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Abstract

Background: High-density oligonucleotide arrays (HDONAs) are a powerful tool for assessing
differential mMRNA expression levels. To establish the statistical significance of an observed change
in expression, one must take into account the noise introduced by the enzymatic and
hybridization steps, called type | noise. We undertake an empirical characterization of the
experimental repeatability of results by carrying out statistical analysis of a large number of
duplicate HDONA experiments.

Results: We assign scoring functions for expression ratios and associated quality measures. Both
the perfect-match (PM) probes and the differentials between PM and single-mismatch (MM)
probes are considered as raw intensities. We then calculate the log-ratio of the noise structure
using robust estimates of their intensity-dependent variance. The noise structure in the log-ratios
follows a local log-normal distribution in both the PM and PM-MM cases. Significance relative to
the type | noise can therefore be quantified reliably using the local standard deviation (SD). We
discuss the intensity dependence of the SD and show that ratio scores greater than 1.25 are
significant in the mid- to high-intensity range.
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Conclusions: The noise inherent in HDONAs is characteristically dependent on intensity and
can be well described in terms of local normalization of log-ratio distributions. Therefore, robust
estimates of the local SD of these distributions provide a simple and powerful way to assess
significance (relative to type | noise) in differential gene expression, and will be helpful in practice
for improving the reliability of predictions from hybridization experiments.

fold-changes in highly expressed genes can usually be

Background

DNA microarray experiments have huge potential for
screening for gene expression of relevance in particular con-
texts. However, the output of such an experiment is often
just a list of ‘fold-changes’ in gene-expression levels and so
researchers face the question of whether their ‘hits’ can be
trusted or not. In the absence of any knowledge of what to
expect, most researchers simply draw a line at a given
fold-change and examine whatever is above it. The largest

trusted. However, because the ‘correct’ fold-change limit typi-
cally shifts with decreasing intensity of expression, a fixed
fold-change line is inadequate in the range of expression
levels where most genes actually lie. Most papers reporting
microarray experiments cut off their candidate lists in essen-
tially arbitrary ways, at the level that the researchers feel
comfortable with, rather than on the basis of statistics. Here
we present an easy but sound recipe for quantifying statistical
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significance, based on careful statistical characterization of a
large dataset of GeneChip® experiments.

A particular feature of GeneChip arrays is that each tran-
script is probed by many short snippets of sequence, instead
of a single longer probe as in ¢cDNA arrays [1-3]. Therefore,
translating the measured probe intensities into a global
gene-intensity or ratio score requires a composite scoring
function. In principle, the redundancy in the probes offers a
way to reduce the noise level for each gene; on the other
hand, finding the best estimator is difficult and it is likely
that the variability in probe behavior will prevent a single
estimator from being optimal in all cases. Studying the raw
data reveals its great complexity, and the hybridization
processes underlying the measured perfect-match (PM)
versus single-mismatch (MM) intensities prove hard to
interpret physically. The principal difficulties stem first from
the large number of probes with MM intensities higher than
the corresponding PM, and therefore not conforming to the
usual hybridization picture; and second, from the very broad
intensity distributions within each probe set.

The first task is therefore to design a method that can
robustly handle such input data. Second, once reliable mea-
sures for differential expression from two experiments are
obtained, one would like to measure their significance level.
It is now widely accepted that such measures should be
derived in an intensity-dependent fashion [4-8]. There are at
least two independent sources of variability to be consid-
ered: first, the intrinsic noise levels related to the technology
(type I noise), which includes noise components introduced
by the enzymatic step used in the cRNA preparation (see
Materials and methods) and the fluorescence measurement
(scan); and second, the variability encountered in biological
replicates. Previous studies have addressed significance
issues in both ¢cDNA and GeneChip arrays: they have dis-
cussed significance according to intrinsic noise levels [4,5];
or focused on variability in replicates only [6,7]; or consid-
ered both simultaneously [8].

