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Abstract

The Vaal River catchment drains the largest and most populated industrial and mining region in Southern Africa. Heron,
ibis, cormorant, egrets, and darter eggs, representing three habitats and four feeding guilds, were collected at four locations
in 2009/10 to identify hotspots and hazards associated with persistent organic pollutants (POPs). The POPs included 21
organochlorine pesticides, five polybrominated diphenyl ether (PBDE) classes, 18 polychlorinated biphenyls (PCBs includ-
ing six non-dioxin-like PCBs; NDL-PCB), and 12 dioxin-like PCBs (DL-PCBs), 17 polychlorinated dibenzo-p-dioxins
and dibenzo-p-furans (PCDD/Fs), and perfluorooctane sulfonate (PFOS). Aquatic predators had higher PFOS and PCDD/F
concentrations, while PCBs dominated in terrestrial eggs. Organochlorine pesticides, PBDEs, and PCBs were strongly
associated with eggs from the industrial regions, while PCDD/F concentrations were evenly distributed. PCDD/F and PCB
toxic equivalency quotient concentrations were low with no adverse effects expected. PFOS peaked at Bloemhof Dam with
a maximum of 2300 ng/g wm in an African Darter egg, indicating an unexpected PFOS hotspot, the source of which is
unknown. Despite order of differences in compound class concentrations, there was no association with egg size. To the
best of our knowledge, this is the only study that analysed all 2010 POPs in bird eggs on a large geographic scale. This study
highlighted the importance of multi-species studies sampling from multiple locations to assess the risk that POPs pose to
avian populations as hotspots and species at risk may be missed by studies looking at one or few species.
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Introduction

One of the Southern Africa’s largest rivers, the Vaal River,
flows westwards from Mpumalanga province to the Atlantic
(Fig. 1). It flows through South Africa’s most industrialised
regions before passing through rural and agricultural areas.
The Vaal River merges with the Orange-Senqu River near
the town of Douglas, forming the Orange-Senqu River Basin
(OSRB), that stretches over four countries (Botswana, Leso-
tho, Namibia, and South Africa) covering approximately
1 000 000 km? (Lange et al. 2007). The Orange River mouth
at the South Atlantic Ocean was once a flourishing wetland
with over 20 000 resident water birds and attracting many
migrant birds. However, the number of resident birds has
drastically decreased (Anderson et al. 2003).
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There are seven Ramsar sites located in the OSRB
(Orange River Mouth, Lets'eng-la-Letsie, Barbers Pan,
Blesbok Spruit, Kgaswane Mountain Reserve, Seekoeivlei
Nature Reserve, and Ingula Nature Reserve; Ramsar Sites
Information Service. 2018b). Southern Africa is, however,
a water-scarce region; many rural households, agriculture,
mining, and industry directly make use of the OSRB’s sur-
face and groundwater. The influx of agricultural and indus-
trial products (including persistent organic pollutants, POPs)
is a major cause of concern (Chokwe et al. 2019; Groffen
et al. 2021; Gilbert et al. 2016; Quinn et al. 2009). POPs
that have been investigated include organochlorine pesti-
cides (OCPs), polybrominated diphenyl ethers (PBDEs),
polychlorinated biphenyls (PCBs), and metals in bird eggs
(Bouwman et al. 2008; Chokwe et al. 2015; Polder et al.
2008; Van der Schyff et al. 2016).

Organochlorine pesticides can bioaccumulate in lipid
tissue and are resistant to degradation (Newman 2015).
In many African countries, the current and historical use
of dichlorodiphenyltrichloroethane (DDT) in controlling
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Fig. 1 Map showing the wild bird egg sampling locations

diseases and pests led to unintentional consequences such as
eggshell thinning in many bird species (Bitman et al. 1970;
Holm et al. 2006; Lundholm 1997) and human health effects
(Bornman et al. 2010). However, less literature is availa-
ble on other main groups of POPs in bird eggs from South
Africa including perfluorooctane sulfonate (PFOS), poly-
chlorinated dibenzofurans and dibenzo-p-dioxins (PCDD/
Fs), and PCBs (non-dioxin —like PCBs (NDL-PCBs) and
dioxin-like PCB (DL-PCBs)).

Due to the chemical properties (Wania and Mackay
1995) and the effects of POPs, many of these compounds
are banned or severely restricted (Stockholm Convention
2016a). Halogenated compounds, such as the chlorinated
and brominated compounds, tend to be lipophilic and bio-
accumulate in lipid tissues. The DL-PCBs (those PCBs that
have chlorine atoms in the non-ortho position) and PCDD/Fs
specifically mediate their toxicity via the aryl-hydrocarbon
receptor (AhR; Mandal 2005). However, the fluorinated
compounds that are also halogenated have both lipophilic
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and hydrophilic moieties (Newman 2015) which allow them
to be distributed by blood to various organs such as the liver,
kidneys, and lungs, among others (Kwiatkowski et al. 2021).
These compounds cause peroxisomal proliferation, increased
activity of lipid and xenobiotic metabolising enzymes (New-
man 2015). Residues in the environment reflect current and
historical production and use of these compounds (Orisakwe
et al. 2019).

