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Abstract
Large language models (LLMs) have the potential to revolutionize behavioral science by accelerating and improving the
research cycle, from conceptualization to data analysis. Unlike closed-source solutions, open-source frameworks for LLMs
can enable transparency, reproducibility, and adherence to data protection standards, which gives them a crucial advantage for
use in behavioral science. To help researchers harness the promise of LLMs, this tutorial offers a primer on the open-source
Hugging Face ecosystem and demonstrates several applications that advance conceptual and empirical work in behavioral
science, including feature extraction, fine-tuning of models for prediction, and generation of behavioral responses. Executable
code ismade available at github.com/Zak-Hussain/LLM4BeSci.git. Finally, the tutorial discusses challenges faced by research
with (open-source) LLMs related to interpretability and safety and offers a perspective on future research at the intersection
of language modeling and behavioral science.
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Introduction

Large language models (LLMs) – machine learning sys-
tems trained on vast amounts of text and other inputs – are
increasingly being used in science (Van Noorden & Perkel,
2023), and significantly advancing the capacity to analyze
and generate meaningful linguistic information. These mod-
els are poised to change the scientific workflow in numerous
ways and are already used across all aspects of the research
cycle, from conceptualization to data analysis. For example,
in psychology (Demszky et al., 2023) and related disciplines
(Korinek, 2023), LLMs are being used to automate research
processes, predict human judgments, and run in-silico behav-
ioral experiments.

Scientific applications of LLMs require high levels of
transparency and reproducibility (Bockting et al., 2023). In
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addition, many applications in behavioral science involve
sensitive information (e.g., personal or health data) or tar-
get vulnerable populations (e.g., children) and thus require
specific data protection protocols. Open-source frameworks
that provide full transparency and respect privacy require-
ments are therefore indispensable for applications of LLMs
in behavioral science.

We aim to help advance the responsible use of LLMs
in behavioral science by providing a comprehensive tuto-
rial on applications using an open-source framework that
maximizes transparency, reproducibility, and data privacy.
Specifically, we provide a primer on the Hugging Face
ecosystem, covering several applications of LLMs, including
conceptual clarification, prediction of behavioral outcomes,
and generation of human-like responses. Our target audience
consists of behavioral researchers with a basic knowledge of
programming principles who are interested in adding LLMs
to their workflows. We hope that this resource will help
researchers in psychology and related disciplines to adopt
LLMs for a wide range of tasks, whilst also maintaining an
appreciation of the subtle complexities of drawing scientific
conclusions from such flexible and opaque models.

In what follows, we first provide a short primer on
transformer-based language models. Second, we consider
applications of LLMs in behavioral science and introduce
the Hugging Face ecosystem and associated Python libraries.
Third, we present three areas of application – feature extrac-
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tion, fine-tuning, and text generation – and present several use
cases in behavioral research. Finally,we address some advan-
tages and limitations of current open-source approaches and
consider future directions at the intersection of LLMs and
behavioral research.

A primer on transformer-based language
models

Today’s LLMs are based on the transformer architecture
(Vaswani et al., 2017), which is a family of neural network
models that draw on a common set of building blocks. In this
section, we first introduce these building blocks in sequence
(see Fig. 1) before discussing important architectural variants
and ways of applying LLMs in behavioral science.

Tokenizers

When text input is fed into an LLM, it is first broken up
into digestible pieces known as tokens. This decomposition
is carried out by the LLM’s tokenizer, which is a model
in its own right. For instance, the (uncased) WordPiece
tokenizer (Wu et al., 2016) underlying the popular class
of BERT models (Bidirectional Encoder Representations
from Transformers; Devlin et al.,2018) breaks up the sen-
tence "Open-source LLMs rock." into "[CLS]", "open", "-",
"source", "ll", "##ms", "rock", ".", and "[SEP]". This exam-
ple illustrates that tokens are often words, but not always.
They can also be punctuation ("-" and "."), subwords ("ll"
and "##ms"), and special tokens ("[CLS]" – shorthand for
"classification" – and "[SEP]" – for "separator"). Tokenizers
can differ betweenmodels and include lower- and upper-case
tokens.

There are several principles behind tokenization. First,
including punctuation helps the LLM represent the logical
structure of sentences and produce text that contains sentence
clauses or multiple sentences. Second, the use of subwords
significantly reduces the number of tokens the LLM must
learn by assigning stand-alone tokens only to frequent words
and constructing all other words using subword tokens. Note
that subword tokens that do not start a word begin with "##"
to signify that they follow the previous tokenwithout a space.
Whether a word is assigned a stand-alone token or decom-

posed into subwords depends on the specific algorithm and
the text corpus used by the algorithm to identify the most
effective set of tokens. Which words the tokenizer assigns
stand-alone tokens to has been found to have important impli-
cations for what an LLM learns (Ali et al., 2023). Third,
placing special tokens at the beginning ("[CLS]") and end
("[SEP]") of texts enables the LLM to predict the first word
and the end of a text and to learn numerical representations
that can stand in as a representation of the entire text.

Before we continue, we should note that consistent with
much of the literature on large language models (e.g., Devlin
et al., 2018), our use of the term "token" does not follow
the distinction between types and tokens in philosophy and
linguistics, where tokens refer to specific instances or occur-
rences of types (Wetzel, 2018). Thus, here and in the literature
on LLMs, the term "token" refers to both types and tokens.

Input embeddings

After tokenization, each token is assigned a numeric vector.
Prior to training, this simply consists of random numbers.
In the case of certain BERT and GPT-2 models (i.e., Distil-
BERT, BERT-Base, and GPT-2 Small), these vectors consist
of 768 numbers (dimensions). The embedding vectors mark
the starting point of the neural network and are learned during
training, where their values are adjusted iteratively to assist
the model in achieving its objective. After training, the input
embeddings reflect, in an abstract fashion, a context-general
meaning of each token relative to the other tokens.

In contrast to other approaches to semantic representation
(Li, 2022; Siew et al., 2019), such as those treating words
or tokens as nodes in a network, vector-based embeddings
have two key advantages. First, they permit LLMs to be
more efficient: The number of embedding dimensions is typ-
ically at least an order of magnitude smaller than the number
of tokens, resulting in substantially fewer parameters being
needed to represent the relationships between tokens. For
instance, the WordPiece tokenizer used by BERT encom-
passes about 30,000 tokens, which is roughly 40 times more
than the number of embedding dimensions (i.e., 768). Sec-
ond, they assist the model in performing generalization: The
embedding vectors encode the relationships between tokens
to one another, such that the model shows similar behavior
for similar tokens.

Fig. 1 Overview of the LLM processing pipeline. The diagram illustrates the sequence of operations performed on an input prompt, including how
it is tokenized and then processed by the transformer architecture to produce a set of output probabilities
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Input embeddings do not reflect the location of tokens
within a given input or context. To capture order, most LLMs,
such as GPT-2 and successors, include another component
called positional encoding. This is a second token embedding
that represents the relative position of tokens using a combi-
nation of sine and cosine functions. The positional encoding
is typically added to the input embedding to formembeddings
that reflects both the context-general meaning of a token and
its position in the input to the model.

Attention blocks

The attention block is the central building block of trans-
former models and is what distinguishes them from other
neural network-based language model architectures, such as
Word2Vec (e.g., Mikolov et al., 2013) and recurrent neural
network-based language models (Graves, 2012). The pur-
pose of the attention block is to produce embeddings that
represent the in-context meaning of tokens. For example,
consider again the sentence "Open-source LLMs rock."After
input embedding and positional encoding, each token in the
sentence is represented using a context-general embedding
vector. These context-general embeddings reflect the mean-
ing of tokens broadly, not considering the specific context
in which they occur. However, the meaning of tokens can
vary considerably across contexts: consider, for example, the
polysemous "rock." The transformer architecture uses the
attention mechanism to capture these context-specific mean-
ings.

The components of the attention block are illustrated in
Fig. 2. It begins with the token embeddings, which, in the
case of the first attention block, are the sum of the input

embeddings and the positional encoding, normalized to have
a zero mean and unit variance. Entering the attention mecha-
nism, these embeddings are transformed by a linear layer into
three new, lower-dimensional embeddings called queries,
keys, and values. This transformation can be likened to a
method – principal component analysis – known to behav-
ioral researchers in that it produces output variables that are
lower dimensional linear combinations of the input variables.
The names of these three smaller embeddings suggest that
they can be likened to a retrieval, where a query is compared
to keys to identify a value matching the query. Although this
analogy should not be taken too literally, it does reflect how
the queries, keys, and values collaborate to produce contex-
tualized embeddings for each token. Specifically, the queries
and keys combine to determine how to recombine the values
to build contextualized embeddings.

Computationally, the attention mechanism works as fol-
lows. First, the dot product of each pair of queries and keys
is computed, forming a square matrix of attention scores.
The attention scores are then normalized by

√
dk , to account

for the dimensionality d of the keys k. These normalized
attention scores are next fed row-wise into the softmax func-
tion exi /

∑
j ex j , where each xi is a scalar attention score on

key i , to produce attention weights wi j . Finally, the attention
weights of each row, which now add to 1, are used to produce
a weighted sum

∑
j wi j ∗ v j of the values v of all tokens.

