating on the evaluator’s index finger swinging back and forth; 6) balance test: with 
feet positioned in the middle of each side of a Wii board (i.e., feet about shoulder 
width apart) subject was asked to maintain an upright position for 15  s; test was 
performed twice, once with eyes open (while visually fixating on a pre-defined land-
mark) and once with eyes closed; 7) walking test: subject was asked to walk for 10 m 
at their usual pace (4 repetitions). Tests 1–5 were performed in seated position. Sub-
jects wore hospital-provided, non-slip gripper socks throughout tests 6–7. Subjects’ 
motor performances during all tests were monitored by IMAS.

A subset of the 50 patients, N = 11, who were part of the main study’s placebo 
group had data available from a second session. In the second session, both IMAS 
and UPDRS-III data were again collected, about 1 week after the first session [131].
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Sensor data collection

The IMAS version used in these experiments (see Fig. 2) included a commercial Kinect 
portable camera-based system (Microsoft, Redmond WA; 30 Hz sampling rate) [132–
134], wearable three-axis gyroscope/three-axis accelerometer inertial measurement 
units (IMU) (64  Hz sampling rate), a portable force plate (Nintendo, Redmond, WA; 
98 Hz sampling rate), and a remote controller for event marking (not shown in Fig. 2). 
The camera system included an embedded infrared sensor for measuring depth [135], 
i.e., recording in 3D, and commercial software for segmenting the human body from 
background, modeling the body as a 20-joint skeleton (hip center, spine, shoulder center, 
head, left and right shoulders, elbows, wrists, hands, hips, knees, feet, and ankle joints), 
and tracking 3D positions of the 20 joints [97, 136] (indicated as blue circles in Fig. 2).

The IMUs were attached to the subject’s body with Velcro straps or elastic cloth mate-
rial that cuffed the body segment, with anatomical landmarks guiding the positioning. 
For example, in the IMAS assessments discussed herein, the primary IMU’s placement 
was as follows: for tests 1–5, an IMU was placed on the top side of the patient’s index 
finger; for the balance tests, it was positioned on the subject’s back, at the level of L5, 
near the body’s center of mass; for the walking tests, patient’s movement was tracked 
with two IMUs, one on L5 and another on the right ankle using the lateral malleolus 
as a landmark for the first 2 repetitions; for the last 2 repetitions, each ankle (right and 
left lateral malleoli) was tracked with a separate IMU. A remote controller allowed the 
experimenter to mark recordings; the marker signal was set whenever an event occurred 
(e.g., beginning or end of each motor task) and was null otherwise. The number of IMUs 
and locations for each test were chosen as a trade-off between time maximizing com-
pleteness of information, minimizing overall IMAS-testing duration, and minimizing 
number changes of sensor configuration (note, these assessments were part of a clini-
cal trial that included other evaluations). All motor tests were tracked with the camera 
system, except for the walking tests. For the balance test, patients were asked to stand 
on the force plate. Throughout the experiments, camera, force plate, and subject’s chair 
(when used) were kept in fixed positions to minimize set-up times between sessions, 
prevent errors due to equipment re-positioning, and maintain consistency between par-
ticipants. Custom C# routines were written to synchronize the recordings from all the 
IMAS sensors and the remote controller.

Data analysis

IMAS metrics

IMAS metrics were extracted from the IMAS signals recorded during the above motor 
tests. For each test, the total task time was determined as the time from the first and last 
time the marker signal became positive. Then, the following metrics were calculated. For 
the elbow flexion/extension and hand-to-nose tests, wrist movements speed profiles v 
were calculated from the first order derivative of the 3D wrist trajectories smoothed with 
a 10  Hz low-pass FIR filter, segmented, and used to compute movement mean speed, 
max speed, duration, smoothness (ratio between mean speed and max speed), and num-
ber of movements, similar to [137, 138]. The path length traveled by the wrist in space 
was also calculated. For the hand opening/closing tests, angular velocity signals from the 