High-density oligonucleotide microarrays (HDONAs) are
composed of 25-base oligonucleotide probes synthesized and
attached to a glass matrix by photolithographic techniques.
As such a short oligonucleotide sequence would not give suf-
ficiently specific hybridization alone, GeneChip uses 14-20
different oligonucleotides to probe each transcript; and each
comes in two versions - the PM probe and the MM probe. In
the latter, the central base has been substituted by its com-
plement and this probe is intended to control for nonspeci-
ficity. The pairs (PM, MM) are called probe pairs and the full
set of probes for a given gene is called a probe set. The stan-
dard picture used to interpret the hybridization is based on
the following model [2,9,10]:

PM=1Ig+ BIyg+B
MM=Q-a)g+ pIys+B

where PM (MM) is the observed brightness, I the contribu-
tion from specific complementary binding, I; the amount
from nonspecific binding, and B a background of physical
origin, that is, the photodetector dark current or light reflec-
tions from the scanning process. The proper technique for
estimating the background and its fluctuations is discussed
in [11]. Then, a (thought to be positive) reflects the loss of
binding due to a single substitution, and 8, 8 are the sus-
ceptibilities for nonspecific binding. In the ideal case, which
is usually assumed, 8 = B and therefore the subtraction
PM - MM = (1 - o)l is directly proportional to the desired
signal. However, the susceptibility a can be strongly varying
within a given probe set.

We shall focus on the following two aspects of GeneChip
data analysis: first, we describe a method to evaluate ratio
scores and associated quality measures. In this step, we shall
relax the assumption that 8 = 8’ and consider either the PM
probes only or the usual PM-MM subtraction. These cases
were chosen to bracket the extremes of an ideally performing
MM probe and a poor MM. Second, we use the assigned
ratio scores and show how one can, with moderate effort,
attribute a significance level to differentially expressed
genes. Our approach is somewhat similar to that described
in [8], in the sense that it relies on an empirical characteriza-
tion of the noise envelope, and is more distantly related to
that described in [5]. Both these approaches were developed
and applied in the context of cDNA arrays (see Materials and
methods for a discussion of the difference between our
method and [8]).

Results

There are two types of approaches to composite scores: first,
the ‘direct’ methods [2,11] aim at obtaining scores based on
the distribution study of the probe intensities and can be
applied to a single experiment (or pair in the case of ratio
estimators); the second approach is model based [9,10] and
attempts to fit the susceptibilities « and 8 from a collection of
arrays. A major difference in the two methods is that the
number of experiments needed can be just one (or two for
ratios) in the first case, whereas a large number of arrays of
similar quality (ideally as many as the number of probe pairs
for the reduced model [9]) are required for the second.
Model-based approaches seem to be well suited for absolute
intensity measurements; on the other hand, direct methods
are not expected to be very robust for absolute intensities,
because of the broad intensity distributions within probe sets
[11]. However, the situation is different when considering
ratio scores, as the variability in the individual probe suscep-
tibilities cancels out when considering the expression ratios
at the probe level. Ratio scores should therefore be expected
to be more robust; more precisely, when comparing two con-
ditions, we consider each probe ratio to provide an indepen-
dent measurement of the real expression ratio - independent
in the sense that the 16 ratios provide independent samples



from a distribution whose location we want to estimate. Our
composite ratio estimation is based on a standard least
trimmed square (LTS) estimator of the set of log-ratios for
each probe set (see Materials and methods for details). We
consider the cases for which the probe log-ratios (LR) are
derived either from the usual PM-MM subtracted intensities,
or from the PM values alone (after background subtraction).
The rationale behind proposing a variant without the sub-
traction lies in the empirical observation that in 30% of the
total probe pairs MM binds better than PM. This is true for
all chip series tested (mouse, human, Drosophila), except for
yeast, which happens to be significantly better (15%). In such
probe pairs, targets systematically bind more strongly to the
MM, hence violating the prediction from the above model.
Importantly, these ‘misbehaving’ pairs are not just restricted
to a few noisy probe sets, but are fairly homogeneously dis-
tributed among the probe sets, occurring also in sets with
overall high intensities [12].