Theseweighted sums are the newcontextualized embeddings
for each token. This attention mechanism can also be repre-
sented using the following matrix notation

Attention(Q, K , V ) = softmax

(
QK T

√
dk
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Fig. 2 Transformer attention block. The diagram illustrates how the input embeddings are passed to multiple attention heads, each performing a
series of operations to generate queries, keys, and values, and leading ultimately to contextualized embeddings
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where Q, K , and V are matrices respectively containing the
queries, keys, and values, and T denotes the matrix trans-
pose. This process of generating contextualized embeddings
by mixing values as prescribed by the queries and keys does
not per se produce useful contextualized embeddings. This
is only achieved in training, which allows the model to fig-
ure out how to construct queries, keys, and values such that
the contextualized embedding helps it achieve the model
objective, such as predicting the next unit in a sequence
(see Section Model output and training). In other words, the
model uses the attentionmechanism to learn how context can
help it solve a prediction problem.

The next step in the attention block is to gather the contex-
tualized embeddings from themultiple attentionmechanisms
that are executed in parallel across several attention heads.
Running multiple attention mechanisms in parallel permits
the model to produce different contextualized embeddings
– based on different queries, keys, and values – that may
focus on different kinds of relations between tokens. How-
ever, it should be noted that these relations are typically not
human-interpretable (e.g., Vig, 2019;Vig&Belinkov, 2019).
Figure 2 shows , for illustrative purposes, four attention
heads; however, current models usually have significantly
more. The contextualized embeddings from the four atten-
tion heads are concatenated such that the final embedding for
each token is a combination of the embeddings produced by
the different heads. This final contextual embedding has the
same dimensionality as the input embeddings (e.g., 768).

The attention block further processes the contextualized
embeddings in several steps. First, they are passed through
a linear layer. They are then added to the initial embeddings
that entered the attention heads. This addition is called a
skip connection and is thought to help stabilize the model
during training. After the skip connection, the embeddings
are passed through a larger layer with a nonlinear activation
function that plays two important roles. First, through its
nonlinearity, it provides considerable flexibility in process-
ing and recombining the contextualized token embeddings.
Second, through its larger number of nodes, it provides a
number of weights (parameters) that enhance the network’s
memory capacity. In the case of BERTmodels, this nonlinear
layer is four times larger than the token embeddings, imply-
ing an upscaling to 3072 dimensions and over two million
weights connecting the two layers. After the large, nonlin-
ear layer, the token embeddings are scaled back down to the
standard embedding size using a linear layer, so as to match
the required input size for the next model block, and passed
through another skip connection prior to the nonlinear layer
to provide stability.

Ultimately, the attention block produces embeddings for
each token that are the same size as the initial embeddings but
are now contextualized such that each token’s embedding is a
complex recombination with the other tokens’ embeddings.

Following the first attention block, most transformer models
add additional attention blocks that take the contextualized
embeddings from the previous block as input. As a result,
transformer models produce several layers of abstraction
where the final contextualized embeddings are combinations
of recombinations (for more technical introductions to the
attention mechanism, see Prince, 2023; Tunstall et al., 2022;
Sanderson, 2019).

Model heads and training

Thefinal component of themodel is themodel head.This pro-
duces the model output, which can be adjusted to numerous
tasks. During pre-training – that is, the initial phase of train-
ing a language model on a large corpus by learning linguistic
patterns and relationships within the data – the model head
usually performs token classification. This means predicting
one or more of the tokens in the model’s vocabulary based
on the model input. There are two dominant approaches to
pre-training LLMs through token classification: masked lan-
guage modeling and causal language modeling. Of course,
given the availability of high-quality, pre-trained LLMs, we
believe most behavioral scientists will have little reason to
train their own LLM from scratch. Furthermore, the com-
putational resources and technical expertise required to do
so can be prohibitive. However, discussing these two modes
of training will both help in illustrating the role of a model
head (see Fig. 3) as well as provide some necessary back-
ground for making informed decisions about which kind of
pre-trained model to use for the task at hand (see Section
“Choosing between models”).

In masked language modeling, a special "[MASK]" token
is inserted into the token sequence in place of one ormore ran-
domly selected tokens. For instance, in our example sentence,
replacing the word "rock" would result in the token sequence
"[CLS]", "open", "-", "source", "ll", "##ms", "[MASK]", ".",
"[SEP]" as model input. As with any other token, the model
will produce an embedding for the "[MASK]" token that
reflects its context. This contextual information can thus be
leveraged by the model head to predict the masked token.
To achieve this, the model head takes the "[MASK]" token’s
final contextualized embedding, passes it first through a final
hidden layer, which can be linear or nonlinear, and then
into the final linear layer with a softmax output that has
as many output nodes as there are tokens in the model’s
vocabulary. As in the attentionmechanism, the softmax func-
tion produces values that sum to 1, meaning they can be
interpreted as probabilities. The model head uses these prob-
abilities to predict which token is behind the "[MASK]"
token. Before pre-training, these predictions will be no bet-
ter than chance. However, during training, the model will
incrementally adjust its parameters ("weights") in a direction
that produces higher probabilities for tokens that are behind
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the "[MASK]" token and lower probabilities for those that
are not. In our example sentence, this would mean learn-
ing to assign a higher probability for the target, "rock", and
other tokens plausibly fitting the context, such as "impress"
or "excel", and a lower probability for unfitting tokens, such
as "cat", "taste", or ",".

The second and nowmore popular way to pre-train LLMs
is known as causal language modeling (or autoregressive
modeling). In this mode of training, the model head also per-
forms token classification. However, instead of predicting
a masked token from its complete surrounding context, the
model is trained to predict the next token in a sequence based
only on the tokens that preceded it (i.e., it does not get access
to future tokens). To perform this kind of training, causal lan-
guage models use different tokenizers without a "[MASK]"
token. Models trained using causal language modeling also
implement a different type of attention mechanism that man-
ually sets all attention to future tokens to zero.Thismeans that
each token’s contextualized embedding is composed only of
its own value vector and the values of the tokens preceding
it. To predict the next token, the model head selects the con-
textualized embedding of the last available token of the input
(which is used analogously to the "[MASK]" token inmasked
languagemodeling). For example, to predict the token "rock"
based on preceding tokens, the model head would select the
contextualized embedding of the "##ms" token, including
information about the preceding tokens and itself, and pre-
dict which of all possible tokens likely follow. After training,
the model will assign high probabilities to suitable tokens,
such as "enable", "offer", or the target token "rock", but not
to unsuitable tokens. Importantly, these will not be the same
tokens predicted in masked language learning, due to the
difference in the information accessible to the model. Specif-
ically, not being able to look into the future, a model trained
through the causal language mode would likely assign some
probability to the token "," to mark the end of a sentence
clause. This is an unlikely prediction for a model trained

in masked language mode, which would have access to the
period token "." later in that sequence.

Finally, it is important to note that token classification, as
employed inmasked and causal languagemodeling, is not the
only pre-training objective, nor are masked and causal lan-
guage modeling the only modes of pre-training. One other
pre-training mode for transformer models is next-sentence
prediction. In this mode, the model head is set up to predict a
single numerical value between 0 and 1, reflecting the prob-
ability with which two input sentences occurred adjacently
in the training data. Next-sentence prediction is used in the
pertaining of some BERT-style models, typically in addi-
tion to masked language learning. Next-sentence prediction
illustrates that the transformer model head can be adjusted
to predict different data types. This flexibility is exploited
frequently, for instance, in the fine-tuning of LLMs to per-
form specific tasks based on smaller, task-related datasets
(see Section “Fine-tuning”).

An overview of model types

Since the inception of the transformer architecture (Vaswani
et al., 2017), many model variants have emerged that differ
in important ways, including the architecture family (i.e.,
encoder, decoder, or encoder–decoder), model size, stage of
training reached by the model, and openness.

Concerning the architecture family, it is helpful to distin-
guish the encoder, decoder, and encoder–decoder architec-
tures (see Fig. 3). The encoder architecture is characterized
by bidirectional attention, pre-training through masked lan-
guage modeling (and, sometimes, next-sentence prediction),
and the use of special tokens such as "[CLS]", "[SEP]", and
"[MASK]". The goal of the encoder architecture is to pro-
duce accurate contextualized embeddings, including for the
special tokens. Prominent examples following the encoder
architecture are the models of the BERT family (e.g., Distil-
BERT (Sanh et al., 2019) or RoBERTa (Liu et al., 2019)), and
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[SEP]
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Fig. 3 Overview of pre-training mode and transformer family. The figure illustrates two pre-training modes (masked language modeling, causal
language modeling) and associated architecture family (encoder, decoder)
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the instructor models (Su et al., 2022). The decoder architec-
ture, on the other hand, is characterized by causal attention
and pre-training through causal languagemodeling. The goal
of the decoder architecture is to generate text via next-token
prediction. Prominent examples of the decoder architecture
are the GPT (OpenAI, 2023) and LLaMA model families
(Touvron et al., 2023). Finally, the encoder–decoder archi-
tecture is characterized by a combination of the two, and is
the original transformer architecture as proposed in Vaswani
et al. (2017). It is trained with next-token prediction, where
the input text is first fed to the encoder, the encoder’s last hid-
den state is then passed as input to the decoder, which then
predicts the next token. Prominent examples of the encoder–
decoder architecture are the BART (Lewis et al., 2019) and
T5 (Raffel et al., 2020) models.

