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Spatially resolvedmolecular assays provide high dimensional genetic, transcriptomic, proteomic, and
epigenetic information in situ and at various resolutions. Pairing these data across modalities with
histological features enables powerful studies of tissue pathology in the context of an intact
microenvironment and tissue structure. Increasing dimensions across molecular analytes and
samples require new data science approaches to functionally annotate spatially resolved molecular
data. A specific challenge is data-driven cross-sample domain detection that allows for analysiswithin
and between consensus tissue compartments across high volumes of multiplex datasets stemming
from tissue atlasing efforts. Here, we present MILWRM (multiplex image labeling with regional
morphology)—a Python package for rapid, multi-scale tissue domain detection and annotation at the
image- or spot-level. We demonstrate MILWRM’s utility in identifying histologically distinct
compartments in human colonic polyps, lymph nodes, mouse kidney, andmouse brain slices through
spatially-informed clustering in two different spatial data modalities from different platforms. We used
tissuedomainsdetected in humancolonic polyps to elucidate themolecular distinctionbetweenpolyp
subtypes, and explored the ability of MILWRM to identify anatomical regions of the brain tissue and
their respective distinct molecular profiles.

The advent of spatially resolvedmolecular assays has enabled access to high
dimensional genetic, transcriptomic, proteomic, and even epigenetic
information in situ while preserving the spatial information lost in single-
cell or bulkmolecular assays1–4. Spatially resolveddata can provide powerful
insight into interactions between cell types, progressive changes in tissue
architecture in diseases such as cancer, or interactions between different
structures in tissue such as lymphoid follicles and blood vessels5–7. Biological
insights can be derived from recurring spatial patterns extracted using
quantitative analysis of spatial data.

Many current methods to detect spatial domains attempt to comple-
ment single-cell analyses, essentially taking a bottom-up approach to
reconstruct tissue domains, architectures, and communities from individual
cells. In general, segmentation can identify individual cells from high-

dimensional imaging data. Cellular segmentation and annotation are the
most challenging step in this kind of approach. While numerous methods
are available for cellular segmentation8,9 and annotation10, it remains an
error-prone task that introduces bias due to the potential failure of seg-
menting certain cell shapes or types. Methods such as unsupervised dis-
covery of tissue architecturewith graphs11 and SpatialLDA12 are examples of
two such algorithms that take segmented cell data as input to identify
microanatomical structures or tissue microenvironments. However, results
generated from these algorithms are highly dependent on the segmentation
algorithm used for preprocessing.

Widely used lower-resolution imaging data such as spatial tran-
scriptomics (ST) data are analyzed using cellular deconvolution algorithms
to approximate single-cell composition. Most of these algorithms require a
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parallel single-cell dataset for use as reference13,14. Different cell types are
then arranged into interaction networks based on their spatial distributions
and/ormolecular interactions, and these networks are assembled into larger
spatial structures that identify tissue- or organ-level domains. This type of
analysis has beenused for identifying cellular communities in various cancer
types associated with patient prognosis15–18.

Another perspective comes from the pathology field, where spatial
domains and architectures are first identified, followed by instances of cell
identification bymorphology, which is known as the top–down approach19.
Since this approach focuses directly on pixel-level information instead of
reconstruction from single-cell data, it can identify both extracellular
structures and cellular communities over a range of micro- and macro-
scales. Pixel-based analysis reduces bias introduced by single-cell segmen-
tation and allows for the implementation ofmodern artificial intelligence to
be applied to multiplex tissue data20–22.

Various methods are already available for top–down pixel-based spa-
tial domain detection from ST data23–28. However, many of them lack the
scalability to work across samples to identify consensus domains. Instead,
they identify regional domains that are sample-specific or confounded by
batch effects. While manual curation of sample-specific domains is routi-
nely performed, this process again introduces biases and does not scale to
many samples. Furthermore, these tools are not transferable to other data
modalities and there is a notable paucity of pixel-based tissue domain (TD)
identification algorithms for imaging data. The basis of pathological iden-
tification of diseases hinges on discerning recurring morphologies, shapes,
and color patterns within tissues across patient cases. Extension of this
concept to high dimensional spatial assays is akin to identifying biologically
relevant spatial domains that exhibit consensus across samples. Here, we

present multiplex image labeling with regional morphology (MILWRM)
which is a top–down algorithm designed specifically for consensus TD
characterization across large data sets frommultiplex immunofluorescence
(mIF) and ST modalities with potentially differing orientations and
resolutions.