The bird egg is a good matrix for environmental moni-
toring of pollution (Medvedev and Markove 1995; Lebedev
et al. 1998). They have a fairly consistent composition,
decompose slowly, are easy to handle, and can be randomly
sampled in a cost-effective manner. Furthermore, eggs rep-
resent the pollutant uptake by the female bird before the
egg is laid, while giving insight into the effects, these com-
pounds have on both the female bird and in the developing
egg (Braune 2007; van den Steen et al. 2006). In addition,
embryonic and foetal development is more sensitive to
POPs than in adults since exposure prior or during organ
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development may have greater consequences than after
(Caralson and Duby 1973). Moreover, many bird species
are widely distributed over multiple continents and provide
opportunities for continental comparison (Lesch et al. 2023).

Both aquatic and terrestrial birds have been used as pol-
lution indicators (Aurigi et al. 2000; Bouwman et al. 2019,
2021; Eljarrat et al. 2019). Elevated PFOS concentrations
can lead to endocrine disruption (Jensen and Leffers.,
2008) and organ dysfunction, especialli the liver (Hoff et al.
2005). PCBs can cause reproductive abnormalities and lead
to developmental effects (Barron et al. 1995). At elevated
concentrations, PBDEs cause behavioural and growth abnor-
malities in the American kestrel (Falco sparverius; Fernie
et al. 2006 and 2008).

Knowledge of POPs of the Stockholm convention on
persistent organic pollutants (SCPOPs) in Southern Africa
is restricted. The current study was carried out under
the auspices of the Orange-Senqu River Commission’s
(ORASECOM) 2010 Joint Basin Survey on POPs in the
OSRB as part of the transboundary diagnostic analysis of the
OSRB that also evaluated all POPs listed at that time. The
aims of this study were therefore to investigate the concen-
trations of 22 POPs, as listed in the SCPOPs in 2010, in wild
bird eggs from the Vaal River. Based on the data, we will
identify pollution hotspots, assess the hazard that the com-
pound concentrations may have to the developing embryo
and compare the concentrations with concentration reported
in literature. Additionally, we determined the concentrations
between different species, feeding guilds, and habitat prefer-
ences. Lastly, we evaluated the relationship between egg size
and POPs concentrations. This study, based on 2010 data,
serves as a baseline for future work, identify compounds that
need no further attention, but specifically highlight com-
pounds and compound classes of concern that would also
inform other studies in Southern Africa. As far as we know,
this is the only study that analysed all 2010 POPs in bird
eggs on a large geographic scale.

Materials and Methods
Bird Egg Sampling
Bird Egg Sampling Locations and Descriptions

The necessary provincial permits and the appropriate ethical
approvals (NWU-00055-07-S3 and NWU-00594-19-A9)
were obtained. Wild bird eggs were collected from four
breeding colonies in the OSRB, a 192 000 km? catchment
during the breeding season (October to February) 2009/10
(Fig. 1). Efforts to date have recorded 154 heronries in South
Africa (Harebottle 2019), although this number is an under-
estimation. The four selected breeding colonies were located

during aerial surveys. The Potchefstroom colony location is
near the Mooi River and is closed to residential properties
and a golf course. The colony at Barbers Pan (a Ramsar
site) is in a bird sanctuary with no town or city nearby. The
Bloemhof Dam colony was on Snake Island. The Eldorado
Park colony is within a suburb in a highly industrialised
region of Gauteng province. Eggs from nine species were
sampled: Grey Heron (Ardea cinerea), African Darter
(Anhinga rufa), Glossy Ibis (Ardea melanocephala), Great
White Egret (Ardea alba), Reed Cormorant (Microcarbo
africanus), African Sacred Ibis (Threskiornis aethiopicus),
Little Egret (Egretta garzetta), Cattle Egret (Bubulcus ibis),
and Glossy Ibis (Plegadis falcinellus). General distributions
and descriptions, habitat preferences, breeding behaviour,
diet, and egg descriptions are summarised in Table S1.

Egg Sampling Effort

Eggs were sampled from nests by either climbing trees using
rock-climbing gear or using ladders. Although efforts were
made to collect eggs of the same species at all sites, this
was not possible. Eggs were wrapped in pre-washed foil,
labelled, carefully stored in thick egg cartons, and trans-
ported to the laboratory where they were photographed
before being frozen at -24°C until sample preparation. Eggs
were analysed within 6 months of collection. On the day of
sample preparation, selected eggs were measured and pooled
per species and location as presented in Table 1. Egg con-
tents were ultrasonically homogenised. Samples of the 16
pools were sent with the necessary permits to O&kometric
GmbH—The Bayreuth Institute of Environmental Research,
in Germany. This is an accredited POPs laboratory. Coor-
dinates of sampling locations, the closest water source, and
analytical pool numbers are presented in Table 1.

Chemical Analyses

All samples were analysed within 6 months of collec-
tion. Laboratory analysis was undertaken by Oékometric
GmbH—The Bayreuth Institute of Environmental Research,
in Germany. All POPs analyses were executed with qual-
ity assurance and quality control protocols as per ISO/IEC
17025:2005 accreditation that covered, preparation, cali-
bration, extraction, clean-up, measurement, quantification,
quality control, concentration calculations, and reporting.
Chemical analysis and compounds analysed are presented in
Table 2. Laboratory blanks and internal reference material
were routinely analysed for quality assurance and QA/QC
procedures. Toxic equivalency quotients (TEQs) were cal-
culated according to the WHO (2005), and all are reported
as exclusive (van den Berg et al. 2006).
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Statistical Analyses and Measuring Unit
Conversions.