Page 14 of 28Dipietro et al. Journal of Big Data          (2024) 11:155 

gyroscope  (Xrot,  Yrot,  Zrot) were filtered with a 4th order low-pass Butterworth filter (5 Hz 
cut-off). Metrics included movement time (total time divided by the number of move-
ments) and inter-peak interval (interval between consecutive times when the hand was 
fully open, as marked by positive peaks in the angular velocity component  Xrot). Analysis 
of the complex movement focused on total time to complete the task. Resting and pos-
tural tremor were extracted from the accelerometer data recorded during the hand rest-
ing tasks. Resting tremor was calculated as the ratio of power in the 3–6 Hz band and 
total power, where power was evaluated with multi-taper spectral analysis from acceler-
ation amplitude, which was calculated from the 3 components of acceleration [139–143] 
(other methods were also explored, i.e., mean of the power in the 3–6 Hz frequency band 
and mean of total power and calculation of both metrics using Fast Fourier Transform; 
a similar method was used to assess postural tremor (5-8 Hz)[143]). As for the balance 
tasks, the length of the path traveled by the subjects’ body CoP as measured by the board 
was calculated similar to [144]. Postural sway was further characterized with standard 
deviation of CoP components and axes length and area of an ellipse fitting CoP oscil-
lations, calculated similar to [138]; also, the mean and peak values of jerk (first-order 
derivative of acceleration) amplitude were calculated from the acceleration measured by 
the IMU placed on L5 along the antero-posterior and medio-lateral directions similar to 
[55, 78] in order to characterize postural sway smoothness [55]. Separate values for the 
eyes open and eyes closed tests were calculated. For gait, besides total task duration, the 
following metrics were calculated from the IMU recordings after signals were filtered 
(4th order Butterworth low-pass filter, 5 Hz cutoff). For walks 1–2, movement smooth-
ness was calculated as normalized jerk (mean jerk magnitude divided by mean speed 
[145]) where jerk amplitude was calculated from the first order derivatives of the filtered 
components of the signals recorded from the accelerometer mounted on L5, smoothed 
with a 4th order low-pass (5 Hz cutoff) Butterworth filter. For walks 3–4, the peaks of 
the  Zrot gyroscope signals (the angular velocity component where movements were most 
evident) were identified to assess when strides occurred; then, we calculated the distance 
between successive peaks (stride duration) and stride count. For all tests that required 
multiple movements, mean and standard deviation were calculated. Custom MATLAB 
routines were written to extract the metrics from the IMAS recordings.

Data reduction, UPDRS‑III prediction, and clustering

PCA [146] was used to examine the correlation structure in the UPDRS-III and IMAS 
metrics and to estimate the effective dimensionality of both data sets. Each measure in 
each data set was standardized by removing its mean and dividing by its standard devia-
tion and PCAs analyses were conducted for the set of UPDRS-III and IMAS measures, 
separately and together.

Elastic net regularization [147, 148] was used to identify a sparse set of predictors from 
the IMAS dataset and build linear regression models to predict the UPDRS-III. The 
elastic net penalty parameters were systematically varied using a grid search approach 
to find the best combination with highest R-squared value with the model Degrees of 
Freedom (DFs) capped at 50% of the patient group size. The number of DFs was capped 
to further reduce model complexity. Model performance was assessed with LOOCV to 
evaluate the model’s predictive accuracy, quantified by  R2 and MAE metrics. To further 
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evaluate the methods generalization ability, we tested a model trained on day 1 obser-
vations to predict day 2 UPDRS-III scores from the IMAS metrics extracted from the 
dataset of N = 11 subjects (see above). Prediction errors were compared with published 
values of inter-rater and intra-rater variability of UPDRS-III [23].