Results
The MILWRM pipeline generates consensus tissue domains
across specimens
MILWRM is a cross-modal, pixel- or spot-level algorithm that identifies
consensus tissue domains across samples with spatially resolved molecular
data (e.g., mIF and ST) that can be applied to multiple specimens, unlike
most spatial analysis algorithms. Because it is a pixel-based algorithm, it
bypasses bias introduced by single-cell segmentation. The MILWRM
pipeline can be broadly categorized into three major steps: data pre-
processing (Fig. 1; 1–3), TD identification (Fig. 1; 4–6), and TD analysis
(Fig. 1; downstream interpretation). To generalize pixel neighborhood
information across batches, data preprocessing incorporates down-sam-
pling, normalization, data smoothing, and dimensionality reduction. Pre-
processing steps differ slightly for mIF and ST (see “Methods”). After
preprocessing, tissue domains are identified using k-means clustering by
randomly subsampling pixels uniformly within the tissue mask data with a
proportion of 0.2 from each sample (see “Methods”). k-Means was selected
among other clustering algorithms due to its computational efficiency
which allows the analysis to be performed across all slide subsets simulta-
neously after Z-normalization and allows the resulting model to be applied
to the full dataset. The number of tissue domains can simply be given as
input or adjustedby inertia analysis in anunsupervisedmanner29. Eachpixel

Fig. 1 | The workflow of the MILWRM pipeline.
MILWRM begins with constructing a tissue labeler
object from all the sample slides that undergo data
preprocessing, serialization, and subsampling to
create a randomly subsampled dataset used for k-
means model construction. This subsampled data is
used to find an optimal number of tissue domains,
and k-selection using the adjusted inertia method.
Finally, a k-means model is constructed, and each
pixel is assigned a TD. Each TD has a distinct
domain profile describing its molecular features.
MILWRM also provides quality control metrics
such as confidence scores (created with
BioRender.com).
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is assigned a TD based on the nearest centroid which is determined in the
original data byusing theparameters estimated fromtheZ-normalization in
the subset. Domain profiles are calculated by MILWRM from the initial
feature space to molecularly describe each TD, which is useful for down-
stream annotation. Finally, MILWRM computes a variety of metrics to
assess the quality of identified tissue domains (see “Methods”). Overall,
MILWRM is a comprehensive, easy-to-use pipeline for TD detection,
providing interpretable results for biological analysis and quality
assessment.

Tissue domain (TD) detection in multiple mIF datasets from var-
ious tissues and platforms
We applied MILWRM tomIF data generated for the Human Tumor Atlas
Network (HTAN) consisting of human normal colon and different colonic
pre-cancer subtypes (conventional adenomas—AD and serrated polyps—
SER)30. These data comprised multichannel fluorescent images from 37

biospecimens consisting of tissues with different morphologies and
pathological classifications confirmed by two pathologists (Supplementary
Table 1). We performed a low-resolution application of MILWRM using a
smoothing parameter (sigma) of 2 after downsampling the images by a
factor of 16 to an isotropic resolution of 5.6 µm/pixel and with a penalty
parameter of 0.05 (see “Materials” and “Methods”) that resulted in three
tissue domains according to adjusted inertia, as illustrated by three repre-
sentative samples (Figs. 2a–c and S1). According to domain profiles
(Fig. 2c), the epithelial monolayer compartment was identified by markers
such asCDX2,β-catenin,Na+–K+ATPase, andproliferativemarker PCNA,
consistent with a high turnover hind-gut epithelium31,32. The mucus layer
was enriched in MUC2, a secreted mucin33–35. The lamina propria region,
where stromal cells are prominent, was identified by vimentin and
collagen36. The results fromMILWRManalysis are consistentwith the tissue
architecture of the colonic mucosa, as well as other mucosal tissues in
the body.

Fig. 2 | TDdetection inmultiplemIFdatasets fromvarious tissues andplatforms.
aThree representative colonmIF images with labeled tissue domains (α = 0.05) (left)
and mIF images overlaid with Collagen, Na+–K+ ATPase, and DAPI (right).
bDomain profile describingmarker composition of eachTD. cEstimated number of
tissue domains in adjusted inertia plot. d Boxplot for proportion of each TD across
38 samples with each colored dot corresponding to a sample (legend on the right) (e)

Boxplot for average confidence score across all pixels in each image for each TDwith
each color dot corresponding to a sample (legend on the right). f Lymph node
CODEX images with labeled tissue domains (α = 0.05). g Illustration of lymph node
depicting TD organization and (h) illustration of kidney depicting TD organization.
i Human kidney CODEX images with labeled tissue domains (α = 0.05).
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MILWRM consistently identified these regions across the 37 tissue
samples (Fig. 2d). To assess the quality of TD identification, MILWRM
calculates a modified silhouette-based confidence score per pixel, which
evaluates the deviation of each pixel from the centroid of the matched TD
relative to the next closest k-means centroid. Most pixels across all samples
have high confidence scores apart from a few in the epithelial and mucus
tissue domains (Figs. 2e and S2a). Low confidence scores can be attributed
to inherent biological heterogeneity within epithelial domains, as the ana-
lysis is performedover samples frommixedpathological categories (normal,
AD, and SER). Additionally, pixel-level data across samples intermixed in
UMAP-embedded space illustrating removal of batch effects between
images (Fig. S2b), thus demonstrating the ability of MILWRM to identify
consensus regions overmultiple samples.MILWRMcaptured about 80%of
the variance in the multidimensional imaging data without any notable
outliers, indicating that informationwithin the imagingdata is retained after
MILWRManalysis (Fig. S2c). Thus,MILWRMperformedon a cohort of 37
biospecimens was able to provide physiologically relevant tissue domains
with high confidence.