A second key differentiating factor between LLMs is size.
Size is often measured in terms of the number of weights
in a model, which can vary between a few hundred million
(e.g., most BERTmodels) and several hundred billion (Smith
et al., 2022, e.g., Megatron Turing NLG) – or even the tril-
lion weights supposedly reached by OpenAI’s GPT-4 model.
Although the number of weights plays a large role in deter-
mining a model’s capacity to learn from the training data,
how theweights are distributed throughout the variousmodel
components also matters (Kaplan et al., 2020). The size of
LLMs can also differ in a more functional way, by allowing
for different context sizes. The context size is the maximum
number of tokens in a sequence that the attention mechanism
can evaluate at any given time, and it determines the com-
plexity of connections between tokens that the model can
consider. This is important for applications such as few-shot
learning (see Section “Applications of LLMs in behavioral
science”). From a practical perspective, context size also
determines the amount of random-access memory (RAM)
needed to run a model. For large decoder models such as
LLaMA-2 (70 billion weights), RAM requirements can be
as high as 300 gigabytes, resulting in a need for expensive,
high-performance graphical processing units (GPUs).

A third differentiating factor is the stage of training
reached by the model. First, there are pre-trained models,
which have been trained on a large corpus of text using
masked or causal language modeling. The text corpus typi-
cally includes websites, which in turn include blogs, news
articles, Wikipedia, social media platforms (e.g., Reddit),
and other sources of text (e.g., books, academic articles).
Larger pre-trained models are sometimes also called foun-
dation models (Bommasani et al., 2023), emphasizing their
purpose as a basis for task-specific training. Second, there
are fine-tuned models, which are pre-trained models that
have been further trained on task-specific data to selectively
increase their performance on certain tasks. These can be
basic tasks, such as token classification or prediction of

numerical variables, or more complex tasks, such as named-
entity recognition or question answering.

A fourth differentiating factor that concerns the set of fine-
tuned models and has played an especially important role in
the growth in popularity of LLMs in recent times is whether
the model is a "chat" model. Specific fine-tuning regimes
exist tomake pre-trainedmodels better suited to high-quality,
assistant-style interactions through a chat interface. These
include training steps with explicit human input such as
supervised fine-tuning, reinforcement learning from human
feedback (Christiano et al., 2017; Touvron et al., 2023), and
direct preference optimization (Rafailov et al., 2024). For
instance, in supervised fine-tuning, human "annotators" gen-
erate prompts and appropriate assistant-style responses to
those prompts, such that the model may learn via "imita-
tion" to become a good assistant. Reinforcement learning
from human feedback is a more complex, multistage proce-
dure in which human annotators indicate their preferences
between model outputs according to specific criteria (e.g.,
safety or helpfulness) to build a "preference dataset" (stage
1) (Touvron et al., 2023). This dataset is then used to train a
reward model that learns the annotators’ preferences (stage
2), which in turn provides feedback on the outputs of the
LLM in much vaster quantities than would be possible with
human annotations alone. This enables the LLM to learn via
reinforcement to become a better assistant. Such fine-tuning
can be seen as an example of how LLMs can be tailored to
specific behavioral applications. A prominent example of a
chat model is ChatGPT, but other open-source models exist,
including LLaMA-2 Chat (Touvron et al., 2023) or Falcon
Chat (TII, 2023).

A fifth and final differentiating factor is openness. LLMs
differ in terms of how much information is available about
the training data, training method, or architecture (see Bom-
masani et al., 2023) and how openly available the models
themselves are. Some models, such as GPT-4, are only
available through remote user interfaces, whereas others are
mostly (e.g., LLaMA) or fully (e.g., BERT) open-source.
Most open-source models can be accessed and employed
via the Hugging Face ecosystem introduced in this tutorial,
which has significant advantages over closed-source models
in terms of transparency and reproducibility.

Applications of LLMs in behavioral science

LLMscan be employed in severalways in behavioral science.
The most basic but often effective mode is feature extraction
(e.g., Aka & Bhatia, 2022; Binz & Schulz, 2023a; Hussain
et al., 2023; Wulff & Mata, 2023). Feature extraction sends
text input through the model and records contextualized
embeddings, typically at the final layer. The resulting embed-
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ding vectors can then be utilized in many ways. For example,
the use cases presented in the next sections demonstrate how
feature vectors can be used to predict the similarity between
personality constructs, choices in reinforcement learning
tasks, or numerical judgments such as risk or health percep-
tion ratings. Feature extraction is commonly performed using
encoder models with bidirectional attention (Muennighoff
et al., 2022), which allows them to better utilize all available
information during pre-training.However,when the goal is to
predict the next element in a sequence, decoder models can
be equally or more effective, also because current decoder
models are significantly larger and trained on more data than
encoder models.

Another class of applications utilizes themodel’s ability to
predict outcomes with no or minimal supervision. The use of
transformermodelswithout any kind of task-specific training
to predict verbal or numerical outcomes is called zero-shot
learning. This approach can be used to generate categorical
and numerical predictions – for example, to predict the cate-
gory of a news article or the sentiment of a social media post
(e.g., Widmann & Wich, 2023; Pelicon et al., 2020; Gilardi
et al., 2023). Zero-shot learning can be performed using all
three types of transformer architectures, with some differ-
ences in implementation. Few-shot learning is an extension
of zero-shot learning where minimal supervision is provided
in the model input – for instance, in the form of a handful of
input–output pairs. In classifying a social media post’s sen-
timent, this would imply including pairs of the post’s text
and known sentiment in the model input. Few-shot learning
can, in principle, be used with any model type; however, it
is most commonly employed using modern decoder mod-
els, which tend to contain more parameters and show better
performance on few-shot tasks (Brown et al., 2020). Off-the-
shelf, large-scale decoder models, such as GPT-4, provide
good zero-shot and few-shot performance (Törnberg, 2023;
Rathje et al., 2023).

However, fine-tuning smaller language models on a spe-
cific task can result in equally good or even better per-
formance relative to the zero- or few-shot performance of
larger models (Wang et al., 2022; Chae & Davidson, 2023;
Rosenbusch et al., 2023). Unlike zero- or few-shot learning –
both of which leave model parameters unchanged during the
"learning" phase – fine-tuning involves explicit updating of
model weights with the goal of improving task-specific per-
formance. As a result, fine-tuning is an important strategy
for applications in behavioral science (e.g., Demszky et al.,
2023).

The final class of application is text generation. This
application is specific to encoder-decoder and decoder-only
models. Text generation can be used to perform various tasks
including summarization, question answering, or simply free
text generation. Some examples of the use of free text gen-
eration include comparing reasoning abilities in LLMs and

humans (Yax et al., 2023; Webb et al., 2023) and simulat-
ing the responses of study participants (Argyle et al., 2023).
These simulations need not be constrained only to predicting
human behavior, but could also be used to suggest explana-
tions for why people behaved a certain way (Bhatia, 2023).

Choosing betweenmodels

Given the various model types available and their differing
applications in behavioral science, one natural question that
follows is which model to use for the application at hand.
In view of the constantly developing architectural landscape
and the important role played by task-specific properties, it is
difficult to predict model success. Nevertheless, some heuris-
tics tend to hold.

First, larger models tend to perform better than smaller
ones (Kaplan et al., 2020). On the other hand, they also
demand more computational resources. Modern large lan-
guage models typically exceed the capacity of personal
computers, requiring access to either high-performance clus-
ters or cloud computing services. These requirements can
be alleviated with quantization (e.g., Ma et al., 2024; Fran-
tar et al., 2022), reducing a model’s numerical precision, or
knowledge distillation (Hinton et al., 2015), transferring a
model’s representations into a smallermodel. Although these
approaches usually come with some loss in performance,
a quantized version of a larger model will, for instance,
often outperform its smaller, full-precision equivalents. Ulti-
mately, choices concerning model size must factor in these
kinds of computational resource considerations.

Second, decoder models are more suited than encoder
models to taskswhere tokensmust be predicted in sequence –
that is, in the order that the tokens would be written (see, e.g.,
Section Extracting token probability and perplexity). This is
due to their causal language modeling pre-training objec-
tive, which prevents them from "cheating" by having access
to future tokens when predicting the present token. On the
flip side, when representations of the context (before and)
after a given token of interest are desired (see, e.g., sections
Relating personality measures and Predicting health percep-
tion), encoder models typically outperform similarly sized
decoder models. This is often the case for feature extraction
tasks unless the goal is to generate predictions that are more
sequential in nature (see, e.g., Section “Predicting repeated
choice”), in which case a decoder model may be better
suited.

Third, chat models that have been fine-tuned with assistant-
oriented regimes, such as reinforcement learning fromhuman
feedback, are often better at producing coherent human-like
output. This makes them more useful for a variety of tasks,
such as text labeling, information retrieval, and text gen-
eration. The latter includes applications such as generating
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study materials or simulating human participants in behav-
ioral experiments (see Section “Text generation”).

In addition to these heuristics, several empirical bench-
marks exist that can help with selecting the right model for a
task. There are separate benchmarks for various tasks, cover-
ing both feature extraction (e.g., huggingface.co/spaces/mteb
/leaderboard) and text output (e.g., huggingface.co/spaces/
lmsys/chatbot-arena-leaderboard). An overview of bench-
mark results for open models accessible through Hugging
Face can be accessed at huggingface.co/spaces/HuggingFace
H4/open_llm_leaderboard.Generally, it is useful to select the
model whose benchmark performance is high for tasks sim-
ilar to the task at hand. Of course, benchmark performance
may fail to generalize.