Several clustering techniques were applied to the IMAS dataset to gain insights into 
its data structure. First, we employed t-Distributed Stochastic Neighbor Embedding 
(t-SNE). Then, clustering was performed using a SOM, followed by hierarchical cluster-
ing on neuron weights extracted from the SOM using the Ward method and a random 
forest classifier was used to assess the importance of different features with respect to 
the higher-level clustering. Experiments were conducted with different SOM grid sizes, 
number of epochs, and initial neighborhood sizes. For the hierarchical clustering with 
the Ward method, experiments were conducted with different numbers of desired 
groups. A dominance algorithm was used to evaluate feature dominance across clusters. 
Initially, one-way ANOVA identified significant mean differences among clusters for 
each feature (p < 0.05). Bonferroni-corrected post-hoc tests determined which specific 
pairs of clusters differed. For each feature within these pairs, the median value for each 
cluster was calculated, and a feature was deemed dominant in a cluster if it had the high-
est median value within that pair. Note, dominance was quantified by aggregating the 
counts of instances where a feature’s median was the highest across its significant pair-
wise comparisons. Finally, the resulting clusters were input into the elastic net regression 
model to evaluate if they could enhance prediction accuracy. Then, these clusters were 
compared to those obtained using previously reported clinical subgroup calculations 
based on UPDRS-III score groupings of tremor-dominant, akinetic-rigid, and mixed 
subtypes as in [149]. Analyses were performed using custom routines written in MAT-
LAB (Mathworks, Natick, MA).

Results

Data from all 50 patients was analyzed (36 males, 14 females, mean age 64.5 yrs. (9.8), 
mean UPDRS-III 22.7 points (10.1) assessed during ‘On’ periods. IMAS evaluations were 
also conducted during ‘On’ periods [129]). For each subject and evaluation day, a total of 
62 metrics descriptive of motor behavior was extracted from the IMAS recordings.