Next, we obtained new CODEX imaging data from mouse lymph
nodes (N = 3) and then applied MILWRM analysis. Lymph nodes are
secondary lymphoid organs with well-defined substructures that support
adaptive immunity. Broadly, these substructures consist of the cortex
densely packed with lymphocytes and the medulla where vasculature and
lymphatic sinuses are located37. We downsampled these images by a factor
of 8 to an isotropic resolution of 2.6 µm/pixel and applied MILWRM
(sigma = 2 and alpha 0.05, see “Methods”) which resulted in the detection of
four tissue domains that described different areas of a lymph node
(Figs. 2f andS3a).The lymphnode cortex is composedof follicles containing
densely packaged B cells and follicular dendritic cells that are marked by
expression of B220 and CD21-35 protein, respectively38,39, a deeper para-
cortex enriched with CD3+ T cells and CD11c+ dendritic cells, a sub-
capsular/trabecular sinus zone enrichedwithCD169+macrophages40, and a
medullary regionmarked by the expression of stromal Collagen and CD31,
marker for endothelial cells41 (Fig. S2d). These observations corroborate the
general structure of the lymph node (Fig. 2g)42.

We also collected additional CODEX imaging data from human kid-
neys (N = 4)43 as part of the Human BioMolecular Atlas Program44,45 to test
the MILWRM application (Fig. S3b). The kidney, an organ that is a central
component of the urinary system, comprises more than a million func-
tioning nephron units, each possessing diverse substructures that span the
medulla and cortex regions of the kidney46. MILWRM detected six tissue
domains in downsampled kidney images (resolution 10.2 µm/pixel) at a
parameter setting of sigma = 2 and alpha = 0.05 (see “Methods”). As
expected,MILWRMdetected tissue domains that corresponded to different
substructures of the nephron such as tissue domains of glomerulimarkedby
the expression of synaptopodin and proximal tubules marked by the
expression of aquaporin 1 and CD90 (Figs. 2h–i and S2e)43,47. Similar to
tissue domains in the lymph node, the tissue domains detected by
MILWRM effectively capture the organization of both the medulla and
cortex regionsof thekidney, alongwith the intricate substructures contained
within. MILWRM also detected two distinct regions of the loop of Henle—
thick ascending limbmarked by the expression of Uromodulin protein and
the transition region towards the thin ascending limb—highlighting
MILWRM’s ability to detect intricate tissue domains in the kidney
(Fig. 2h–i). Collectively, these results demonstrateMILWRM’s versatility in
detecting consensus tissue domains from a variety of tissues and organs
using datasets collected from different imaging platforms.

MILWRM identifies tissue domains associated with colon pre-
cancer subtypes
Inorder toobtainmore refined tissuedomains that appropriately stratify the
heterogeneous pathological categories of our colon samples (normal, AD,
and SER), we next performedMILWRMwith a reduced penalty parameter
to increase the cluster resolution and model associations with polyp type
(penalty parameter = 0.02, see “Methods”). We obtained nine MILWRM

tissue domains that further broke down the epithelial compartment into
stem (SOX9, PCNA, andCDX2), differentiated (Na+–K+ATPase, PANCK,
and β-catenin), mucus (MUC2), abnormal (MUC5AC+/PANCK+),
and crypt lumen (OLFM4+), and the non-epithelial compartment
into smooth muscle, pericryptal stroma, and proximal and deep
lamina propria (Figs. 3a–c and S4). Interestingly, pericryptal stroma was
identifiedwith amixtureof epithelial and stromalmarkers and labeled a thin
fibroblast layer comprising telocytes constituting the stem cell niche
(Figs. 3a–c and S5a–e)48,49. Notably, theMILWRMepithelial tissue domains
alignedwith cell states, and theirmarkers were identified in the same tissues
using single-cell RNA-sequencing in our previous HTAN study30.

Using tissue classification consensus by two pathologists as ground
truth, we then asked whether the two pre-cancer subtypes, AD and SER,
have any differences in the organization of MILWRM tissue domains. We
used generalized estimating equations (GEE) to statistically model the
association of MILWRM TD proportions with tumor type and found a
significant association between MILWRM proportions for crypt lumen,
abnormal, and stem classes (Supplementary Table 2 and Fig. 3d). Specifi-
cally, ADs were associated with higher proportions of pixels labeled as stem
and crypt lumen classes, consistent with their characteristic increased
stemness driven by WNT-signaling30,50. In contrast, serrated polyps were
associated with increased pixel proportions of the abnormal tissue class
marked by MUC5AC; MUC5AC is a foregut endoderm mucin character-
istic of metaplasia associated with serrated polyps51.