Descriptive and comparative statistics were performed using
GraphPad Prism version 10.2.0. Concentration unit conver-
sions were performed to compare published and current
data. The data were received from the laboratory in wet mass
(wm). The values reported in parts per million (ppm), parts
per billion (ppb), milligrammes per kilogramme (mg / kg),
and microgrammes per kilogramme (ug/kg) by other authors
were converted to nanogrammeme per gramme (ng/g). The
concentration values reported in lipid mass (Im) by other
authors were converted to wet mass (wm) (Clatterbuck et al.
2018). We evaluated and compared wet mass (wm)-based
data, given that embryo development affects lipid composi-
tion more than water content (Herzke et al. 2002; Romanoff
1932). The current data were converted to data based on
lipid mass (Im) and are presented in Table S2. The determi-
nation of lipids was done gravimetrically.

The ZPCB value is the total concentration of both DL-
PCBs and NDL-PCBs. The PCB TEQ value consists of
only DL-PCBs. The logarithmic transformation of the POP
classes was regressed against the egg mass. Firstly, Prism
compares whether slopes are parallel, calculating a two-
tailed p-value. The null hypothesis is that the slopes are
identical and therefore parallel. Second, Prism calculates
if the Y-intercepts (elevations) for the regression lines are
identical. Low p-values signify that the slopes and intercepts
are significantly different.

Results

Summary results are given in Table 3 and presented in sev-
eral ways in Figs.2, 3, 4, 5, 6, 7. The concentration quantified
of individual congeners can be viewed in the supplementary
material in Table S2. And the results converted to lipid mass
(Im) are given in Table S3.

Bird Egg Concentrations

Organochlorine compounds such as a-HCH, lindane, hepta-
chlor, aldrin, endrin, heptachloroepoxide, chlordane (trans-
and cis -), mirex, pentachlorobenzene, chlordecone, toxa-
phene, o,p-DDE, o0,p-DDD, and o,p"-DDT were detected
in all eggs, but at concentrations below the LOQ.

The highest XOCP concentration was quantified in eggs
of Great White Egret eggs (423 ng/g wm) from Bloemhof
Dam, primarily as a result of the high p,p’-DDE (400 ng/g
wm) (Fig. 2A and B; Table 3). This egg pool (Table 1)
had double the ZOCP concentration than Reed Cormorant
eggs from Bloemhof Dam (180 ng/g wm), Potchefstroom
(150 ng/g wm), and an order of magnitude greater than the

@ Springer

African Sacred Ibis egg pool from Eldorado Park (19 ng/g
wm) (Table 3). Most of the XOCP concentrations were com-
posed of p,p’-DDE. However, other OCPs were also quan-
tified in some eggs (Table 3). The highest f-HCH concen-
tration was in Black-headed Heron eggs (6 ng/g wm) from
Barbers Pan (Fig. 2C; Table 3). The highest HCB (2 ng/g
wm) (Fig. 2D) and dieldrin (9 ng/g wm) (Fig. 2E) concentra-
tions were in African Sacred Ibis eggs from Eldorado Park.

The highest PFOS concentrations were quantified in Afri-
can Darter eggs (2300 ng/g wm) and Reed Cormorant eggs
(1100 ng/g wm) from Bloemhof Dam (Fig. 2E). PFOS was
also the dominant compound in most species, except Great
White Egret, African Sacred Ibis, Black-headed Heron, and
Glossy Ibis where ZOCPs dominated (Table 3). African
Sacred Ibis eggs from Eldorado Park had the highest XPBDE
concentrations (19 ng/g wm), followed by Reed Cormorant
eggs from Potchefstroom (Fig. 2G; Table 3). The highest
YPCB concentration in any pool was in African Darter eggs
(100 ng/g wm) from Bloemhof Dam followed by Reed Cor-
morant eggs (54 ng/g wm) from Potchefstroom (Figure 2H;
Table 3). ZPCDD/F concentrations were highest in Black-
headed Heron eggs (9 ng/g wm) from Barbers Pan, followed
by African Sacred Ibis eggs from Eldorado Park (7 ng/g wm)
(Fig. 2I).

Irrespective of species, the highest mean XPCB,
2PCDDV/F, XPBDE, ZOCP, and ZDDT were found in eggs
from Eldorado Park (Fig. 3A-E). In addition, all OCPs were
higher at Eldorado Park, except f-HCH which was higher
at Barbers Pan (Fig. 3F-I). Bloemhof Dam had the high-
est mean PFOS concentration, followed by Barbers Pan
(Fig. 3)).

Guilds

The species were grouped according to habitat guilds:
aquatic, terrestrial, and wetland (Table 1; Fig. 4). There
were no significant differences between habitat guilds (one-
way ANOVA, Tukey’s multiple comparisons) for SPCDD/F,
XPBDE, B-HCH, and dieldrin (Fig. 4A-D). There were
statistically significant differences between aquatic and
terrestrial habitat guilds for PFOS, ZOCP, and p,p’-DDE
(Fig. 4E-G), and between terrestrial and wetland habitat
guilds for XPCB (Fig. 4I). Since only one data point was
available for HCB in the wetland guild, we performed a
two-way, unpaired t-test between terrestrial and aquatic eggs
which was not significantly different (Fig. 4H).