Figure 4 shows exemplary IMAS-derived data for two PD patients with UPDRS-III 
scores of 46 (Fig. 4B) and 14 (Fig. 4A), where a higher score indicates a higher impair-
ment. The wrist speed profiles of the  patient with score 46 are indicative of elbow 
flexion/extension movements that are slower and less smooth compared to the pro-
files of the  patient with score 14 (mean speed = 0.51  m/s (0.06) vs. 1.6  m/s (0.21), 
standard deviation in parentheses; max speed = 1.10  m/s (0.12) vs. 2.5  m/s (0.33), 
and movement duration = 0.67 s (0.08) vs. 0.30 s (0.06); movement smoothness = 0.47 
(0.07) vs. 0.64 (0.07)). Similarly, compared to the patient with UPDRS-III of 14, the 
patient with UPDRS-III of 46 moved more slowly during the hand opening/closing 
tests (average movement duration = 1.33 s vs. 0.47 s for the first test of this class, and 
1.46 s vs. 0.48 s for the second); took longer for completing the complex, multi-joint 
motor tasks (43.13 s vs. 20.06 s respectively); and performed the hand-to-nose move-
ments less easily (movement smoothness of 0.44 vs. 0.53; mean speed of 0.44 m/s vs. 
0.89 m/s; max speed of 1.01 m/s vs. 1.68 m/s, on average). Additionally, the patient 
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with the UPDRS-III of 46 showed a more prominent postural tremor, with 38.5% 
greater power than the patient with the UPDRS-III of 14 (2.75 vs. 1.98) as well as 
poorer postural control as shown by the CoP oscillations in Fig. 5 (for eyes open test-
ing: path length = 51.73 cm vs. 23.57 cm; mean jerk = 0.11 m/s3 and max jerk = 0.40 m/
s3 vs. mean jerk = 0.04  m/s3 and max jerk = 0.13  m/s3; for eyes closed testing: path 
length = 83.79  cm vs. 23.58  cm; mean jerk = 0.15  m/s3 and max jerk = 0.52  m/s3 vs. 
0.03  m/s3 and 0.10  m/s3) and greater walking impairment (average total walking 
times of 15.75 s vs. 7.25 s, most affected leg average stride times of 1.24 s vs. 1.04 s, 
and stride counts of 13 vs. 6).
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Fig. 4 IMAS camera and IMU data. Examples of wrist speed profiles of an elbow flexion/extension task 
performed by two PD patients with different motor impairments. The speed profiles of the patient with lower 
motor impairment show clear speed minima (4.A), i.e., beginning and end of each movement, differently 
from the speed profiles of the patient with higher motor impairment (4.B) for which gyroscope recordings are 
needed to determine the start and stop of each movement. The bottom half of the Fig. shows an expanded 
view of the segmented movements (indicated by the black vertical arrows ) from the speed profile where the 
gyroscope data (red) is overlaid on the camera data (blue)
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Fig. 5 IMAS force plate data. Examples of two PD patients with different abilities to control body posture as 
measured by the force plate. CoP trajectories of a patient with UPDRS‑III = 14 (path length = 23.57 cm) and of 
a patient with UPDRS‑III = 46 (path length = 51.73 cm) are shown in the left and right panel, respectively
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Figure 6 shows the PCA results. Each line represents the percentage of the total vari-
ability among the given set of standardized signals as a function of the number of Prin-
cipal Components (PCs) retained. The red line shows the PCA results for the set of 
UPDRS-III measures. The 1st PC captured around 40% of the variability in the data. An 
analysis of the PCs showed that the 1st PC had large positive contributions from all the 
UPDRS-III measures except for the two related to tremor (Q20, Q21), postural stability 
(Q30), and arise from chair (Q27). The posture and rise from chair were the largest posi-
tive contributors to the 2nd PC and the tremor questions to the 3rd PC. Additionally, 
the first 5 PCs captured ~ 80% of the variability. Although the UPDRS-III total score is 
the gold-standard for PD motor assessments, not surprisingly, these results provide evi-
dence that there is additional variability in the UPDRS-III measures that is not explained 
by this score alone. The green line shows the PCA results for the IMAS metrics. The 1st 
PC alone explains ~ 20% of the total variability in these measures. An analysis of the PCs 
associated to the IMAS metrics showed that the 1st PC had the largest positive con-
tributions from task time in continuous elbow flexion/extension, complex sequence of 
movements, and both hand opening/closing tasks and large negative contributions from 
the mean speed and peak speed during the hand to nose test and mean speed of discrete 
elbow flexion/extension movements. About 12 PCs were required to capture ~ 80% of 
the variability in these measures. This suggests that the effective number of independ-
ent dimensions associated with the IMAS measures is larger than that of the UPDRS-III 
measures. The blue line shows the PCA results when the UPDRS-III and IMAS meas-
ures are combined. The plot for the variance explained as a function of dimension for the 
combined dataset is consistently close to that of the IMAS alone, suggesting that add-
ing data from the IMAS increases the number of independent measures beyond what 
is available from the UPDRS-III alone, but that adding the UPDRS-III data might not 
increase the number of independent measures from what is available from the IMAS 

Fig. 6 PCA. Percentage of variability as a function of the number of PCs retained for the UPDRS‑III, IMAS, and 
combined data sets
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data alone. Examining the 1st PC of the combined dataset, we found the weights associ-
ated with the UPDRS-III measures were close to the 1st PC of the UPDRS-III data alone, 
and that the weights associated with the IMAS measures were close to the 1st PC of 
the IMAS measures alone. This suggests that the combination of IMAS measures along 
which variability is maximal may be linearly predictive of the sum UPDRS-III measure.