AD arises from stem cell expansion; these cells inevitably fill the
entirety of abnormal crypts30. Therefore, we hypothesized that the stem
MILWRM domain would display notably enhanced pixel connectivity
because the absence of differentiated cell domains in AD would result in
uninterrupted stem cell domains. We again used GEE to estimate the
population average effect of pre-cancer subtype on MILWRM the max-
imum size of tissue-connected components (Supplementary Table 3 and
Fig. 3e) and found a significant association between the size of connected
components of stem and mucus tissue domains and pre-cancer type. The
stem domain was expectedly more connected in the AD subtype whereas
higher connectedness in the mucus domain was associated with the SER
pre-cancer type. ADs have defects in the differentiation of goblet cells that
inherently deplete the mucus layer52–57. This aligns with the association of
AD with decreased connected mucus components as MUC2 expression
decreases in adenoma during progression, which disrupts the normally
contiguousmucus barrier in normal colonic and SERmucosa58 (Fig. 3e).No
such association was observed for the connectivity of the abnormal
MUC5AC+ domain since it comprises sporadic abnormal cells associated
with secretion. These results align with recent atlas results demonstrating
that ADs arose from stem cell expansion and serrated polyps from pyloric
metaplasia30,51. The association of ADs with stem domains, both in pre-
valence and connectivity, is consistent with mouse models where labeled
stem cells are observed to significantly expand in premalignant tumors
driven by hyperactive WNT signaling30,36.

MILWRM applied to ST reliably identifies tissue domains across
multiple mouse brain cross-sections
To benchmark MILWRM against state-of-the-art TD identification
methods (SpaGCN, GraphST, PRECAST, and BASS), we utilized a 10×
Visium ST dataset generated from the mouse brain. For assessing the per-
formance of these methods, we first created a ground truth for each brain
histological region by curating a reference gene list from differential gene
expression data acquired using in situ hybridization by the Allen Brain
Atlas59. For histological regions not available in the Allen Brain Atlas, we
curated reference gene lists from another source, theMolecular Atlas of the
mouse brain60. To validate these reference gene lists, we computed a sig-
nature score for the curated gene list for each brain region, and thenoverlaid
these signatures onto ST data (Fig. 4a). As expected, the reference gene
signatures were highly specific to respective histological regions. We used
these scores to assign histological region labels to each spot in this dataset
which serves as ground truth for this dataset (Fig. 4a and see “Methods”).
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We applied MILWRM and other methods to all the samples simul-
taneously using k = 13 based on ground truth annotations (see “Methods”).
MILWRM identified consensus tissue domains across samples that overlap
with ground truth annotations closely (Fig. 4b). Notably, MILWRM iden-
tified consensus domains despite differences in the orientations and cuts of
brain tissue sections. For example, MILWRM was able to capture tissue
domains that are unique only to certain sections, such as the cerebellum
specific to sagittal-posterior cut, as well as domains with diverse shapes and
sizes due to orientation differences, such as the striatum that is small in the
coronal slice, large in the sagittal-anterior section, and absent in the sagittal-
posterior section (Figs. 4c and S6a). Compared toMILWRM, SpaGCN, and
GraphST either fail to identify consensus tissue domains across different
sections (i.e., isocortex in the case of SpaGCN) or do not recognize certain
regions at all, such as missing the thalamus for both methods. On the other
hand, PRECAST and BASS identified intricate brain regions at a higher
resolution than the ground truth. However, both methods also missed a
number of difficult domains such as ventricles. Interestingly if we increase
the clustering resolution by reducing the penalty parameter for MILWRM,

it is also capable of identifying finer brain structures while notmissingmore
difficult regions such as ventricles (Fig. S6b).

We also compared the performance of eachmethod using the adjusted
rand index (ARI) that measures the similarity between two clustering
results. We first computed ARI for each method against the ground truth
per sample. Additionally, to quantitatively compare if the labels were con-
sistent across samples,we computeda consensusARI by calculating theARI
for all the labels collectively.MILWRMhas a higher ARI than the rest of the
methods across most samples (Fig. 4d) and the highest consensus ARI
(Fig. 4d, blue star). We also compared the signatures identified by
MILWRM to the reference gene signatures used for ground truth annota-
tions. To quantify the performance between reference gene signatures and
MILWRM signatures, we calculated a spot-by-spot correlation of the two
sets of signature scores across all slides. The high correlation between the
MILWRM and reference scores was observed on a brain region-specific
basis (Fig. 4e). These results illustrate that the MILWRM approach can be
effectively applied to genome-scale ST data for extracting TD-specific
molecular information.