The Hugging Face ecosystem

The Hugging Face ecosystem has two main components:
an online hub ("the Hub", huggingface.co/docs/hub) and a
set of Python libraries (as illustrated in Fig. 4, hugging-
face.co/docs). Hosting over 300,000 models and 60,000
datasets, the Hub constitutes an impressive community-
driven effort to democratize language modeling, as well as
other types of modeling, such as computer vision. Further-
more, thanks to Hugging Face’s Python libraries, many of
the steps traditionally required to implement LLMs have
become considerably more accessible, often requiring just
a few lines of code each. These steps typically include pro-
cessing the data, initializing the model, and applying the
model to a specific task. This section introduces some of the
more crucial components of libraries, such as datasets,
tokenizers, transformers, and accelerate, and
outlines how these components can help with these tasks.

The first step in almost any language modeling pipeline is
data processing. This usually involves data loading, cleaning,
and reshaping. Because natural language processing (NLP)
datasets can sometimes be in the order of tens or even hun-
dreds of gigabytes, they cannot always be loaded into RAM
or stored on the hard drive. datasets addresses this issue
by enabling users to convert their data to Apache Arrow for-

mat, allowing it to be flexibly and efficiently read from the
hard drive or streamed online, thus preventing RAM or hard
drive storage overload.

Once thedataset has been loaded indatasets. Data-
set format, it must be tokenized before it can be fed
into a model. It is essential that the method of tokeniza-
tion is matched to the pre-trained model. Hugging Face’s
tokenizers and higher-level API alternatives from the
transformers librarymake it easy to initialize the appro-
priate tokenizer using the tokenizer’s .from_pretrain-
ed()method. This can be done by passing the model check-
point – a unique character string that identifies the model on
the Hugging Face Hub (see huggingface.co/models).

Hugging Face models can be loaded in a single line using
the transformers.AutoModel.from_pretrain-
ed() method, and placed on the graphics processing unit
(GPU) if a compatible GPU is available. This can speed
up model inference and fine-tuning to such an extent that
it may make an otherwise infeasible task feasible. Train-
ing and inference can be further optimized by distributing
across multiple GPUs with accelerate. In the exam-
ples that follow, accelerate works in the background
of the transformers library via arguments such as
device_map="auto" to automatically optimize the dis-
tribution of resources across processing units to allow easy
upscaling to larger models.

It is important to note that the Hugging Face ecosys-
tem is dependent on deep learning libraries such as PyTorch
(pytorch.org) or TensorFlow (tensorflow.org), and interacts
with popular Python libraries such as NumPy (numpy.org)
and Pandas (pandas.pydata.org). Furthermore, it interfaces
with several other Python libraries, including SentenceTrans-
formers (sbert.net/docs/quickstart.html), offering a high-
level API to obtain embeddings from over 500models hosted
on the Hugging Face Hub in addition to providing its own
pre-trained models.

In what follows, we demonstrate how the Hugging
Face ecosystem can be used for three types of appli-
cations, namely, feature extraction, fine-tuning, and text
generation, by presenting several use cases in behavioral
research with (accompanying code). Comprehensive and

Fig. 4 The main components of the Hugging Face ecosystem. The figure is adapted from Tunstall et al. (2022)
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richly commented code is available in notebook format at
github.com/Zak-Hussain/LLM4BeSci.git, a GitHub reposi-
tory with instructions for running the code online in a Google
Colab environment. The repository also provides a means of
keeping the code base for this tutorial up to date.Keep inmind
that the Hugging Face ecosystem is in active development,
making it likely that specific aspects of the code presented
in this paper will be deprecated by the time of reading. We
plan to regularly update theGitHub repository and respond to
update requests, which can be submitted as GitHub issues at
github.com/Zak-Hussain/LLM4BeSci/issues/new. For fur-
ther information on Hugging Face, we suggest the Hugging
Face textbook by Tunstall et al. (2022).

Feature extraction

Relating personality measures

Feature extraction from LLMs is already being leveraged
in diverse ways to assist research in personality psychol-
ogy (e.g., Abdurahman et al., 2023; Cutler & Condon, 2023;
Wulff & Mata, 2023). In this example, we show how LLMs
can be used to predict the relationship between existing per-
sonality measures (i.e., personality items and constructs).
Specifically, we walk the reader through an analysis pipeline
emulating the work ofWulff &Mata (2023) that used feature
extraction to generate item and construct embeddings – rep-
resentations of psychometric items and constructs in a vector
space obtained from LLMs – and then applied these vectors
in downstream tasks, such as similarity comparison and clus-
tering, to both validate different models and tackle the lack of
conceptual clarity in personality psychology (Wulff &Mata,
2023). See github.com/Zak-Hussain/LLM4BeSci.git to run
this example in a Google Colab environment.

The example begins by loading the relevant data, in this
case, data concerning the IPIP-NEO-300 five-factor person-
ality inventory (Goldberg et al., 2006), into apandas.Dat-
aFrame,verb|neo_items (see Table 1). The goal in this
example will be to obtain item embeddings – representations
of personality items and constructs – using feature extraction,
so that these embeddings can be used to estimate the simi-
larity between items and constructs. The similarity between
items and constructs can ultimately be used to uncover the
structure of psychological constructs and to inform the label-

ing of these measures (Wulff & Mata, 2023). The data set
used in the example has three columns: ’item’ (the per-
sonality item description), ’construct’ (the personality
construct to which the item belongs), and ’factor’ (the
Big Five personality factor to which the construct belongs).
Once the data has been loaded (and any necessary clean-
ing and reshaping performed), they are converted into a
datasets.Dataset object for efficient storage using the
from_pandas() method.

The text input is now ready for tokenization. As men-
tioned earlier (see Section “Tokenizers”), the tokenizer must
be consistent with the model to be used downstream. As
such, a model checkpoint (model_ckpt) must first be
defined. In our example, we use a lightweight version of
BERT (’distilbert-base-uncased’) to ensure ease
of storing and running the model on most hardware setups.
However, it could easily be replaced by a larger model from
the Hugging Face Hub, hardware limitations permitting.
With the model_ckpt specified, the model tokenizer can
be loadedwith AutoTokenizer.from_pretrained-
(model_ckpt).

Tokenization is performed efficiently across groups of
inputs, called batches, by mapping dat with a user-defined
batch_tokenizer function. This takes two important
arguments:padding andtruncation.padding is used
to fill up sequences with zeros to match the length of the
longest sequence in the batch, thus ensuring that all sequences
in the batch have the same length. This is essential for train-
ing and inference with deep learning models, which operate
on fixed-size input tensors. Tensors are a generalization of
vectors, including vectors, matrices, and higher order arrays.
truncation is the process of cutting off the end of a
sequence to ensure that it fits within the model’s maxi-
mum context size. In the case of BERT models, this is 512
tokens. It is worth noting that alternative strategies exist if
the to-be-dropped part of the sequence is thought to con-
tain useful information, including splitting up the sequence
into digestible batches and averaging the embeddings across
batches.

As output, thebatch_tokenizer returns aPythondic-
tionary with two keys:’input_ids’ and ’attention-
_mask’.’input_ids’maps to a list of integers uniquely
representing each token in the sequence. ’attention_m-
ask, which is not to be confused with the learned attention
weights,maps to a list of ones and zeros, where the ones stand

Table 1 Three example items from IPIP-NEO-300 five-factor personality inventory Kajonius & Johnson (2019)

Text Construct Factor

Go straight for the goal. Achievement-Striving Conscientiousness

Plunge into tasks with all my heart. Achievement-Striving Conscientiousness

Remain calm under pressure. Vulnerability Neuroticism
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in place of each token and the zeros pad the sequence tomatch
the longest in the batch due to padding. For instance, the
personality item ’Go straight for the goal.’
tokenizes to:

with the ’input_ids’ referring to the tokens "[CLS]",
"go", "straight", "for", "the", "goal", ".", and "[SEP]". The
final pre-processing step involves converting the data to the
PyTorch (torch) format such that they can be passed to the
model.

The data are now ready to be fed into the model. Model
architecture and pre-trained weights are loaded in a single
linewithAutoModel.from_pretrained(model_c-
kpt). The code next detects whether a Compute Unified
Device Architecture (CUDA)-compatible or Apple Metal
Performance Shader (MPS)-compatible GPU is available
using PyTorch and, if so, sets the device to the GPU. Other-
wise, the CPU is used. Themodel is thenmoved to the device
with the to() method.

Data can be more efficiently fed into the model in batches
and this is done automatically using the Dataset.map()
method. To extract the features (i.e., the numerical vector
representations of the inputs), the researcher must define a
function extract_features(). It takes batches of dat
as input and selects the columns containing the model inputs
by checking whether the column name is referenced in a
list accessed via tokenizer.model_input_names. In
this case, the list contains twomodel inputs:’input_ids’
and ’attention_mask’. These are then input to the
model with gradient calculations disabled by torch.no-
_grad(). This is done for efficiency reasons: By default,
torch models build a computational graph in the back-
ground in order to perform gradient descent. Because feature
extraction only performs a forward pass through the model
(i.e., there is no weight updating), no computational graph is
required.