The simplest prediction model, based on the elastic net regression, demonstrated 
an  R2 of 0.54 and an MAE of 5.2 points of the total UPDRS-III score on the LOOCV 
evaluation. The key predictors identified from the elastic net based on the IMAS dataset 
included a mix of metrics from the 5 key movements (elbow flexion/extension (6 met-
rics), hand opening/closing (2 metrics), hand-touch-nose (6 metrics), tremor (5 metrics), 
modified Romberg (2 metrics), and walking (3 metrics)). IMAS signals with the largest 
weights in the elastic net model included peak speed of continuous elbow flexion/exten-
sion, movement duration and variability in movement mean speed of the hand-touch-
nose task, path length of CoP oscillations during balance task with eyes closed, and path 
length of discrete elbow flexion/extension. For the assessments of N = 11 patients evalu-
ated on day 2, the prediction results demonstrated an MAE of 4.32 points of the total 
UPDRS-III score and  R2 = 0.75. Notably, the mean errors across our models are lower 
than past published values of inter-rater variability (23), which compared typical clinical 
staff to movement disorder experts and demonstrated mean errors in UPDRS-III evalua-
tions of up to 5.4 points (see below for further examples).

Taken together, the PCA and modeling analysis suggest that the IMAS signals contain 
much of the information present in the UPDRS-III data and can predict the UPDRS-III 
score. The IMAS signals contain additional information not present in the UPDRS-III 
data which could be useful in identifying symptom patterns not typically captured in 
classic exams.

Figure  7, panels A-C depicts illustrative results of the clustering procedure. Various 
SOM configurations were systematically explored, including different grid sizes, num-
bers of epochs, and initial neighborhood sizes, and their impact on the quantization 
error was assessed. The optimal grid size of 6 × 6 was identified based on the lowest 
error, and subsequently trained 10 times to evaluate the model’s stability. The most effec-
tive SOM configuration was selected based on the lowest quantization error. The Ward 
method was then employed for hierarchical clustering. These clustering results are in 
line with the PCA results. Clusters based on IMAS measures (a dataset richer than the 
UPDRS-III data set, as indicated by PCA) are more separable/distinct than those based 
on UPDRS-III. The higher discriminative power of the IMAS-based clusters indicates 
that the IMAS-based features capture meaningful differences across the dataset, which 
might facilitate personalization of treatments as patients within each cluster are more 
homogeneous in terms of how they might respond to a specific treatment.

A random forest algorithm was used to explore the IMAS features that most contrib-
uted to each cluster. The algorithm was trained across 10 iterations, each with a different 
random seed to ensure variability, using out-of-bag predictor importance to assess the 
stability of feature importance scores. The top ten most important features were selected 
based on having the highest average importance scores. Figure 7, panel D displays these 
features in the context of the clusters selected by the Ward algorithm, specifically for 
2, 3, and 4 clusters. The dendrogram visualizes how these clusters are related and their 
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separation based on the IMAS features. Notably, the clustering effectively distinguishes 
between patient groups characterized by postural instability, tremor, and bradykinesia 
metrics. These clusters align with recognized symptom patterns of PD, while also poten-
tially providing insights for treatment planning. Clinical subgroup classifications such 
as those explored by Eggers et  al. [149] often distinguish between tremor-dominant 
and akinetic-rigid patients, relegating patients without tremor or bradykinesia/rigidity 
as dominant traits, to a mixed group. However, the IMAS-based clusters highlight the 
importance of postural instability subgroups, such as in [150–152], which might provide 
a basis for tailoring treatments. While postural instability was believed to herald a late-
stage PD, it is now known to be a dominant phenotypical trait in early PD [151]. Its early 
diagnosis may be elusive in clinical exams and hinders PD patients’ wellbeing. Although 
research initiatives focused on CoP or center of gravity measures alone have not been 
adopted in clinical practice, this finding might find a more direct application because 