Fig. 3 | MILWRM tissue domains describe the molecular distinction between
human colon adenoma pre-cancer subtypes. a Three representative colon mIF
images with labeled tissue domains (α = 0.02). b Estimated number of tissue
domains in adjusted inertia plot. cDomain profile describingmarker composition of

each TD. d Scatter plot for proportion for tissue domains that are significantly
associated with pre-cancer subtypes. e Scatter plot for the log of size of maximum
connected components for tissue domains that are significantly associated with pre-
cancer subtypes. *Signifies a p value < 0.05 and ****signifies a p value < 0.0001.
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MILWRM applied to annotated DLPFC ST data performs better
than the state-of-the-art methods
The ground truth created for the mouse brain dataset was based on the
expression of region-specific genes collected from other well-curated
sourceswithout accounting for the histomorphology of tissue substructures.
Thus, we wanted to further benchmark MILWRM against other methods
(SpaGCN, GraphST, PRECAST, and BASS) in a dorsolateral prefrontal
cortex (DLPFC) dataset that wasmanually annotated based on both region-
specific gene expression and the morphology of different DLPFC layers61.
We applied MILWRM and the rest of the methods collectively to all the
samples together with a fixed k = 7 based on ground truth annotations.
MILWRM more accurately identified all seven key layers in the given
sample compared to SpaGCN, GraphST, and PRECAST, which either did

not identify layers ofDLPFCproperly (SpaGCNandGraphST) or identified
uneven layers (PRECAST) (Fig. 5a). BASS performed better than SpaGCN,
GraphST, and PRECAST and had comparable performance to MILWRM
(Fig. 5b). However, MILWRMhad better overall performance based on the
consensus ARI and had more consistent performance across slides than
BASS (Fig. 5b). AlthoughMILWRMdidwell comparatively, there were still
some discrepancies between its results compared to manual annotation.
Layers unique to section 151675, such as layer 1, were misidentified in the
other sections (Figs. S7–S9), and layer 4 was not captured accurately. This
error likely occurred because that layer represented a relatively small
component of the total variance and was missed by the k-means plus
smoothing algorithm. Interestingly, the TD profile for specific layers pre-
sented layer-enriched differentially expressed genes discovered byMaynard

Fig. 4 | MILWRM detects consensus tissue domains in ST data from different
mouse brain cross-sections. a Reference signature (middle—thalamus, striatum,
and cerebellum top to bottom, respectively) based ground truth annotation (right) in
mouse brain ST data (scale bar = 500 µm). bMILWRM, SpaGCN, GraphST, PRE-
CAST, and BASS detected tissue domains (k = 13) overlaid on three mouse brain ST

samples. c Proportion of tissue domains in slides each bar corresponding to the
legend on the left. d Scatter plot for ARI and consensus ARI. eCorrelationmatrix for
overall correlation between MILWRM and reference scores for each TD and ana-
tomical region across all spots.
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et al., for different layers in theDLPFCdataset (Fig. 5, black arrow). Overall,
these results demonstrate that MILWRM performs better than current
state-of-the-art methods for TD detection in ST data.

Discussion
Pixel-based TD detection forms the basis of the top–down approach to
spatial data analysis. Currentmethods of TDdetection are either based on a
bottom-up approach, that is, building cellular neighborhoods using seg-
mented single-cell data11,12,62 and/or lack scalability across samples23–25,63,64.
Here, we addressed this gap by developing MILWRM, an algorithm to
detect spatial domains across samples through a top–down, pixel-based
approach. We demonstrated the applicability of MILWRM to find relevant
biological phenotypes in multiple data modalities (mIF and ST) in an
unsupervised way without manual thresholding and annotation.

MILWRM application in kidney and lymph nodes resulted in tissue
domains that captured the biological organization of the tissue i.e., the
presence of a large T cell zone in the center of lymph nodes right above the
medullary regions and glomeruli only present in the cortex region of the
kidney alongside proximal tubules. Additionally, MILWRM identified tis-
sue domains of varying sizes in these datasets such as glomeruli in the
kidney data.

While abnormal tissues can be distinguished from normal tissues
within a slide using othermethods, MILWRM’s identification of consensus
domains across slides has significant value. When there are specimens that
are completely composed of abnormal tissues, comparison between

specimens (normal vs abnormal) is the only way to distinguish between
disease states. We demonstrated that MILWRM is able to discern organi-
zational differences in tissue domains related to disease subtypes. Finally,
MILWRMwas able to identify consensus domains and gene lists thatmatch
with organ anatomical features despite different cuts and orientations. This
is important because the tissue structure from individual cuts may appear
morphologically different when it is functionally identical. These examples
showed the real-world application of MILWRM in the pathological diag-
nosis of disease subtypes and anatomic classification and characterization.

mIF data present additional pixel analysis obstacles that make imple-
mentationof existing tools for STdata impossible. First, due to lowermarker
dimensionality, marker selection, and management is of utmost impor-
tance. Unlike ST data where vectors of genes define programs and pheno-
types, mIF phenotypes are usually defined by single markers. Highly
expressed markers may mask lower expression markers if suboptimal
preprocessing is performed, thus preventing some tissue domains from
being detected. Secondly, high-resolution microscopy data are generally
incompatible with pixel-based algorithms built for low-resolution ST data,
such as SpaGCN.The creation of image tiles or large-scale downsampling is
needed to satisfy speed andmemory requirements. In contrast tomost state-
of-the-art methods for pixel-based analysis that are data type-specific, we
demonstrated that MILWRM is adaptable to multiple imaging data types
and is scalable to many samples.