Relations between ‘single-gene’ measurements

Figures 1 and 2 show the general trends in the relations
between the ratio measurements and their quality mea-
sures, for both the PM and PM-MM cases. We look at a col-
lection of 12 Mu11KsubA chips hybridized to mRNA extracts
from different mouse brain regions (see Materials and
methods). There are 66 internal pairwise comparisons pos-
sible, for each of the 6,595 genes. We randomly picked
120,000 ratios out of the possible 435,270 for plotting these
figures. For the purpose of the present discussion, we
believe the trends are well captured by the set of ratios
shown; we picked this dataset because, compared with
other datasets we studied, the ratios span a relatively large
dynamic range. The arrays were locally normalized, as
explained in Materials and methods. The main observation
is that the three quantities: the log-ratio (LR), the standard
error (SE), and the Wilcoxon rank sign test p-value show
little correlation with each other, and therefore represent
relatively ‘independent’ indicators (see Materials and
methods for the precise definitions). The lines indicating a
signal-to-noise ratio of 1 clearly show that the vast majority
of the measurements are well defined, especially for the
larger log-ratios. The behavior of SE when the number of
probes (N,,4) retained for deriving the ratio score is small
(as indicated by the colored dots) is well understood in
terms of the number of residuals considered in the LTS
method, that is, genes with N, = 1 necessarily have
SE = 0. The only obvious correlation is that small p-values
are not compatible with LR = 0, as shown by the valley
along LR = o in the contour plots of LR versus p. It is,
however, possible to achieve very small p-values for tiny
fold-changes, as small as 1.1. The PM and PM-MM methods
show very similar features overall, the biggest difference
being that p-values tend to be larger for large LRs in the
PM-MM, which reflects the overall smaller number of Ny,.4
probes usable in that method (there are more probes lying
below background after the subtraction).
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The difference in the log-ratios from the PM and PM-MM
methods is illustrated in Figure 3. Although there is a branch
with LR ~ o from the PM method when all p-values are con-
sidered, this branch rapidly disappears when focusing at
smaller p-values only. Cases where the PM and PM-MM
scores indicate regulation in opposite directions are virtually
absent when p < 0.05. However, one can see a ‘compression
effect’ in the scores from the PM method, shown by the
edges with slope > 1 near the regions indicated by the arrows
in the bottom right panel (this can also be seen by compar-
ing the upper two contour plots of Figures 1 and 2). This
compression probably reflects cross-hybridization effects
that are not corrected for in the PM-only method. However,
if one is more interested in finding significant changes than
in the LR values themselves, the determining quantity is the
LR value divided by the width of the local noise. Therefore,
compression in the scale is not dramatic as long as the noise
envelope also shrinks (see Discussion).

A comparison of the LR/SE (signal-to-noise ratio, SN) from
both methods emphasizes the complementarity of both
methods (Figure 4), as there is clearly a similar fraction of
genes that have poor SN ratios (SN < 2) in one case but
acceptable ratios in the other. These are found in the top-left
and bottom-right quadrants defined by the horizontal and
vertical blue lines.

We have shown previously [11,12] using the same Mu11K
dataset that our PM-only composite ratios lead to a reduc-
tion in variance, especially at low intensities, when com-
pared to the Microarray Analysis Suite 3.2 available at that
time.

Noise structure

In Figure 5 we show typical scatterplots with increasing
levels of overall differential regulation, from duplicates to
strong regulation (going from left to right). Although these
particular data are from a subset of the Mu11KsubA chips
used for Figures 1 and 2, our experience is that these are very
typical of GeneChip hybridization data from numerous chip
series. We shall always refer to duplicates as ‘experiments’
where the enzymatic steps (see Protocols in Materials and
methods) in the target sample preparations have been per-
formed independently. In ideal terms, the scatter cloud is
thought of as consisting of two components: one is just noise
from the enzymatic and hybridization steps affecting all the
genes; the other reflects true sample differences. To illus-
trate this, we give three prototypical cases showing the data
for the individual genes and the local variance regression
lines (Figure 5). In these, the second component increases
gradually from zero (left-most plot, duplicates), as visible in
the quantile-quantile (QQ) plots in Figure 5b. The nearly
straight left-most QQ plot indicates that variable LR/c(1)
closely follows a normal distribution. As the amount of true
regulation increases, longer tails develop that depart from
normal behavior.
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Relationships between the LR, SE and p measures for the PM-only scores. The right panels show contour plots of the densities raised to the power 0.2,
so as to resolve structure in the low-density regions; the ranges of the right-hand panels were chosen to emphasize the most interesting features of the
densities. The red, green, blue, cyan and magenta dots refer to N = 1, 2, 3, 4, 5 ‘good’ cell pairs, respectively. Black dots have more than six good cell
pairs. The yellow line in the top-left panel represents |LR| = SE, so that points below the line have signal-to-noise ratios > |. The SE for the red dots (N =