Finally, the extract_features() function extracts
the activations of the last layer of themodel via model(**-
inputs).last_hidden_state. This returns a tensor
of shape batch_size, n_tokens, hidden_dim –
in this case8, 16, 768, respectively –due to beingpassed
through dat.map()with batch_size=8, padding=-
True , and the number of embedding dimensions in the
model being 768. It is worth mentioning that because
padding=T-
rue pads to the length of the longest sequence in the batch,
n_tokens will not always equal 16. From this tensor, the
first token features at position 0 are selected, moved back

onto the CPU, and converted to a NumPy array per the
requirement ofDataset.map(). The first token is the spe-
cial "[CLS]" token, inserted at the beginning of each input. It
is known to produce a holistic representation of the content
of the entire input and is therefore a common target in fea-
ture extraction (Tunstall et al., 2022). However, it should be
noted that other feature extraction strategies exist than those
focusing on the "[CLS]" token, such as taking the average
of all output representations (known as "mean-pooling", see,
e.g., Reimers & Gurevych, 2019).

The function is then applied using the dat.map()
method, which runs the items in batches of eight through the
function. Depending on the researcher’s RAM constraints,
the batch_size could be increased. Finally, the features
are converted into a pandas.DataFrame for later down-
stream use.

In our example, the application of item embeddings
involves similarity comparison between personality items.
The similarity between the items is evaluated by pass-
ing dat[’hidden_state’], containing the features
extracted for each item, to sklearn’s cosine_simila-
rity() function. This function computes the cosine sim-
ilarity, a measure commonly used to evaluate the similarity
between embedding vectors, for each pair of items and
returns a square NumPy array of pairwise item similarities.
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Before we discuss the actual use of the cosine similarities
obtained, it should be noted that there are higher-level API
alternatives to feature extraction, such as the SentenceTrans-
formers library (sbert.net/docs/quickstart.html) and the Hug-
ging Face transfomers.pipeline abstraction. There
are, however, two reasons for introducing feature extraction
as we do above. First, even if the researcher opts for the
higher-level API in their own work, the lower-level code
can give them a better understanding of what is happening
in the background. For instance, it highlights the impor-
tance of tokenization, allows researchers to easily inspect
which inputs get fed into the model (’input_ids’ and
’attention_mask’), and indicates which features get
extracted (the last hidden state). This background under-
standing can be crucial for debugging code and knowing
how to appropriately adjust it to the research context. Sec-
ond, and almost by definition, the lower-level API has the
advantage of greater customizability. That being said, due
to their simplicity, higher-level APIs will often be the best
option for researchers wishing to implement their own fea-
ture extractor. For the sake of brevity and consistency, we
demonstrate how this can be done with the higher-level
transformers.pipelineAPI, and refer readers to the
SentenceTransformers library for an alternative approach.

The pipeline object, pipeline, achieves the same
results as the example above but with considerably less code.
pipeline takes ’feature-extraction’ as a posi-
tional argument upon initialisation. In the same line, the
desired model and corresponding tokenizer can be loaded by

specifying model=model_ckpt and tokenizer=mo-
del_ckpt as arguments. Rather than moving the data and
model onto the GPU with the to() method, this is all done
in the background by setting device=device. PyTorch
is specified as the chosen deep-learning framework for run-
ning the model with framework=’pt’. Finally, feature
extraction is run by passing the personality items as a list of
strings to the now initialized feature_extractor, with
tokenization options such as padding and truncation pro-
vided as a dictionary argument via tokenize_kwargs.
The feature extraction returns a list of tensors with each ten-
sor corresponding to a sample (i.e., personality item), and
with the "[CLS]" features accessible at index [0, 0].

855

Following Wulff & Mata (2023), the cosine similarities
between features can be comparedwith observed correlations
between participant responses at both the item and the con-
struct level. With ’distilbert-base-uncased’, a
relatively simple baseline model, the semantic content of the
personality items – as captured by the extracted features – is
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correlatedwith the absolute observed similaritieswith a Pear-
son r = .14. By aggregating item features and item correla-
tions to the construct level, this correlation increases to r =
.32 (see Fig. 5, panels A and B). As further shown inWulff &
Mata (2023), these correlations are higher for more recent,
larger models. For instance, hkunlp/instructor-xl
is a considerably larger alternative to DistilBERT that con-
tains 1.2 billion as opposed to 67 million parameters. At
the time of writing, it is at the top end of the Massive
Text Embedding Benchmark (MTEB) Leaderboard (hug-
gingface.co/spaces/mteb/leaderboard), and is also openly
available through the Hugging Face Hub. As such, it presents
a promising alternative to DistilBERT. Indeed, it achieves
considerably higher item-wise (r = .39) and construct-
wise (r = .56) correlations, which are comparable to those
produced by top-of-the-range paid-API-access embedding
models from Cohere (Cohere, Cohere-embed-english-v3.0)
andOpenAI (ada, text-embedding-ada-002). Finally, as illus-
trated in Fig. 5C, plotting a two-dimensional projection of the
similarities between constructs reveals that the placement of
constructs largely recovers the Big Five personality factors
to which the constructs are assigned. Overall, this example
highlights that item embeddings generated through feature
extraction can accurately capture the empirical correlations
between personality items and constructs and the overall
structure of human personality, although performance dif-
fers across models.

More generally, we should point out that LLMs are not
only capable of reproducing known facts about personality
psychology. Their ability to capture the conceptual relation-
ships between items, constructs, and their labels has been
exploited by Wulff & Mata (2023) to produce a mapping
of personality constructs and associated labels that increases
parsimony and reduces jingle–jangle fallacies; that is, the
proliferation of measures that have been given similar labels,

yet capture different constructs (jingle fallacies), as well
as measures that have received different labels, yet capture
the same construct (jangle fallacies). Consequently, feature
extraction can be a powerful tool in contributing to concep-
tual clarity in this field.

Predicting health perception

In this section, we move into the domain of prediction,
with the goal of showing how behavioral researchers can
use LLMs to predict human judgments and decisions
using the now-familiar feature extraction approach cou-
pled with regression modeling (or other predictive modeling
approaches). We use the example of predicting health per-
ceptions following the approach of Aka & Bhatia (2022).
We believe that predictive applications of LLMs such as
this present a promising means of both tracking real-world
perceptions and behaviors (e.g., Hussain et al., 2023), as
well as enabling (in-silico) testing of potential interventions
for improving communication between, for instance, health
experts or policymakers and the general public Aka&Bhatia
(2022). See github.com/Zak-Hussain/LLM4BeSci.git to run
this example in a Google Colab environment.

The dataset used here has two columns: ’text’ and
’labels’ (Table 2; Aka & Bhatia, 2022). ’text’ is
composed of short descriptions of various health states
extracted from the U.K. National Health Service’s web page.
’labels’ contains average numerical ratings of the sever-
ity of these health states from 782 participants, with higher
ratings indicating less severe states. The goal is to build a
model that predicts people’s perception of the severity of the
health states presented.

As demonstrated in the last section, the hidden state rep-
resentation of each health description in the’text’ column
canbe extractedusing’distilbert-base-uncased’.
These features can then be converted to a pandas.DataF-

Fig. 5 Personality psychology application. (A) Correlations between
predicted versus observed item similarities and (B) predicted versus
observed construct similarities based on embeddings from DistilBERT,
Instructor (instructor-xl), Cohere (Cohere-embed-english-v3.0), and

ada (text-embedding-ada-002) models.C Pairwise controlled manifold
approximation projectionWang et al. (2021) of Instructor-XLconstruct-
level features. Colors reflect the Big Five personality factor to which
the construct belongs. Error bars represent 95% confidence intervals
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rame, and used as predictors in a regression model to pre-
dict the health ratings. So as not to repeat code, this section
begins with these features already extracted.

Model performance is evaluated out-of-sample. In the
simplest case, this involves splitting the data into a train-
ing and a test set using sklearn’s train_test_split,
with 80%used for training and20%for testing (as determined
by test_size=.2). randome_state=42 is used for
reproducibility.

It is important to remember that the extracted features
are high-dimensional. In this case, there are 768 predic-
tors, as determined by the number of hidden dimensions in
’distilbert-base-uncased’. With only 621 sam-
ples in the training set, there are more predictors than
samples. In such a case, an ordinary least squares regression
solution cannot be identified. To address this issue, and more
general issues associated with high-dimensional data such
as over-fitting and multicollinearity, researchers commonly
employ regularization. In this case, sklearn’s RidgeCV
is used, where the regularization penalty (alpha) is auto-
matically tuned using cross-validationwithin the training set.

Once the regression model has been initialized using
RidgeCV() and assigned as regr, it is then fitted to the
standardized training data with regr.fit(). Standardiza-
tion is commonly performed in regularized regression, such
as ridge regression, to ensure that all predictors are given
equal weight in the regularization penalty. Finally, model
performance is evaluated with regr.score().

Table 2 Three examples from Aka & Bhatia (2022)’s health dataset
containing short health descriptions from the U.K. National Health Ser-
vice’s web page and average participant ratings of the severity of these
health states

Text Label

Broken leg. A broken leg (leg fracture)... 49.33

Bulimia. Bulimia is an eating disorder... 34.18

Hyperacusis. Hyperacusis is when... 53.82

Figure 6A shows a high alignment of predicted and
observed health state ratings, implying that much of the
variance in health state ratings can be explained by the Dis-
tilBERT features.

For the purposes of keeping the tutorial code simple,
out-of-sample performance was measured using a single
train-test split with a single model; ideally, performance
would be evaluated acrossmultiple splits to ensure the robust-
ness of the results. Using ridge regression with automatic
(nested) tuning of the regularization penalty hyper-parameter
(Varma & Simon, 2006), feature extraction with DistilBERT
on average explains over half of the variance in health
perceptions (R2 = .58). This performance, although con-
siderable, is inferior to that of larger models. As Fig. 6B
shows, the open-source Instructor model (instructor-xl), as
well as the proprietaryCohere (Cohere-embed-english-v3.0)
and ada (text-embedding-ada-002) models benefit from their
larger size, all showing a relatively similar increase in per-
formance relative to DistilBERT, with the best-performing
model achieving R2 = .70. These results could potentially
be improved further by using different prediction algorithms,
including nonlinear algorithms, or more fine-grained hyper-
parameter tuning.