When applied acrossmultiple ST samples,most of the existing domain
detection methods failed to recognize meaningful tissue domains or could

Fig. 5 | MILWRM applied to annotated DLPFC ST data performs better than the
state-of-the-art methods. a DLPFC sample 151675 (scale bar = 500 µm) with
ground truth, MILWRM, SpaGCN, GraphST, PRECAST, and BASS results overlaid
(k= 7). b Scatter plot for ARI and consensus ARI. c TD profile describing the genes

enriched in each TD. d Boxplot for average confidence score across all pixels in each
image for each TD with each color dot corresponding to a sample (legend on
the right).
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not reach consensus. Additionally, MILWRM also provides the ability to
perform tissue clustering at different levels of smoothing, downsampling,
and cluster resolution.

It is important to note the limitations of the MILWRM algorithm,
which can help users identify when it will be effective in their data. First,
although MILWRM outperformed other comparable methods of TD
detection, there are still inaccuracies when compared to ground truth
identified by expert annotation. When applied to the DLPFC dataset,
MILWRM did not identify layer 4 in any specimen (Figs. 5a and S7–S9).
This is supportedby the variousQCmetrics thatMILWRMprovides, which
show that the confidence scores are lowest in misidentified layers (Fig. 5d).
This misclassification is likely due to MILWRM’s reliance on k-means and
smoothing for proximity information, which lowers effective resolution and
can potentially result in small domains being missed when they are het-
erogeneous in size. Using a different data representation that incorporates
spatial information in adirectwaywithout dimensionality reductionmaybe
more useful in the case of very high dimensional data, such as Visium ST60.
Second, k-means clustering can yield unusual outcomes if the marker space
structure is non-Euclidian65. In the event of poor performance,MILWRM’s
quality control metrics may help to recognize such cases. Finally, as
MILWRM is solely based on gene expression, it does not incorporate other
features, such as histomorphology, for TD identification.

The emergence of spatially resolved assays has offered unique insights
into tissue organization, with cohort studies in a medium throughput
manner being a possibility. MILWRM is a tool tailored for multi-sample
investigations, that excels in reducing biases caused by a reliance on single-
cell segmentation, in a user-friendly, easily interpretable manner across
diverse imaging modalities. Despite its limitations, MILWRM out-
performed other methods in identifying consensus tissue domains across
samples and is a fast and versatile package that is widely applicable tomany
modalities of spatial profiling. The results demonstrate that MILWRM
provides interpretable tissue domains across heterogeneous samples and
that the domains are sensitive to biological differences between samples and
tissue types within samples.

Methods
MILWRM—data preprocessing
Spatial-omics data differ in their acquisition and technological artifacts
across modalities, so these preprocessing steps are data type specific. It is
important for the user to understand and applymethods that are reasonable
for their modality before using MILWRM, otherwise, results can be cor-
rupted by batch effects.

MILWRM—data preprocessing for mIF
Prior to preprocessing, mIF data were scaled from uint8 (0–255) to float
(0–1) and downsampled by a factor of 1/16th for the human colon, 1/8th for
lymphnode and 1/32th forKidney dataset, resolution to speed computation
and normalization process. There is no sacrifice in the quality of
the neighborhood identification by downsampling as mIF data have sub-
cellular spatial resolution and MILWRM is designed to identify broad
tissue domains. After downsamplingwe created tissuemasks for each image
as described in mIF tissue mask generation with MILWRM. Finally, we
applied image normalization at the slide level using the formula
y ¼ log10

x
μx

þ 1
� �

, where x is the unnormalized data and μx is the mean
of non-zero pixels in the image, per marker. This normalization was a
modification of an existingmethod evaluated in segmentedmIF data. Here,
we implemented the mean of non-zero pixels to accommodate channels
with sparse signal intensities66. The downsampling performed on images
prior to this normalization step also aligns with the unbiased grid-based
normalization framework described by Graf et al. 67. To incorporate spatial
information within each pixel, after normalization, we applied Gaussian
smoothing. The radius of blurring can be controlled by adjusting the sigma
parameter in MILWRM for mIF modality. Here, we use sigma = 2 for
smoothing.

MILWRM—data preprocessing for ST
The above-described steps differ slightly between themIF and STmodality.
For ST data the first step is to reduce the dimensionality of the tran-
scriptomics data. For the analysis shown in this paper, we used principal
component analysis (PCA) for dimensional reduction, but other methods
can also be used with MILWRM, such as non-negative matrix
factorization68. The number of PCs was selected visually using the variance
ratio rankplot (12 and10 for themouse brain andDLPFC, respectively).We
used Harmony69 to correct technical variations between the samples. As in
mIF, blurring is applied to the ST slides to preserve spatial information. To
perform blurring, each central spot is assigned the average value for the
selected reduced components (PCs in this case) across the spots within the
neighborhood of the central spot. The spatial neighborhoods are computed
using the Squidpy Python package70. The neighborhood distance can be
controlled by adjusting the n_rings parameter. Here, we use n_rings = 1 for
smoothing in ST data.