1) is artificially set to 0.001 for plotting purposes; it should strictly be 0.
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Relationships between the LR, SE and p measures for the PM-MM method. Description and colors as for Figure |.
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Comeparison between the ratio scores from the PM-only and the PM-MM methods. Only genes with p-values (from the PM-MM method) smaller than
indicated are plotted. The brightest red dots have the smallest p-values (around 10¢), whereas black dots correspond to p = | (upper left panel) to p =

0.01 (lower right panel).

The fact that the noise component behaves as local log-
normal distributions is not dictated by the choice of the vari-
able LR/c(n), on the contrary, it emerges as a rather pleasant
feature of GeneChip experiments. In Figure 6, we demon-
strate that this log-normality occurs very systematically: we
show the two best and two worst (judged by the linearity of
the QQ plots and the amount of outliers) from 40 human HG-
UogsA duplicates collected in a study of rheumatoid arthritis
(see Materials and methods). The majority of the cases look
closer to the first two examples; and the PM and PM-MM
methods lead to equally good log-normal distributions
overall. The mean and variation in the local SD for both the
PM and PM-MM methods are shown in Figure 7 and reflect
the characteristic contraction of the noise envelope with
increasing coordinates along the diagonal. It is obvious that
the PM noise envelope is thinner than that of the PM-MM
at low intensity; on the other hand, both methods lead to

comparable local ¢ in the ‘flat’ mid to high-intensity domains,
where over half of the data lies. There, ¢ is approximately
0.15, so that 26 corresponds to a ratio of 2°-3 = 1.25, s0 95% of
repeated measurements would fall within a factor of 1.25 of
their mean. Barring some artifact affecting large numbers of
probes simultaneously, we would expect then that approxi-
mately 95% of the measurements in the mid- to high-inten-
sity range are reproducible within a factor of around 1.25.

Discussion

Our experience is that despite constant improvements,
current incarnations of the arrays still behave fairly inhomo-
geneously as far as their PM and MM hybridization proper-
ties are concerned. This is probably the consequence of
various sequence-dependent effects: first, the difference in
stacking energies of single-stranded snippets between the
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Figure 4

Comparison of the signal-to-noise ratios (SN) for the PM and PM-MM
methods. Only genes with Ny, > 4 in the PM-MM method are plotted.
The red lines are contour lines and the blue lines denote the diagonal and
SN values of 2 on either axis.

PM and the MM sequences can easily be in the range of the
gain in binding energies; second, there are certainly kinetic
effects as the hybridizations are not carried to complete
equilibrium; and third, there is always the possibility of
sequence-dependent synthesis efficiencies. The wide range
of probe set behavior is best seen in the SN ratios in
Figure 4. For these reasons, we believe that a safe way to
proceed is to integrate the results from both PM-only and
PM-MM methods. For instance, considering the intersection
(or union) of genes predicted by either method would mini-
mize the false-positive (or false-negative) rates. In addition,
there seems to be a significant variation in the hybridization
properties across different chip series, as can be observed
from simple statistics on the number of probe pairs with MM
hybridizing better than PM (see Results). The superiority of
the yeast chip mentioned above may of course be related to
the relative simplicity of the yeast genome compared to that
of the higher organisms.