We grouped all species according to their feeding
guilds: large aquatic predators (LAP), small aquatic
predators (SAP), scavengers (S), and terrestrial insecti-
vores (TI) (Table 1). There were no significant differ-
ences between feeding guilds (one-way ANOVA, Tuk-
ey’s multiple comparison) for PFOS, XPCDD/F, ZPCB,
2PBDE, dieldrin, and f-HCH (Fig. 5A-F). A statistically
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Fig.2 Violin plots (frequency distributions) of log-transformed con-
centrations of selected compounds quantified in bird eggs regard-
less of sampling location. Horizontal lines are medians and 25 and
75% quartiles. Species are arranged according to increasing reported

significant difference was found between large aquatic
predators and terrestrial insectivores for ZOCP and p,p’-
DDE (Fig. 5G and H). We performed two-way, unpaired,
t-tests for HCB and found no statistically significant dif-
ferences (Fig. 51).

TEQ

Mean PCDD/F TEQ values of bird eggs were highest
at Barbers Pan followed by Potchefstroom (Fig. 6A),
although the highest PCDD/F TEQ value was from
eggs collected at Bloemhof Dam (1.6 ngTEQ/kg wm)
(Table 3). PCB TEQ values in bird eggs were high-
est at Bloemhof Dam (12 ngTEQ/kg wm) followed by
Potchefstroom (Fig. 6B). PCDD/F and PCB TEQ values
were highest in African Darter (12 ngTEQ/kg wm) and
Black-headed Heron (7 ngTEQ/kg wm) eggs, followed
by Reed Cormorant eggs (5 ngTEQ/kg wm) (Fig. 6C

RC CE LE GI AD BHH GH GWE ASI

RC CE LE Gl AD BHH GH GWE ASI

mean egg mass. RC=Reed Cormorant, CE =Cattle Egret, LE=Little
Egret, GI=Glossy Ibis, AD=African Darter, BHH=Black Headed
Heron, GH=Grey Heron, GWE =Great White Egret, and ASI= Afri-
can Sacred Ibis

and D). PCDD/F TEQ values were highest in terrestrial
species (Fig. 6E) while PCB TEQ values dominated in
aquatic habitat guild eggs (Fig. 6F). PCDD/F TEQ values
were highest in terrestrial insectivores (Fig. 6G) while
PCB TEQ values were highest in large aquatic preda-
tors (Fig. 6H). The PCB TEQs were higher in all spe-
cies and at all sites compared to the PCDD/F TEQ values
(Table 3).

Influence of Egg Mass

We used linear regression to investigate the association of
compound classes with egg mass (Fig. 7). None of the slopes
were significantly different from the X-axis. We also tested
whether slopes and intercepts (vertical distances between
the Y-intercepts of each slope — Y-intercepts indicates where
the regression slopes meet the Y-axes) were significantly
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Fig.3 Mean concentrations and
standard deviations of selected
compounds quantified at each
sampling location regardless

of species. Barb=Barbers

Pan, Bloem =Bloemhof Dam,
Eldo =Eldorado Park, and
Potch = Potchefstroom

different from each other (Prism uses a method similar to
analysis of covariance (ANCOVA)). The slopes themselves
were not significantly different from zero or each other

@ Springer
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(p=0.2773). There was, however, a significant difference
between Y-intercepts (p <0.0001, ANOVA; p <0.0001,
Brown-Forsythe test; p <0.0001, Bartlett’s test).
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Fig.4 Violin plots (frequency distributions) of log-transformed con-
centrations of selected compounds quantified in bird eggs according
to habitat guilds. Horizontal lines are medians and 25 and 75% quar-
tiles. Habitat guilds are expressed as aquatic, wetland, and terrestrial.

Discussion
Bird Egg Concentrations
Feeding Guilds

With eggs of nine species of birds collected from four loca-
tions and measured for 22 POPs, the current study is a multi-
species analyses investigating the pollution load of both
aquatic and terrestrial birds. POP concentrations differed
greatly between species, sites, habitat groups, and feeding
groups (Table 3 and Figs. 2, 3, 4, 5). This was as expected
since the sites and species were collected over a large area
where breeding colonies were available. The locations of the
active breeding colonies at the time of sampling were found
via aerial reconnaissance for this specific purpose. However,
there are apparent patterns based on guilds and localities
close to sources, with some exceptions.

Aqua=aquatic, Wet=wetland, and Terr=terrestrial. ANOVA p-val-
ues of guilds that were found to be statistically significant different
are indicated with brackets. Two-way unpaired t-test was performed
for HCB

Eggs from species that occupy high-trophic levels had
higher concentrations of PFOS and ZOCP concentrations,
while species that feed on insects had lower concentrations
(Table 3 and 4 and Fig. 5). This was reflected in habitat
guilds where aquatic species had higher PFOS and XOCP
concentrations (Fig. 4). This pattern was also noted by Eriks-
son et al. (2016) who found higher concentrations of PFAS
in eggs from aquatic species compared to terrestrial species.
The XOCP concentrations were dominated by p,p’-DDE,
which is in agreement with others (Bouwman et al. 2008;
Venugopal et al. 2020). Although we did not observe any
pattern regarding PBDE concentrations in guilds, She et al.
(2008) did find higher XPBDE concentrations in eggs of
piscivorous birds compared with omnivorous species in the
USA.