Fig. 7 Clustering.  A displays clusters identified by a K‑means clustering algorithm from a dataset reduced 
via t‑SNE (perplexity = 30, learning rate = 200, maximum number of iterations = 1000). The data points 
are plotted after dimensionality reduction by t‑SNE and color‑coded based on cluster membership, as 
per the K‑means algorithm (3 desired clusters).  B shows the classification of patients into 3 groups (1. 
tremor‑dominant, 2. akinetic‑rigid, and 3. mixed) based on their UPDRS‑III scores, using the Eggers et al. 
method [149]. Each patient’s classification is depicted along the first two PCs derived from a PCA analysis of 
the UPDRS‑III scores. Each group is distinctly color‑coded according to the clinical classification. C illustrates 
the clusters obtained through higher‑level clustering derived from the neuron weights of the SOM. The 
plot uses the first two PCs of the original input data, with data points color‑coded according to their cluster 
identities, as per the hierarchical clustering algorithm. A comparative analysis of A and C with  B shows that 
the IMAS metrics produce more clearly delineated and visually distinct clusters compared to the Eggers 
method based on UPDRS‑III subscores.  D: The dendrogram shows the results of hierarchical clustering 
using the Ward method on the SOM neuron weights. The y‑axis represents the linkage distances, indicating 
the variance increase with each cluster merger. Clustering into 2, 3, and 4 groups highlight the structural 
relationships and significant separations within the data. For each group, the most important features are 
reported (see text). Note, the color coding for the 3 clusters corresponds to that in C 
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postural and gait instability cause PD patients to fall, which is a main driver for morbid-
ity and has become the main culprit raising health care expenditures amongst PD motor 
symptomatology [153]. Additionally, of note is the evolving clinical definition of bradyki-
nesia [154] and the potential for IMAS clustering to identify testing metrics for patient 
subgroup classification. Finally, the prediction model built on different clusters showed 
improved prediction accuracy compared to the simple prediction model described 
above. For example, a prediction model based on the 3 clusters achieved an MAE of 4.34 
points and an  R2 of 0.7 and a model based on the 4 clusters achieved an MAE of 4.17 and 
an  R2 of 0.65 via LOOCV.

Integration in the PD care pathway

While this section has presented results from the IMAS in a cohort of 50 PD patients, 
IMAS is specifically designed to systematically collect voluminous datasets of motor 
behavioral data during patient assessments, as depicted in Fig. 1–3. Assessments are a 
crucial part of the PD care continuum, and IMAS is engineered to integrate at various 
stages within this continuum. During periodic assessments, IMAS can aid in patient 
evaluation and can also be trained to output traditional evaluation scores. While we have 
reported results for UPDRS-III, the algorithms can be trained to generate other clinical 
scores, such as MDS-UPDRS-III. Other notable features of IMAS include the capabil-
ity of its learning core to be trained on different evaluators (such as a specific senior 
movement disorder expert at a clinical practice, who for instance could be used to train 
or calibrate other staff), and the potential for its integration with telemedicine, which 
enables assessments of patients in remote locations or those lacking access to specialists.

Treatment selection or adjustment is another stage of the care continuum where 
IMAS can have a significant impact. Traditional methods often rely on trial and error 
and clinical subgroup classifications based on the UPDRS scores or clinical history, such 
as those of [149, 155]. However, these types of classifications share the same limita-
tions as UPDRS, providing only coarse clustering. IMAS-based clusters can be further 
enhanced by integrating additional data types, such as for example features extracted 
from neuroimaging, biospecimen, and/or autonomic data (e.g., blood pressure, pupil-
lary response). The applications are numerous; they can aid in developing personalized 
treatment plans tailored to specific patient symptoms and likely disease progression. As 
new treatments (e.g., neuromodulation techniques) and more traditional treatments 
(e.g., PT) are developed or further explored, they can facilitate understanding of how 
these interventions impact the motor system over time and help build methods for opti-
mizing such interventions- See Fig.  8. Finally, with the evolving understanding of PD, 
and the continued identification of clinical subtypes and disease processes (e.g., [152, 
154, 156–159]), IMAS might not just help with treatment selection, but could be used 
to enhance our fundamental understanding of the disease and/or be used as a tool to aid 
initial diagnosis.

Conclusion
Big Data is changing clinical research and care. A central challenge is integrating 
the massive amounts of data that are increasingly collected through modern tech-
nologies, such as wearable and portable systems, watches, and smartphones with 
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traditional health care. This data must be combined with traditional clinical data that 
clinicians are accustomed to collecting and can readily interpret. Finding effective 
ways to integrate this data is crucial for developing technologies that can make a sig-
nificant impact in the clinical world and ultimately improve patients’ lives.