Another point worth mentioning is that the values of the
ratio scores may deviate from the real mRNA concentration
ratios in some intensity regimes as the result of various
effects such as non-linearities in the probes’ binding affini-
ties. Evidence concerning this matter has recently been
reported [13]. This emphasizes the main point of our work,
namely the importance of measuring differential expression
relative to the local noise; only then can we decide whether a
given ratio score can be considered as indicating true regula-
tion or not.

http://genomebiology.com/2002/3/4/research/0018.7

Finally, the question of handling significance across repli-
cated experiments is a second step to be built on top of the
analysis presented above. The most reasonable approach
would be to follow [7], namely to consider the t-statistics of
the expression ratios across the samples. However, one
would also want to weight the average according to the noise
content in each of the samples, in a manner similar to that
discussed in [8].

Materials and methods

Datasets and protocols

We briefly describe here the two datasets presented, and
what we refer to in the text as the ‘enzymatic steps’.

Mul [KsubA chips hybridized to adult mouse brain extracts

All six brain regions were obtained from adult (2-3-month-
old) CD-1 mice. Dissections were carried out in ice-cold
buffer, and tissues were immediately frozen with liquid
nitrogen. Total RNA was isolated. Poly(A)* RNA was then
isolated with magnetic oligo-dT beads. For each brain region,
1 ug poly(A)* RNA was converted to double-stranded Ty
cDNA. Labeled cRNAs were produced from the double-
stranded cDNA libraries and hybridized to chips according to
the Affymetrix protocol, including the antibody-amplification
step. All hybridizations were carried out in duplicate.

HG-U95A chips hybridized to human blood extracts
The same protocol was used, except that no poly(A) isolation
was done before the conversion to cDNA.

Regression of the log-ratios, SE

To compute expression ratios for genes measured in two
separate arrays, let (x;, y;) denote the brightness measure-
ments for one probe set (the index i ranges from 1 to the
number of probe pairs for the particular probe set, 14-20
depending on the chip series) taken in the two different
hybridization arrays X and Y. We investigate both cases in
which the intensities (x;, y;) are either the intensities of the
background-subtracted PM cells or the PM-MM values
(which need no background correction). Only N,,,4 ‘good’
probe pairs are retained for determining the ratio and asso-
ciated quantities. We discard probes that are saturated in
both X and Y, or probe pairs such that PM-MM < 3 V20 or
PM < 3cin both X or Y. Here, o corresponds to the standard
deviation of the fluctuations in the background intensity.
Not considering such probes prevents contamination of the
ratio estimates from noisy low-intensity probes. After identi-
fying the probe pairs allowed into the analysis, the differen-
tial expression score LR for the gene in question is obtained
from a LTS robust regression of LR; = log,(x;/y;) to an inter-
cept a = LR. LTS regression corresponds to minimizing:
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Scatterplot and quantile-quantile (QQ) plots. (a) Typical scatterplot showing increasing levels of differential regulation, together with the 2c noise
envelopes (red lines). There are three different conditions: A, B and C. AA is a duplicate of A. (b) Associated QQ plots of LR/o(7). The data shown here
were obtained using four out of the 12 Mul IKsubA chips used in Figures | and 2.

the sum of the Ns smallest squared residuals [14,15]. We
used the default Ns = (Ny,,4/2) + 1 and this parameter can
be adjusted in our scripts; however, we found no evidence
for changing the default. An estimate of the standard error
(SE) for a is given by SE = Yy 1s . Composite absolute inten-
sities for the gene in each experiment can be obtained via
geometric means of the (x;, y;) probes kept in the LTS regres-
sion, however, these are only indicative measures as the
method was designed primarily for expression ratios.

Wi ilcoxon statistics, number of cells used

In addition to the SE, which reports a quantitative estimate
of the error in the log-ratio measurement, it is also instruc-
tive to report a p-value from a paired Wilcoxon rank sign test
of the LR, values. Casually speaking, this value is related to
the portion of the probes indicating gene regulation in the
same direction: the theoretical minimum p-value, p,,;,, is
achieved when all probe ratios agree on the same direction
of regulation. Moreover, the test is non-parametric as it is
operating in rank space, and p therefore also incorporates
information about the number of probe pairs used (Ny04)-

Namely, the Wilcoxon p-value has a lower bound that
decreases with increasing sample size. For instance
Dmin = 1/4 for Ny,oq = 3 and 1/8 for N,,,q = 4, so that small
p scores can only be reached when enough probes are used.
However, the converse is not true, as a gene that is not dif-
ferentially expressed can have a p-value that is close to 1

even if all the probe pairs are ‘good’ in the above sense.