Overall, the analysis shows that LLMs implementing a
simple feature extraction coupled with a regression-based
procedure can achieve impressive performance when tasked
with predicting human judgments.

Predicting repeated choice

The previous examples have demonstrated that LLM fea-
ture extraction can be used to predict aspects of human
psychology and judgments. But what about more complex
human behavior? This section demonstrates that the fea-
ture extraction pipeline can also be applied to decisions in
a repeated choice paradigm that involves sequential cog-
nitive reasoning. Moreover, it shows that only minor code
changes are needed to employ some of the largest and most
advanced LLMs currently available for these purposes. See
github.com/Zak-Hussain/LLM4BeSci.git to run this exam-
ple in a Google Colab environment.

The experimental data in this section come from a
paradigm known as the horizon task (Wilson et al., 2014).
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Fig. 6 Predicting health perception.APredicted versus observed health
ratings using DistilBERT. B Comparing the performance of Distil-
BERT, Instructor (instructor-xl), Cohere (Cohere-embed-english-v3.0),

and ada (text-embedding-ada-002), with tenfold cross-validation using
ridge regression. Error bars reflect ±1 SD

In this task, participants repeatedly choose between two
options. Upon selecting an option they receive a probabilis-
tic reward. Each game starts with four observational trials,
in which the examples are predetermined by a computer pro-
gram, followed by either one or six choices. Participants are
instructed to accumulate as much reward as possible over
the experiment. The data considered here are combined from
two previous studies (Wilson et al., 2014; Feng et al., 2021)
in which 60 participants each played 320 games, making a
total of 67,200 choices.

In line with earlier work (Binz & Schulz, 2023a; Coda-
Forno et al., 2023), the model inputs, also known as prompts,
are designed as follows (see also Fig. 7A). Each prompt con-
tains information about a single game, starting with a list
of previous choices and outcomes in the game. Following
a brief instruction, the text continues Q: Which machine do
you choose? A: Machine, missing only the number of the
selected machine (1 or 2). Choices and outcomes are sequen-
tially added to the list as the LLM interacts with the task.

Once the prompts have been loaded in a pandas.Data-
Frame, the same out-of-sample testing pipeline used in the
previous section on health judgments can be applied. The
only change necessary is to replace sklearn’s RidgeCV
with LogisticRegressionCV to account for the binary
criterion (i.e., machine 1 or 2). Analogous to RidgeCV,
LogisticRegressionCV also performs L2-regularizat-
ion with automatic regularization parameter tuning. For the
sake of brevity, we omit this code from the code block.

With the model ready, it can be fitted using the features
extracted from the ’distilbert-base-uncased’
model using a training portion of the data. The resulting
model achieved a considerable accuracy of 78.9% on the test
set. However, this performance can be improved using larger
models. This time,weconsider decodermodels,which, based
on currently available models, are better suited for the task

at hand in two ways. First, current decoder models are larger
in size than encoder models and can thus potentially capture
more sophisticated reasoning (Brown et al., 2020). Second,
their design may better match the sequential nature of the
task, which mirrors the next-token prediction setting.

Fortunately, the Hugging Face interface makes it possi-
ble to use some of the most advanced models with only
minor code modifications. In line with the goal of sharing
reproducible code that can run in a Google Colab envi-
ronment, we use a smaller Llama 2 model in the analysis
example (Touvron et al., 2023). Llama 2 is a family of large-
scale decoder models developed by Meta that are available
in different sizes, training stages, and formats through the
Hugging Face Hub. The specific model used in the example
is ’TheBloke/Llama-2-13B-GPTQ’, which has been
created by quantizing the 13 billion parameter model to 4
bits to reduce its RAM footprint without a significant loss
in accuracy (see, e.g., Frantar et al., 2022). With 13 billion
parameters, the model is two orders of magnitude larger than
the ’distilbert-base-uncased’ model used thus
far.

A fewadditionalminormodifications are needed to use the
Llama 2model. First, because’TheBloke/Llama-2-1-
3B-GPTQ’ is a different class of model, that is, a decoder
causal language model, there is no "[CLS]" token that
could be used to stand in for the entire input. Instead, in
causal language models, the most important token to gen-
erate predictions is the final token in the input, that is, the
token "machine", which is the only token whose contex-
tualized embeddings are determined by those of all other
tokens. The hidden state for the final token in the sequence
can be extracted using last_hidden_state[:,-1].
Second, loading this model requires the more specific
AutoModelForCausalLM.from_pretrained()
method as opposed to the genericAutoModel.from_pr-
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Fig. 7 Predicting repeated choices. A Example prompt for the text-based version of the horizon task. B Accuracy of predicting human choices on
the test data for different models

etrained()method. Within the function, device_ma-
p="auto", which is available only for certain larger mod-
els, is used to allocate the model automatically to GPU
or CPU resources, making the explicit casting of tensors
via .to(device) obsolete, and revision=’main’ is
used to indicate the specific model branch. (See https://
huggingface.co/TheBloke/Llama-2-13B-GPTQ for the list
of options on the corresponding model card.)

Using the 13B Llama 2model with these settings required
only around 16 GB GPU memory, implying that it can be
replicated on many standard personal computers. Predicting
repeated choice using the Llama 2 features resulted in a sub-

stantial increase in accuracy over the DistilBERT model to
82.9% (see Fig. 7B). This performance is on a par with that
of a psychological model using handcrafted features such as
the difference in estimated rewards or the difference in uncer-
tainty, as described by Gershman (2018); Binz & Schulz
(2022), which achieved a test accuracy of 82.6%.

Overall, the results presented in this section demonstrate
that LLMs can produce feature vectors that make it possible
to predict complex decision-making behavior at a level com-
parable with that of current psychological models. Given that
considerably larger models are available and that the model
in the example may have suffered from quantization, it is
plausible that the ceiling for state-of-the-art LLMs is consid-
erably higher. With such strong performances, these results
hint at behavioral applications of LLMs that go beyond pre-
dicting observed data, such as investigating how changes to
the experimental stimuli or instructions may impact partic-
ipant behavior. Such changes may be used, for instance, as
in-silico pilot studies to inform future experimental designs,
or to test specific hypotheses that were not testable with the
original experimental data.

Fine-tuning

Feature extraction can be a powerful approach for predict-
ing human judgments and behavior, especially when labeled
task-specific data are scarce or if the researcher does not have
access to strong GPUs. However, as the extracted features
are domain-general, they may not be optimal for all tasks.
An alternative approach is fine-tuning, sometimes referred to
as transfer learning. During fine-tuning, all model weights
are typically optimized for the given task (for an alternative
strategy, see, e.g., Hu et al., 2022).

This section again uses data fromAka&Bhatia (2022), as
illustrated in Table 2. See github.com/Zak-Hussain/LLM4Be
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Sci.git to run this example in a Google Colab environment.
So as not to repeat code, we begin with dat already tok-
enized, and with the device already set to the GPU. The
code starts by setting torch.manual_seed(42). This
helps to ensure the reproducibility of stochastic processes
such as stochastic gradient descent and its variants, includ-
ing the’adamw_torch’ optimizer used for fine-tuning the
model.

The data are again split into a training and a test set.
Because the plan is to use theHugging Face ecosystemdown-
stream as well, the data are kept in the native Hugging Face
format using the inbuilt datasets.Dataset.train_
test_split() method. Mirroring sklearn’s train_
test_split(), a test set size and "random state" can be
set, this time with test_size and seed as arguments.
The method returns the split data sets in the form of a
datasets.DatasetDict object, which behaves much
like a regular Python dictionary. Technically, it inherits from
dict, and has the keys ’train’ and ’test’ that map to
the respective data sets.

Next, ’distilbert-base-uncased’ is initialized
as themodel_ckpt, but this timewithtransformers.-
AutoModelForSequenceClassification, as opp-
osed to the basic tranformers.AutoModel from ear-
lier. This loads the model with a "classification head"
attached. Despite its name, this head can also be used for
regression tasks such as the one at hand by specifying
num_labels=1 as an argument in thefrom_pretrain-
ed() method.

Having initialized the model, it is now time to set up the
training loopwith atransformers’TrainingArgum-
ents object. This involves specifying the name of the output
directory where model predictions and checkpoints will be
saved (output_dir), the batch size for training and evalu-
ation (per_device_train_batch_size,per_dev-
ice_eval_batch_size), and the frequency with which
training and evaluation metrics are recorded (logging_s-
trategy, evaluation_strategy). Because neural
networks usually need to be trained for multiple iterations
over the training set, the number of iterations, also called
epochs, can be specified with num_train_epochs. It
is important to note that more advanced strategies exist to
automatically halt training when certain test-performance-
optimizing heuristics are triggered (e.g., early stopping).
However, for the purposes of this tutorial, we stick to manu-
ally specify num_train_epochs.

An evaluation function,compute_metrics(), is defi-
ned to evaluate model performance with metrics other than
the model’s loss, which is automatically logged. This takes a
transformers.EvalPrediction as input, which can
be unpacked into the model’s predictions of the health per-
ception ratings (preds) and the actual ratings (labels).
An object to compute the explained variance (R2) is then

loaded using Hugging Face’s evaluate library, using
evaluate.load("r_squared"), and the R2 is com-
puted with the object’s compute() method using the
preds and labels.