MILWRM—identification of tissue domains
The tissue domains in the data are identified across slides by performing k-
means clustering on the preprocessed data. MILWRM reduced computa-
tion time by randomly subsampling pixels within the tissue mask for mIF
modality. Pixels are sampled uniformly from within the pixel mask at a
default proportion of 0.2 per samplewithout regard for spatial location. The
fraction of pixels or all the spots are serialized to build the k-meansmodel. If
dimension reduction is performed, then the input data are the PCA com-
ponents, otherwise, the input is the batch-adjusted marker channels. After
downsampling and PCA, prior to performing k-means, the data are Z-
normalized to ensure that the mean and variances are similar across the
different channels/PCAcomponents of the input data. Thek-selection fork-
means is done by estimating the adjusted inertia metric. Adjusted inertia is
inertia weighted by a penalty parameter that controls the number of
clusters29. For MILWRM, the parameter can be adjusted to control the
resolution of tissue domains identified.

After performing k-means clustering, tissue domains are identified in
the full dataset by assigning the TD for the closest cluster centroid from the
k-meansmodel. Themean and variance computed for subsampled data are
used toZ-normalize the original image data. By performing k-meansmodel
estimation in the subsample,MILWRMcan reduce computational demand
for mIF modality. k-Means is performed on the entire dataset in the ST
modality.

MILWRM—quality control and tissue labeling
Once the regions are identified it is useful to label the tissue domains based
on their marker expression profile and assess the quality of clustering. The
cluster centroids for each TD are plotted in marker or PCA component
space to label the tissue cluster based on its expression profile. The centroids
can also be plotted in gene space for ST modality or other dimensionally
reduced components. The quality of clustering is assessed at the whole slide
and pixel levels. To assess the whole slide fit, we compute the variance
explained and the mean square error within each slide. These metrics allow
the user to flag slides for manual review where the overall fit might be bad.
We also compute pixel-level confidence score using the formula y ¼
distx;c2 � distx;c

distx;c2
where dist is the Euclidean distance between pixel or spot, x,

assigned centroid, c, and the second closest centroid, c2. The confidence
scores take values between zero and one where higher values indicate a
smaller distance between the assigned centroid and closest centroid thus,
better fit. This metric is a fast simplification of the Silhouette index71.

MILWRM—mIF tissue mask generation
MILWRMhas a designated function to perform the creation of tissuemasks
through theMILWRMpipeline described above. Each preprocessing step is
performed on individual images including log normalization and smooth-
ening with a Gaussian filter (sigma = 2). Finally, the mask is created using
Kmeans clustering with n = 2. The k-means cluster centers are then Z-
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normalized, and the cluster centerwith amean smaller or equal to zero is set
as background.

Human colon mIF data acquisition
The mIF data were generated for the HTAN consisting of human normal
colon and different colonic pre-cancer subtypes (conventional adenomas—
AD and serrated polyps—SER)30. These data comprised multichannel
fluorescent images from37 biospecimens consisting of tissueswith different
morphologies and pathological classifications, as confirmed by two
pathologists (Supplementary Table 1). Cyclical immunofluorescence
staining, detection, and dye inactivation were performed as described
previously2. In brief, fluorescent images were acquired at 200× magnifica-
tion on a GE In Cell Analyzer 2500 using the Cell DIVE ® platform.
Exposure times were determined for each antibody. Dye inactivation was
accomplished with an alkaline peroxide solution, and background images
were collected after each round of staining to ensure fluorophore inactiva-
tion. Staining sequence, conditions, and exposure times are as described in30.
Following the acquisition, images were processed as described31. Briefly,
DAPI images for each round were registered to a common baseline, and
autofluorescence in staining rounds was removed by subtracting the
equalized background image of the previous round for each position.

Lymph node CODEX data acquisition
Mouse lymph nodes were embedded in OCT (Sakura) and frozen in liquid
nitrogen. The lymph nodes were sectioned into 7 µm cryosections on
coverslips prepared according to the manufacturer’s protocol (Akoya
Biosciences). Antibody staining and fluorescent reporter plate preparation
were carried out following the manufacturer’s protocol for fresh frozen
tissue (Akoya Biosciences), with one modification: just prior to antibody
addition, cryosections were incubated in staining buffer for 20min, then Fc
blocked with anti-CD16/32 (clone 93, 0.005 µg/µL) for 20min at room
temperature. Samples were then rinsed with staining buffer and incubated
with the antibody cocktail according to Akoya’s protocol. We conjugated
antibodies listed as custom conjugates to oligonucleotide barcodes from
Akoya Biosciences according to the manufacturer’s protocol. Tiled images
of the lymph node were acquired with a Leica DMi8 microscope using
CODEX CIM software, and images were preprocessed using the CODEX
MAV default settings.