Our method does not primarily aim at quantifying the pres-
ence or absence of a gene in a particular sample. Neverthe-
less, we report the number of probes (N, ..) with intensity
larger than 30,4 (0.4 = V2o for the PM-MM case) for both
samples X and Y. Using enough data, one could compute a
probability of presence depending on N .., and it is likely
that this calibration would be dependent on the chip series.

Normalization and noise characterization

The measures described above are all single-gene properties;
they can be computed when given just the intensities gath-
ered for a single gene. In contrast, correcting for systematic
trends (also called ‘data massage’) and more important,
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classifying expression ratios according to their significance,
requires measures that involve the entire gene population on
the arrays. We stress that these techniques are meaningful
only when the number of genes probed is sufficiently large,
and under the assumption that a large fraction of them does
not show differential regulation between the two tested
samples. These requirements are usually met in GeneChip
experiments. Normalization aims at correcting for system-
atic trends (that is, bias as a result of dye efficiencies and
amplification, sample concentration, photodetector -effi-
ciency) so as to make a collection of arrays directly compara-
ble. One must distinguish global from local normalization: in
the first, the intensities of all the probes on the array are
scaled by a constant factor; in the second, the normalization
factor can be intensity dependent. Local normalization tech-
niques are mostly discussed in the context of cDNA arrays
[16,17], where the intensity dependence can be severe.
HDONAS suffer less from ‘bent’ noise structures; neverthe-
less, local normalization has also been introduced for them
[18,19]. Although attractive, local normalization should not
be applied blindly as it can hide real failures in the data and
create its own artifacts. Our approach to normalization is
based on centering the log-ratio distribution either globally,
or locally as in [16]. For the data presented in the Results
section, local normalization was used; however, our scripts
allow a choice between the local and global schemes (see
Additional data files for scripts). We always normalize an
array with respect to another one, and we found it more
accurate to do so at the gene rather than the probe level (we
normalize the composite ratio scores a posteriori instead of
normalizing the raw probe intensities).

Turning to the noise structure, significance of regulation is
quantified from a local robust regression ¢(n) of the variable
LR? versus 7, where LR = log(I/I;) is the log-ratio of the
intensities and n = log(Iy I})/2 is half the log-product. I, and
I, denote the locally normalized intensities of the genes in
channels X and Y. We should emphasize that estimating the
local variance in this manner only makes sense after the
arrays have been locally normalized. The function ¢(1) then
quantifies the local log-ratio variance, so that the local SD is
given by o(n) = V¢(n) . We used the R routine loess for the
fitting [15]. The justification for using the local SD as a crite-
rion for significance relies upon the empirical fact that the
variable LR/o (1) follows a good normal distribution in the
case of replicate (pure noise) experiments (see Figure 6).
The significance of a ratio score can therefore be assessed
using the value LR/SD; that is, a value LR/SD = 2 implies
that the null hypothesis that the gene is not regulated can be
rejected with a 95% confidence level.

We finally comment on the precise differences between our
approach and that in [8]. First, we found no evidence for the
inclusion of an additive term in linear coordinates. Judging by
the data, the noise structure is very well captured by an effec-
tive multiplicative model (see Results). Second, the multiplica-
tive noise component is estimated in logarithmic coordinates
instead of linear, and after a local normalization. Finally, we
estimate the local scale in the noise by an empirical robust fit
of the local variance, with no a priori model. While it would be
satisfactory to have a physical model describing the noise, our
experience is that it is very hard to formulate one that
accounts for the observed structure in all cases.
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Additional data files

Scripts for converting between file types are available with this
article (cdf2psc, celaratios, cel2raw, raw2pcel; see explanatory
file for more details) and at the authors’ website [20].
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