Training is carried out by thetransformers.Train-
er. In this case, the trainer is initialized with the model
(model=model), the data set to be used for training the
model (train_dataset=dat[’train’]), the data set
to be used for evaluating the model (eval_dataset=da-
t[’test’]), and the function to evaluate the model’s per-
formanceon the test set (compute_metrics=compute-
_metrics). Model training is then initiated by running
trainer.train().
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In our example, after ten epochs, test performance
plateaued at around R2 = .50. This is slightly below the
R2 = .54 achieved using feature extraction. As before,
repeated train–test splits would need to be run using, for
instance, (repeated) k-fold cross-validation, to achieve a
more reliable test performance estimate. For the sake of
brevity, the code for k-fold cross-validation is not included in
this tutorial; however, the pattern of results remains the same.
Thus, using our approach, feature extraction outperforms
fine-tuning when it comes to predicting health perceptions.

This result highlights that fine-tuning may not always be
the dominant choice when it comes to using LLMs for pre-
dicting human judgments and behavior. Factors such as data
quantity and quality as well as the availability of computa-
tional resources will play a large role in determining which
approach makes the most sense. It is also worth noting that
a host of fine-tuned models are available for download from
the Hugging Face Hub. As such, depending on the task at
hand, the researcher may find that fine-tuned models for
specific tasks or domains are already available at hugging-
face.co/models. Of course, the data used for fine-tuning may
still differ considerably from the data that the researcher
wishes to apply the fine-tuned model to. As such, it is always
important to compare fine-tuned models to their pre-trained
alternatives.

Text generation

Perhaps one of the major features contributing to the pro-
liferation of LLMs is their ability to generate convincing,
human-like text in response to prompts. In behavioral sci-
ence, this capacity has made it possible to perform a vast
battery of in-silico behavioral experiments (e.g., Yax et al.,
2023; Binz & Schulz, 2023b): As long as the experiment can
be converted into a text-based format – setting multimodal
models aside for present purposes – the model can "partici-
pate" in it.

Following Yax et al. (2023), this section draws on the
example of the cognitive reflection test (CRT) to demonstrate
how this can be done (Frederick, 2005). The three-question
CRT is designed to measure a person’s ability to inhibit
intuitive but incorrect responses in favour of deliberation.
Here, we focus on how researchers can run experiments

on LLMs in a replicable manner on their own hardware
or using freely available cloud computing resources. See
github.com/Zak-Hussain/LLM4BeSci.git to run this exam-
ple in a Google Colab environment.

We again use a quantized 13 billion parameter ver-
sion of Llama 2 (Touvron et al., 2023). As for predicting
repeated choice, despite the vast increase in model size,
the code for running the model uses some familiar Hug-
ging Face components: a transformers.pipeline is
used, the model_ckpt is defined and passed as an argu-
ment to model and tokenizer when initializing the
pipeline. Likewise,device_map=’auto’ is used for effi-
cient upscaling to larger models.

However, as the goal is to have the model respond to the
CRT questions with text, there are twomain differences from
predicting repeated choice. First, a transformers.pip-
eline for ’text_generation’ is used, which gets the
model to generate responses with minimal code. Second, a
chat-based version of Llama 2, ’TheBloke/Llama-2-
13B-chat-GPTQ’, is employed (TheBloke, 2022). This
model version has been further trained with techniques such
as supervised fine-tuning and reinforcement learning from
human feedback to align it more closely with the preferences
of humans who wish to use it as an AI assistant (Touvron
et al., 2023).

The final arguments in the pipeline are specifically to do
with text generation. max_new_tokens=512 means that
the model can produce a maximum of 512 tokens in response
to the prompt. do_sample=False prevents the model
from performing random sampling from the softmax out-
put distribution over its vocabulary. This forces the model to
employ a strategyknownasgreedy search decoding,whereby
themodel output at each timestep is simply the tokenwith the
highest probability in the output distribution. This can be con-
trasted with text-generation techniques involving sampling,
which seek to improve the diversity of model outputs by
adding some randomness to the generation process.However,
this added diversity can come at the expense of coherence and
reproducibility (Tunstall et al., 2022).

The CRT comprises three questions, which are assigned
to prompt. In order to create a more realistic experi-
mental context for the model, the code uses the Llama
2 chat-specific prompting template recommended on the
’TheBloke/Llama-2-13B-chat-GPTQ’ model card
page (TheBloke, 2022):

In this case, the{system prompt}, which is the broader
context given to the model to help guide it, is a general
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description of the psychological study alongwith the instruc-
tions for participants, whereas the {prompt} contains the
CRTquestions.Both together form theprompt_template.

Generating the output is then as straightforward as passing
the prompt_template to generator, which returns
the output of the model as a list. The generated tokens can be
accessed with the zero index, which returns a dictionary with
a single key: ’generated_text’. Accessing the key’s
value returns a string composed of the text generated by the
model with the input (prompt_template) prepended. In
order to return only the output generated, the string is sliced
such that the printed output begins after the last character of
the prompt_template.

The model output is the following. It answers two out of
the three questions correctly.

On average, human participants answer between 1 and 2
questions correctly, suggesting that LLMs can answer prob-
lems from the CRT at or above human level. However, one
should be careful not to draw strong conclusions about the
models’ reasoning capabilities from these results. It is pos-
sible that examples of the CRT are in Llama 2’s pre-training
set, with (in-)correct answers included. Similar to findings on
CRT pre-exposure among humans (Haigh, 2016), this may
inflate the model’s performance and conclusions about its
ability to reason (Mitchell, 2023).

The main purpose of this example is to show that open-
access LLMs such as Llama 2 can be run on freely available
hardware and used as stand-in "participants" in behavioral
experiments, with the potential to generate insights about
the experiment, the model, and perhaps human psychology
as well.

Token probability and perplexity extraction

This tutorial has introduced three common LLM use cases:
feature extraction, fine-tuning, and text generation. Although
these are perhaps more well-known use cases, they are not
exhaustive. For instance, an additional use of LLMs is to
deploy them on the very tasks for which they were pre-
trained; namely, to assign probabilities to tokens. During
training, the model is incentivized to assign high probabili-
ties to tokens and token sequences that are common in the
training data and vice versa for those that are uncommon. As
a result, the probabilities produced by a trained model can be
used to detect text sequences that (the model has learned) are
uncommon. Measures based on token and token sequence
probabilities have thus been used to, for instance, investi-
gate how language models capture grammatical gender (An
et al., 2019) and to predict human reading times (e.g., Merkx
& Frank, 2020).

Table 3 Three examples from Crossley et al. (2023)’s CLEAR cor-
pus containing text excerpts leveled for 3rd to 12th grade readers and
teachers’ readability scores

Excerpt BT_easiness

An honest and poor old woman was... -0.05

Our plate illustrates the residence of... -2.98

Just as wildebeest are the main grazers... -2.46
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The present example demonstrates how the log probabil-
ities extracted from GPT-2 can be used to predict teachers’
text readability ratings. Specifically, these are teachers’ rat-
ings of how difficult student readers would find certain text
excerpts, obtained from the CommonLit Ease of Readability
(CLEAR) corpus (Table 3; Crossley et al., 2023).

A commonmetric to evaluate the probability of a sequence
is called perplexity (Jelinek et al., 1977). Given a sequence
of tokens X = (x0, x1, ..., xt ), perplexity can be defined as

exp

(

−1

t

t∑

i=1

log p(xi |x<i )

)

with p(xi |x<i ) being the probability assigned to the i-th
token in the sequence given the preceding tokens. Perplexity
is thus the inverse geometric mean of sequentially produced
token probabilities. As perplexity assumes sequentially pro-
duced tokens, it is not well-defined for masked language
modeling. In our example,we therefore rely onGPT-2,which
is a decoder model trained using causal language modeling
and a direct precursor to today’s GPT-4.

The codebegins by reading the’Exerpt’ and’BT_ea-
siness’ columns of the CLEAR corpus into a pandas.-
DataFrame. It then loads a perplexity metric object from
the evaluate library’s load method. This object has a
convenient compute method, which allows the researcher
to specify from which model they wish to compute the
perplexity (model_id=’openai-community/gpt2’
in this case), the text sequences to compute perplexity on
(clear[’Excerpt’])), the batch size (8). The device
defaults to the GPU if a CUDA-compatible GPU is avail-
able. The method returns a dictionary containing a list of
perplexity scores for each sample (’perplexities’) and
the average of those scores (’mean_perplexity’).

To evaluate whether perplexity can predict readability, we
feed perplexity as a feature into an ordinary least squares
regression. Using 1000 randomly sampled excerpts from
CLEAR, the perplexity model achieves a tenfold cross-
validation R2 = .20 (SD = .05), implying that perplexity
can account for a significant portion of text readability
variance. The predictive accuracy of perplexity can be com-
pared to an established predictor of readability, the Flesch
Reading Ease (Flesch, 1948), calculated based on average
sentence and word lengths. Flesch Reading Ease achieves an
R2 = .28 (SD = .04), which is only slightly higher than
the performance of perplexity. Moreover, combining the two
features leads to a considerable increase in predictive accu-
racy (R2 = .44, SD = .05), indicating the added value of
perplexity for the prediction of readability.