Kidney CODEX data acquisition
Human kidney tissue was obtained during a full nephrectomy performed
at Vanderbilt University Medical Center (VUMC). The VUMC Coopera-
tive Human Tissue Network (CHTN) acquired and processed the tissue in
compliance with CHTN standard protocols. Institutional IRB policies were
in place for consent to collect remnant tissue from participants. A detailed
protocol for tissue processing, embedding, and storage is available72.Tissues
were sectioned at 10 um thickness and probed with an antibody panel
directed at specific renal targets. The antibody panel consisted of carrier-
free, primary antibodies from Abcam (Cambridge, MA) conjugated to
barcodes fromAkoya Biosciences (Menlo Park, CA). Antibodies, barcodes,
and the reporter channel for each antibody in the panelwereCD90 (barcode
22, reporter AF 750), aquaporin 1 (barcode 002, reporter Atto 550), beta-
catenin (barcode 003, reporter Cy5), calbindin (barcode 004, reporter AF
750), synaptopodin (barcode 006, reporterCy 5), aquaporin 2 (barcode 015,
reporter Cy5), alpha smoothmuscle actin (barcode 029, reporter Atto 550),
vimentin (barcode 042, reporter Cy5), uromodulin (barcode 047, reporter
Atto 550), and cytokeratin-7 (barcode 005, reporter Atto 550). Antibody
conjugation, tissue staining, and CODEX multiplex immunofluorescence
methodswereperformedasdescribed in43. Imageprocessingwasdoneusing
the Zeiss Zen Blue software package and multiplex immuno-
fluorescence cycle registration was performed using wsireg73.

Statistics and reproducibility
In order to assess the sensitivity of MILWRM regions to biological differ-
ences between precancer subtypes we computed tissue proportions and

connected component statistics for each TDwithin the tumor region of each
image and used GEEs to model how these variables were associated with
precancer subtypes. Connected components were estimated for each image
in Python using the label function in scipy.ndimage.measurements module.
For the tissue proportions, we modeled each tissue proportion separately
using a binomial familymodel assuming that images from the same slide had
an exchangeable correlation structure. We modeled the maximum con-
nected component size in order to quantify how the size and connectedness
of different tissue domains differed across precancer subtypes. In these
analyses, we used log transformation in a Gaussian family model with a log
transformation on the maximum connected component size and included a
log of the total tissue volume as a covariate. In all models, we weighted each
region by its total image size so that results were not affected by noisy
estimates from smaller images. Statistical analyses were performed in R using
the geepack package74. We plotted all results with unadjusted significant p
values and reported adjusted p values using the Benjamini–Hochberg pro-
cedure and a robust effect size index75,76 (Supplementary Tables 2 and 3).

TD signature scores for ST data
The manual annotation for tissue domains in ST data was verified by
generating signature gene scores specific to each brain region. For this
purpose, we extracted differentially expressed genes from the Allen brain
atlas for all available brain regions and the molecular atlas of adult mouse
brain60 for the fiber tract and ventricles. To extract differentially expressed
genes from Allen’s brain atlas we performed a differential search using
mousebrain regions as target structure and entire graymatter as the contrast
structure.

MILWRM also identified a set of genes for each TD. We computed a
score for both the reference signature set and the MILWRM gene set using
SCANPY77,78. After computing the reference signature for each spot, Arg-
max was used for the final annotations.

Comparison with other methods
To evaluate MILWRM’s performance at TD detection, we compared it to
other recently developed domain detection methods for ST data. We used
the default parameters and preprocessing steps suggested for each method
in their respective papers and the same number of clusters as the ground
truth for the DLPFC and mouse brain dataset. We deemed this to be a
reasonable choice as these methods all presented analyses of the DLPFC
dataset and SpaGCN analyzed the mouse brain data as well. Our imple-
mentation of these algorithms differs in that we applied it across all slides in
the dataset. Finally, the output labels for each sample were used to compute
the ARI. To compute consensus ARI, we concatenated output labels for all
the samples together and estimated ARI against the concatenated ground
truth. Notably, PRECAST caused some unexpected trimming of a few
samples in both DLPFC and mouse brain data. These samples were
excluded from ARI quantification and downstream analysis.

Materials availability
This study did not generate any new unique reagents.

Data availability
Imaging data can be found on Zenodo (https://zenodo.org/records/
10557593). The 10× Visium mouse brain dataset can be downloaded
from the 10× Visium website. The DLPFC dataset can be found here
(https://github.com/LieberInstitute/HumanPilot).

Code availability
The package is available to be installed directly from the PyPi website
(https://pypi.org/project/MILWRM/). The source code for the package and
code for the figures can be found on github (https://github.com/Ken-Lau-
Lab/MILWRM).
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