The ZPCDD/F and 2PCB concentrations suggest higher
availability in terrestrial environments, which is contrary
to the patterns found by Bouwman et al. (2021). Higher
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Fig.5 Violin plots (frequency distributions) of concentrations of
selected compounds quantified in bird eggs according to feeding
guilds. Horizontal lines are medians and 25 and 75% quartiles. Feed-
ing guilds are expressed as LAP=Ilarge aquatic predators, S=scav-

2PCB and ZPCDD/F concentrations were found in soil
rather than sediment (Quinn et al. 2009) from the same
industrialised region sampled in this study. PCBs and
PCDD/F tend to adhere to organic particles, and concen-
trations may be greater in terrestrial environments as a
result (Quinn et al. 2009). These patterns were not seen in
other compound classes, perhaps due to the low concentra-
tions in the environment and small sample sizes. Another
possible explanation for the lack of patterns observed may
be due to differences in foraging behaviour of species
(Harris et al. 2003); some species spend prolonged time
near the nesting grounds while others roam over larger
areas. In addition, differences in prior individual life histo-
ries among colony members can lead to differences in POP
concentrations. It would have been insightful to compare
the POP concentrations to those found in eggs of herbivo-
rous, granivorous, and omnivorous species from the same
sites (Bouwman et al. 2021).

@ Springer

engers, SAP =small aquatic predators, and TI=terrestrial insectivore.
ANOVA p-values of guilds that were found to be statistically signifi-
cant different are indicated with brackets. Two-way unpaired t-test
was performed for HCB

We found few other studies with which to compare our
findings. Lopez-Antia et al. (2017) reported no significant
differences in PFOS concentrations between three species
investigated. However, the PFOS concentration was greater
in the more aquatic Mediterranean Gull (Larus melanoceph-
alus). This pattern was also observed by Bouwman et al.
(2021), who reported higher POP concentrations in species
that inhabit aquatic habitats and species that are aquatic
predators. Another multi-species analysis showed that eggs
from omnivore species bioaccumulate a higher XOCP con-
centration than species that feed on only one specific food
source (Venugopal et al. 2020).

Locations
The eggs of all species collected at Bloemhof Dam, except

African Sacred Ibis, had the highest concentrations of
PFOS in this survey (Table 3; Fig. 3). This suggests high
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concentrations of environmentally available PFOS in this
region. The African Sacred Ibis eggs from Eldorado Park,
in contrast with the other POPs classes (Fig. 3), had higher
PFOS concentrations than those of the same species from
Bloemhof Dam. Birds from industrialised areas are likely

to be exposed to higher POP concentrations than rural birds
(Elliott et al. 2015) which may explain the difference in
PFOS concentrations between the Eldorado Park and Bloem-
hof Dam for the African Sacred Ibis (a scavenger, Table S1).
Mean concentrations for all other compound classes, except
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Fig.7 Simple linear regression. Concentrations of compound classes,
regardless of species or sample location, regressed against egg mass

PFOS and B-HCH, were highest at Eldorado Park, located in
the highly industrialised Gauteng. Unfortunately, eggs from
other species, apart from African Sacred Ibis, were not avail-
able in Eldorado Park at the time of sampling, complicating
interpretation. A more detailed discussion on sources fol-
lows in Sect. "Hotspot identification".

Egg Mass

It could be argued that larger birds with larger eggs would
eat larger prey from higher trophic levels. This would reflect
in larger concentrations of POPs in their eggs. However,
Bouwman et al. (2021) found no such effect, even when
including eggs from a granivore trophic level such as spar-
rows (small eggs at ca. 2 g) and high-trophic level African
Darters and herons with large eggs (ca. 60 g). For POPs
classes such as ZDDTs, XPCBs, and XBDEs, there were no
associations (linear regressions) of any POP class concen-
trations with egg mass (Fig. 7), despite orders of magnitude
differences in compound class concentrations as signified
by the y-intercepts (Fig. 7) and Table 3. Although the eggs
of the current study were from birds from a generally high-
trophic level, we also found no association of POPs class
concentrations such as DDTs and PCBs with egg mass,
including for the first time PFOS and ZPCDD/Fs (Fig. 7).
This phenomenon remains difficult to explain.

At higher concentrations of DDT and chlordane’s, eggs of
Glaucous gulls (Larus hyperboreus) were smaller (Verboven
et al. 2009). Verboven et al. (2009) include endocrine dis-
ruption, direct toxic effects, poor body condition, and food
availability as contributing causes causing smaller eggs.
DDT also causes thinner eggshells (Findholt 1984; Peakall
1993), suggesting that eggs with thinner shells weigh less
per volume of egg. However, reverse causality should also
be considered. During the formation of eggs, those that
eventually become lighter may have received proportionally
more POPs deposited before the shell is formed. However,
arguing this phenomenon across multiple species ranging in

@ Springer

egg masses between 21 and 62 g would be difficult. Having
observed this phenomenon twice (here, and in Bouwman
et al. 2021) with POPs analyses done by two different labo-
ratories invites further investigation.