Compared to the other use cases presented above, token
probability and perplexity measures have been less fre-
quently employed in behavioral science research. Neverthe-
less, these measures show promise in behavioral research in
at least two respects. First, they can be used to predict human
perceptions and evaluations of text, such as the readability
of study vignettes or the surprisingness of statements. Sec-
ondly, they can be employed to evaluate the likelihood of
human responses to text, such as response to open-text for-
mat items.

Open questions and future directions

This tutorial has introduced the Hugging Face ecosystem as
an open-source approach to using LLMs in behavioral sci-
ence. This section discusses the advantages and limitations of
(open-source) language modeling in behavioral science, the
broader societal-level risks posed by (open-source) LLMs,
and future directions for behavioral science research with
LLMs.

Good science practices with LLMs

The goal of this tutorial has been to make the responsible use
of LLMs for behavioral science more accessible. However,
using LLMs responsibly includes following good science
practices. This requires more than the ability to implement
LLMs in code; it also necessitates a substantive understand-
ing of what that code is doing and an appreciation of the
complex and nuanced theoretical questions concerning LLM
capabilities. We hope that through Section “A primer on
transformer-based language models”, and the explanations
accompanying the code in this tutorial, readers will come
away with a thorough understanding of what this code is
doing. Nevertheless, a few cautionary points are in order.

The first concerns hyper-parameters. Like most popu-
lar statistical libraries in behavioral science, Hugging Face
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libraries enable control over a vast array of hyper-parameters,
and many of these hyper-parameters have default settings.
Although these defaults often make code more readable,
they can also lead to complacency. Against this tendency,
we stress the importance of making active decisions between
the universes of possible hyper-parameter settings. In cases
where substantive justifications are lacking, we encourage
the use of multiverse analyses (i.e., with different plausible
hyper-parameter setups; Steegen et al., 2016), computational
resources permitting.

The second concerns performance evaluation. In addition
to repeated out-of-sample testing, we emphasize the impor-
tance of other evaluation and sanity-checking strategies, such
as testing meaningful synthetic baseline models. This could
include randomly shuffling the pairings between extracted
features and labels to identify possible data leakages – a per-
nicious problem in machine learning more broadly (see, e.g.,
Kaufman et al., 2012). Alternatively, it could mean artifi-
cially constructing perfectly predictive fine-tuning features
to ensure model fitting is working properly.

The third and final point is more theoretical. The recent
proliferation of LLMs has revived long-running debates over
whether LLMs possess capacities such as true "understand-
ing" ("thinking", "reasoning", etc.; see, e.g., Mitchell &
Krakauer, 2023). Although we believe that the validity of
the applications described in this tutorial does not depend on
whether LLMs truly possess such capacities, we anticipate
that the broader conclusions drawn from scientific stud-
ies involving LLMs will often be mediated by researchers’
background beliefs concerning these questions. As such, we
would like to highlight the existence of a vast scientific and
philosophical literature pertaining to the (evaluation of) lan-
guage model capabilities (e.g. Mitchell & Krakauer, 2023;
Turing, 1950; Bender et al., 2021; Searle, 1980; Günther
et al., 2019) – a literature that has by no means reached a
consensus – to guard against snap judgments or uncritical
default positions.

In their broader form, these words of caution do not con-
cern LLMs alone but are part of good science practice more
generally. However, the complexity, opacity, and quirkiness
of neural networkmodels can exacerbate these issues inways
that require special attention.

Open-source LLMs and open behavioral science

Behavioral science is going through an open science revo-
lution guided by principles such as transparency, accessibil-
ity, and sharing (Vicente-Saez & Martinez-Fuentes, 2018).
Open-source and open-access language modeling frame-
works such as Hugging Face are closely aligned with these
principles. For instance, with Hugging Face, all analysis
steps – from data preprocessing to model validation – are
in principle accessible to fellow scientists wishing to better

understand and perhaps reproduce what others have done.
Likewise, models fine-tuned using the transformers
library can easily be shared on the Hugging Face Hub, mak-
ing it easier for researchers to build on and benefit from the
work of their peers. With over 300,000 models and 60,000
datasets, Hugging Face stands as an exemplary case of the
power of sharing in research and beyond.

Hugging Face also supports reproducibility. Features such
as the ability to set seeds help improve the reproducibility of
nondeterministic processes such as gradient descent. Like-
wise, becausemodels are saved to the hard drive (instructions
for locating models saved to hard drive are regularly updated
at stackoverflow.com/questions/61798573/where-does-hug
ging-faces-transformers-save-models), the precise version of
the model used for the analysis can be permanently saved
for future reproductions. This stands in contrast to less open
alternatives such as the OpenAI API, which, at the time of
writing, does not provide the ability to access the same ver-
sion of the model indefinitely into the future after model
updates.

Open-source and open-access language modeling frame-
works also have considerable advantages when it comes to
data privacy: Because models can be saved and run locally,
sensitive data can remain on the appropriate hardware, and
researchers can be sure that the creators of the model will not
have access to it. This is crucial in behavioral science, where
ensuring the privacy of participant data is paramount from
an ethical and legal perspective.

Open-source language modeling frameworks also help
mitigate an important disadvantage ofLLMs: their poor inter-
pretability. Interpretability is a general problem for neural
network models, whose complexity and abstract representa-
tional nature have earned them the label "black-box" models
(Alishahi et al., 2019). In behavioral science, the limited
interpretability of LLMs can hinder a researcher’s ability to
draw strong theoretical conclusions. For instance, being able
to interpret the internal states of the model presented in the
section on Text Generation would help clarify whether it had
simply "memorized" answers to the CRT or actually "rea-
soned" them through. However, a commitment to openness
– in this case, transparency about the data used to train the
model – could also help resolve this uncertainty by reveal-
ing whether the CRT even featured in the training data at all.
In general, interpretability is worsened when researchers are
not given information about important details concerning the
model’s pre-training data, tokenizer, architecture, weights,
and fine-tuning regimes. Of course, even when these details
are known, it can remain a mystery why a model performs
well on some tasks but not on others. This point is exempli-
fied by the existence of emergent abilities in LLMs: abilities
that arise from model upscaling, but whose arrival is incred-
ibly difficult to predict, even for the developers who trained
the model (Wei et al., 2022).
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(Open-source) LLMs and society

Although we believe that open-source and open-access lan-
guage modeling has its advantages for research, making
LLMs publicly accessible also comes with considerable
risks. LLMs are, after all, powerful tools, and in the hands
of bad actors, they could be used to do serious harm (e.g.,
spreading mis- and disinformation; Weidinger et al., 2022).
Increasing access to LLMs will also have environmen-
tal impacts (Strubell et al., 2019), especially when more
researchers have the ability not only to use these models
for inference but also to train them via ecosystems such as
Hugging Face.

Furthermore, it is important to be aware of the broader
risks that present and future LLMs may pose to society,
especially if they are poorly aligned with people’s prefer-
ences and values (Bockting et al., 2023; Russell, 2019).
Concerns such as these have motivated research programs
into AI alignment from leading AI companies (Leike &
Sutskever, 2023; Leike et al., 2018). They have also led to the
use of more explicit human behavioral data for fine-tuning
LLMs (e.g., via explicit human feedback on model outputs)
to achieve closer alignment with human preferences. As has
been pointed out (Irving & Askell, 2019; Russell, 2019), this
endeavor presents a unique opportunity for behavioral scien-
tists, who of course have expertise in collecting high-quality
human data.

Future direction for LLMs and behavioral science

This insight points to an interesting future direction at the
intersection of behavioral science and language modeling.
Although this tutorial has focused on how LLMs can be used
as tools for behavioral science research (LLMs→ behavioral
science), an inverse relationship also holds promise: the use
of behavioral science methods to build more interpretable,
human-aligned LLMs (behavioral science → LLMs). For
instance, as foreshadowed in the section on Text Genera-
tion, behavioral experiments can be run on LLMs to provide
greater insight into the models’ capabilities (e.g., Binz &
Schulz, 2023b; Yax et al., 2023). Likewise, interpretability
techniques such as probing can be combined with psy-
cholinguistic methods to assess how aligned the internal
representations of LLMs are to people’s semantic repre-
sentations (Cassani et al., 2023; Sucholutsky et al., 2023;
Aeschbach et al., 2024). This relationship is mutually rein-
forcing (behavioral science→LLMs→ behavioral science):
LLMs that are more aligned with people may also serve as
more plausible and predictive psychological models (e.g.,
Binz&Schulz, 2023a), andLLMs that aremore interpretable
may allow for deeper theoretical insights – into their psy-
chological plausibility, but also into human cognition and
behavior itself.

Conclusion

LLMs hold immense promise for behavioral science and
open-source frameworks play a crucial role in promot-
ing transparency, reproducibility, and data protection. This
tutorial has provided a practical overview of using the open-
source Hugging Face ecosystem, covering feature extrac-
tion, fine-tuning, and text generation, in order to empower
researchers to harness the potential of LLMs for behavioral
applications.While acknowledging the current limitations of
this approach, we hope that these efforts can help catalyze
LLM utilization and offer novel insights and opportunities
for future research in behavioral science.

Open practices statement

The data used in all sections are available at github.com/Zak-
Hussain/LLM4BeSci.git. Aside from the specific results
for Cohere (Cohere-embed-english-v3.0) and ada (text-
embedding-ada-002) – these models are behind a paywall
– all results can be reproduced using freely available soft-
ware. None of the analyses were preregistered, as they are
presented for demonstration purposes only.
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