This paper presented a potential approach to address this challenge. We focused 
on PD, a global health concern that urgently requires the development of new meth-
odologies, possibly involving advanced technologies. Among these, Big Data and 
AI hold enormous, yet largely untapped, transformative potential. We showed how 
sensor-based data, increasingly used in patient monitoring and collected herein with 
the IMAS, can be integrated with traditional motor assessment data. Using a hybridi-
zation approach [160], we combined elements from existing solutions to develop a 
system that outperforms each individual component. Specifically, we showed that 
IMAS measures: 1) exhibited higher effective dimensionality compared to the meas-
urements that comprise traditional UPDRS-III scores and were able to explain most 
of the variability of UPDRS-III, suggesting that the IMAS measures contain a richer 
representation in their underlying data structure, encompassing a broader spectrum 
of information and potentially more nuanced insights, and have the potential for pre-
dicting UPDRS-III; 2) enabled predictions of UPDRS-III scores; and 3) enabled the 
identification of distinct patient clusters. These clusters not only improved UPDRS-
III predictions but were also clinically interpretable and could potentially provide a 
basis for tailoring treatments to meet the specific needs of different patient groups.

The use of multimodal sensors in IMAS overcomes the limitations of individual 
sensor modalities, enabling a comprehensive assessment of motor function. IMAS 
stands out from existing systems in the literature by integrating multiple data sources 
into a unified system that generates clinically interpretable outputs and is applicable 
in real-world settings. While many systems focus solely on data collection or analy-
sis, IMAS bridges the gap between research innovation and clinical adoption, making 

Fig. 8 IMAS future expansion and data integration. Planned IMAS implementation and integration with 
additional data types (e.g., biospecimen, imaging, etc.). This figure is adapted from our Fig. 5 in [6]
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it viable across the PD care continuum. We demonstrated several potential uses for 
IMAS across the care continuum and by various members of the PD care team. For 
example, primary care providers could use the IMAS to aid in early diagnosis with 
augmented UPDRS-III assessments; physical therapists could use the IMAS to com-
plete more refined motor assessments during rehabilitation exercises; movement dis-
order experts could use IMAS clustering methods to study fundamental disease traits 
not clearly resolved with traditional methods; and technologists could use the IMAS 
to tune device parameters, such as non-invasive brain stimulation doses, for opti-
mal treatment outcomes. Moreover, IMAS is designed so that the physician work-
load can be minimized by allowing other members of the care team (e.g., physician 
assistants, technicians) to facilitate patient evaluations. Furthermore, although not 
the focus herein, IMAS has also been designed with the understanding that its adop-
tion depends on its ability to garner and facilitate reimbursement, EHR integration, 
and data privacy [161] in a manner that can improve the cost-effectiveness of patient 
management [6].

While our approach focuses on PD and was based on IMAS, validated herein for PD 
motor assessments, it can be generalized to other contexts where integration issues 
arise (of note, we have explored the IMAS in stroke and chronic pain conditions, such 
as diabetic neuropathic pain, carpal tunnel syndrome pain, and lower back pain). Fur-
thermore, we discussed the importance of defining a path for integrating advanced tech-
nologies into the clinical care pathway and exemplified a solution by demonstrating how 
IMAS can be effectively incorporated into the PD care pathway.

While Big Data, AI, and advanced technological infrastructures are rapidly transform-
ing clinical research, the challenge of integrating innovations into routine clinical prac-
tice remains significant. IMAS not only advances the state-of-the-art but also offers a 
practical model for how such technologies can be adopted in clinical settings. Future 
efforts should prioritize overcoming the technical and practical barriers to ensure that 
advanced methodologies like IMAS are seamlessly incorporated into established clinical 
workflows.
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