Comparisons With International Data

Many studies have reported POP concentrations in bird
eggs. For the current study, we selected articles that used
the same species or similar species for comparison (Table 4).
The majority of published literature on POP concentrations
in eggs primarily focused on PCBs and OCPs, especially
DDT and its metabolites. ZOCP concentrations in all spe-
cies were generally lower compared to international studies.
Little Egret eggs had ZOCP concentrations two orders of
magnitude lower than eggs from Spain (Huertas et al. 2016),
and up to three orders of magnitude lower than eggs from
France (Berny et al. 2002) and Romania (Aurigi et al. 2000).

Y PBDE concentrations in eggs of the present study were
low compared with international data (Table 4). Concentra-
tions quantified in Grey Heron eggs from Barbers Pan were
two orders of magnitude lower than XPBDE concentrations
in eggs from Spain, Canada, and the USA (Table 4; Custer
et al. 2009; Eljarret et al. 2019; Miller et al. 2015). PFOS
concentrations in eggs from the current study were gener-
ally lower, or of the same order of magnitude, than reported
from other regions, except for eggs from Bloemhof Dam
(Table 4). Night Heron (Nycticorax nycticorax) eggs from
China had lower PFOS concentrations than Grey Heron
eggs from Bloemhof Dam, but higher concentrations than
eggs from Barbers Pan. Great Cormorant eggs from Swe-
den and Germany (Nordén et al. 2013; Riidel et al. 2011)
had lower PFOS concentrations than Reed Cormorants eggs
from Bloemhof Dam, but higher concentration than those
quantified in eggs from Potchefstroom. Only eggs of Blue
Herons (Ardea herodias) collected in 1993 in the USA near
a PFAS source (Custer et al. 2010) had similar PFOS con-
centrations than eggs from Bloemhof Dam. PFOS concen-
trations at Bloemhof Dam were therefore extraordinary high
considering the absence of any local source.

2PCB concentrations were three orders of magnitude
lower in eggs from the OSRB compared with internationally
reported data (Table 4), especially when comparing similar
species and guilds. Grey Heron eggs from Bloemhof Dam
had ZPCB concentrations two orders of magnitude lower
than concentrations quantified in France (de Cruz et al.
1997), and one order of magnitude lower than eggs from
Romania (Aurigi et al. 2000). A broad observation suggests
a worldwide decline in PCB concentrations. Using the Grey
Heron as example, the PCB concentrations from 1970s to
late 1990s were up to two orders of magnitude higher com-
pared to post 2000 studies (Table 4). This decline was also
observed in double-crested Cormorants eggs in Canada,
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Y PBDE concentrations in the current study were of the
same order of magnitude or lower than those reported by
other authors (Table 4). African Sacred Ibis eggs collected
in Eldorado Park had slightly lower XPBDE concentra-
tions than those reported from nearby Soweto (Quinn et al.
2020) and Johannesburg (Bouwman et al. 2021). African
Darter eggs from Gauteng (Bouwman et al. 2021; Quinn
et al. 2020) had an order of magnitude higher XPBDE
concentrations than those reported from Bloemhof Dam
and Barbers Pan of the current study.

Elevated PFOS concentrations were quantified at high
concentrations in bird eggs, especially at Bloemhof Dam
(Table 3). To our knowledge, there is no production of
PFAS in South Africa, much less in the vicinity of Bloem-
hof Dam, which has no industries close by. This location
appears to be a hotspot for PFOS, since PFOS was found
to be the dominant PFAS quantified in adult Odonata from
there (median: 16 ng/g wm) (Lesch et al. 2017). Bloem-
hof Dam is a large impoundment, and it is possible that
PFAS residues from upriver sources, accumulate at this
location. Furthermore, recent published research suggests
that PFAS accumulate at the air—water interface in the
subsurface layer of freshwater (Brusseau 2018; Stults et al.
2023). In addition to PFOS, high concentrations of mer-
cury (Hg) were also quantified in Great White Egrets eggs
from Bloemhof Dam (van der Schyff et al. 2016). No other
studies from South Africa reported on PFOS or PCDD/F
concentrations in bird eggs of similar species. Compared
with international reports, the high PCDD/F concentra-
tions of the current study points towards a PCDD/F hot-
spot. Eggs from Barbers Pan had the highest PCDD/F con-
centration (9 ng/g wm; Table 3), this is concerning since
this location is a Ramsar site. The four highest measured
PCDD/F concentrations (BBH: 9 ng/g wm, ASI: 7 ng/g
wm, BHH: 6 ng/g wm, and AD: 5 ng/g wm; Table 3) were
in eggs from all four sites and from three different feed-
ing and habitat guilds making it difficult interpret. It is
concerning that concentrations quantified in eggs from all
four sites were higher than internationally reported con-
centrations (Table 4), especially since Barbers Pan is a
Ramsar site.

The data reported here represent the most current pub-
lished insight into the pollution load of heron, ibis, egret,
darter, and cormorants that breed in the OSRB. All other
published reports were conducted during or prior to the cur-
rent study. Chlordane and mirex were previously quantified
in eggs of similar species (Bouwman et al. 2008; Polder et al.
2008). Studies conducted in the same year as the current col-
lection also found quantifiable concentrations of chlordane
and mirex in eggs from Gauteng (Bouwman et al. 2021) and
Limpopo (Bouwman et al. 2013). These compounds were
also quantified in Little Egret and White-breasted Cormo-
rant eggs collected in 2013 in KwaZulu-Natal that is not in

the OSRB. The lack of quantifiable concentrations of these
compounds may be due to concentrations below LOQ.

Therefore, POP hotspots identified in this study were
Bloemhof Dam for PFOS, and Eldorado Park (Gauteng) for
most other POPs. We could not identify PCDD/F hotspots
due to similar high concentrations detected at all four sites,
nor could we explain these concentrations based on guilds. It
would be reasonable to assume that the Vaal River catchment
is a hotspot for PCDD/Fs, in general, and that more localised
investigations need to be conducted. Bloemhof Dam has no
associated industrial activities but is located approximately
450 km downstream of the most industrialised centre in the
OSRB where African Sacred Ibis eggs were analysed. Eggs
from Eldorado Park (in the industrialised centre) had factors
to orders of magnitude higher concentrations of all com-
pound classes at any other site, except for PFOS at Bloemhof
Dam. The PFOS and PCDD/Fs results from Bloemhof Dam
show that single-species studies cannot represent the pic-
ture of total avian exposure and risks as was also found by
Bouwman et al. (2021). Also, assumptions about proximity
to sources should not be assumed as the only factor when
identifying hotspots.

Possible Adverse Consequences

The low TEQ values in the eggs from Eldorado Park were
unexpected, considering its proximity to industry. The high
PCDD/F TEQ value from Barbers Pan was higher than
expected, due to its isolation, remoteness from sources,
and protection status as a nature sanctuary. However, the
Black-headed Heron eggs from this location did have the
highest quantifiable PCDD/F concentration (Table 3).
Bloemhof Dam on the other hand had the highest PCB
TEQ value, possibly a result of compounds accumulat-
ing at this point in the Vaal River. Bird embryos and foe-
tuses are more sensitive to POPs than adults. Furthermore,
exposure before organ development results in greater con-
sequences when exposed after organ development (Caral-
son and Duby 1973). However, the TEQ values reported in
this study were low compared to others (Harris et al. 2003;
Hart et al. 1991). The TEQ values calculated for double-
crested Cormorant eggs close to a pulp mill were up to
three orders of magnitude higher than any TEQ value of
the current study (Harris et al. 2003). The double-crested
Cormorant hatchlings had elevated ethoxyresorufin-O-
deethylase (EROD) activity and showed brain asymmetry.
In addition, it is suggested that neurological activities in
bird eggs are more effected by PCDD/F TEQs (Henshel
1998), which were lower than PCB TEQs in the current
study. In Blue Heron eggs from Canada, a no-observed-
adverse-effect-level (NOAEL) of 18 ngTEQ/kg wm was
reported for developmental defects and reduced fledging
(Hart et al. 1991), 10 ngTEQ/kg wm for intercerebral

@ Springer



306

Archives of Environmental Contamination and Toxicology (2024) 87:287-310

brain asymmetry (Henshel et al. 1995), and 100 ngTEQ/
kg wm for gross abnormalities and oedema (Sanderson
et al. 1994). A NOAEL of 200 ngTEQ/kg wm of coplanar
PCBs were reported for Forster's tern eggs (Sterna forst-
eri) for reduced hatching success and fledging (Kubiak
et al. 1989). These TEQ values were all well above all
TEQ values from the current study, and therefore, we
do not expect any adverse effects in eggs, hatchlings, or
fledglings.

The number of PCB congeners measured affect the
reported concentrations in bird eggs. While we investigated
18 congeners of which 12 are DL-PCBs and six NDL-
PCBs, far higher XPCB residues were quantified in eggs that
were investigated for fewer congeners. Field studies found
mortality in double-crested Cormorant eggs at XPCB, of
30 000 ng/kg wm (Tillitt et al. 1992) and developmental
defects in Black-crowned Night herons at ZPCB, concentra-
tions of 800 ng/g wm (Hoffman et al. 1986).

The probability of adverse effects on birds was inves-
tigated by comparing the concentrations quantified in the
eggs to the available toxic reference values (TRVs) of POP.
Unfortunately, TRVs are not available for all species. How-
ever, quantifiable concentrations can be compared to TVRs
for other species, although it should be noted that these val-
ues are estimations and can differ greatly among species due
to behavioural and biological differences. The highest XPCB
concentrations quantified in any egg from the present study
(African Darter: 102 ng/g wm) were much lower than the
TRV that was derived by Hoffman et al. (1986) and Tilliet
et al. (1992). We, therefore, do not expect adverse effects in
birds as a result of PCB exposure for the regions sampled.

The HCB concentrations measured in bird eggs were
low compared to other studies (Table 3). This is reassuring,
since HCB is known to be very toxic to birds. The HCB
concentrations measured in all eggs from the current study
were far below the NOAEL of 1500 ng/g wm for herring
gull embryos (Larus argentatus) embryos (Boersma and
Ellenton 1986). DDT, specifically the metabolite p,p’-DDE,
reduces eggshell thickness in eggs and may lead to repro-
ductive failure and population decline (Dirksen et al. 1995;
Peakall 1993). In Snowy Egrets (Egretta thula), it was found
that DDE residues of 5000 ng/g wm in eggs caused thinner
eggshells and lower hatching success (Findholt 1984). The
p,p’-DDE residues in Little Egret eggs (19 ng/g wm) from
Bloemhof Dam were well below this TRV. Additionally,
DDE residues of 8000 ng/g wm were found to increase egg-
shell breakage in populations of Black-crowned Night Heron
(Nycticorax nycticorax) populations (Henny et al. 1984).
The p,p’-DDE concentrations of all species in the current
study were well below that threshold. However, it should
be noted that eggshell thinning can occur at lower expo-
sure concentrations. Eggshell thinning has been observed in
Cattle Egret eggs with increased p,p’-DDE and p,p’-DDT

@ Springer

concentrations of up to 290 ng/g wm (Bouwman et al. 2013).
For insecticide POPs, therefore, we do not expect adverse
effects in birds for the region sampled.

Certain factors may influence the residue concentrations
quantified in bird eggs such as the diet, habitat preference,
age, and health of the female bird, as well as the time and
the number of eggs laid in the clutch (Dennis et al. 2021;
Mineau 1982). In addition, bioaccumulation of PFOS is 1.8
times greater in eggs when exposed through drinking water
compared to food (Dennis et al. 2021). The concentrations
of PFOS quantified in all eggs of all species from Bloemhof
Dam and Eldorado Park (African Darter: 2330 ng/g wm)
were two orders of magnitude above the TRV of PFOS esti-
mated for Bobwhite quail (Colinus virginianus) whole egg
(92.4 ng/g wm) (Dennis et al. 2021). The predicted no-effect
concentration (PNEC) for PFOS in Bobwhite quail, regrad-
ing chick survival is 1700 ng/g wm (Newsted et al. 2005).
African Darter eggs from Barbers Pan and Reed Cormorant
eggs from Potchefstroom exceeded the TRV and PNEC for
Bobwhite quail. PFOS therefore poses a risk for adverse
effects in birds for all regions sampled.

The XPBDE concentrations from African Sacred Ibis
eggs from Eldorado Park were 20 ng/g wm, well below the
NOEL of 1000 ng/g wm for the Osprey (Pandion haliaetus;
Chen et al. 2010). The Osprey is a high-trophic level spe-
cies when compared with the African Sacred Ibis. It may
be that higher PBDE concentrations will bioaccumulate in
higher trophic level species from Eldorado Park. However,
PBDE does not pose a risk for adverse effects in bird spe-
cies sampled.

Conclusions and Recommendations

Concentrations of all compounds detected in eggs were gen-
erally lower or of the same magnitude than those reported by
most local and international studies, except for PCDD/F and
PFOS. Organochlorine compounds and PCB concentrations
were lower than previously reported, suggesting a decrease
in the environment. Differences in POP concentrations in
wild bird eggs were found between species, sites, habitat
guilds, and feeding guilds. This was to be expected since
species from the same region have different life histories
combined with the different sources and chemical and physi-
cal characteristics of POPs.

Large aquatic predators had greater OCP and PFOS
concentrations compared to species that prey on insects,
while PCBs and PCDD/Fs were more prominent in terres-
trial species. No patterns were observed for the other com-
pound groups. It is recommended that additional species
that occupy other feeding guilds, such as seedeaters and
frugivorous, be included in future studies. It would also be
instructive to determine trends and patterns over multiple
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years. DDT residues in bird eggs remain high in malaria
endemic regions. However, Gauteng appears to be an OCP
(p,p’-DDE) and PCB hotspot. It would be reasonable to
assume that, given the lower p,p’-DDT concentrations and
or lack of quantifiable concentrations in pooled eggs, that
the ZDDT quantified is of legacy use.

PFOS concentrations were observed to peak towards the
west in the area of the Bloemhof Dam. The quantified con-
centrations are comparable to the concentrations detected
near a PFAS source. It appears that Bloemhof Dam acts
as a ‘retainer’ or ‘trap’ of some compounds coming from
upstream or may reflect a local unknown source of PFOS.
These concentrations pose a risk of adverse effects and
should be monitored. It would be very informative to sam-
ple additional locations such as Upington downstream of
Bloemhof Dam, especially with respect to the distribution of
PFOS. PCDD/F concentrations quantified were unexpected.
Due to the widespread occurrence of high PCDD/F concen-
trations, it is difficult to pinpoint specific hotspots. However,
the high ZPBDE concentrations of PBDE in Barbers Pan are
concerning since it is a Ramsar site. Therefore, we recom-
mend that more samples be collected and tested for PCDD/
Fs. Overall, Bloemhof Dam would be a good monitoring
site for all POPs, given its remoteness from large sources
and high breeding density.

The OCP concentrations detected in bird eggs were below
known TRVs. XPBDE concentrations in wild bird eggs
were also low. However, the higher XPBDE concentrations
from Eldorado Park are concerning and this site should be
regarded as a PBDE hotspot. The combined concentrations
of POPs may have greater consequences than individual
POPs. Furthermore, since 2010, 13 POPs have been added
to the Stockholm Convention on Persistent Organic Pollut-
ants (Stockholm Convention 2016b), and others are in the
process of being added. These new POPs need further inves-
tigation to determine possible threats and hotspots. PCB and
PCDD/F concentrations and TEQ values in wild bird eggs
were low, and no adverse effects are expected. Therefore, we
conclude that single-site and single-species studies would
not effectively represent risks representative of the complex-
ity of avian diversity as environmental, behavioural, and
physiological differences of species. Therefore, this study
provides a data-rich baseline against which trends since
2010 can be investigated, especially in the hotspots and bird
species reported here.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00244-024-01088-4.
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