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A long-context language model for
deciphering and generating bacteriophage
genomes

Bin Shao 1,2 & Jiawei Yan 3

Inspired by the success of large language models (LLMs), we develop a long-
context generative model for genomes. Our multiscale transformer model,
megaDNA, is pre-trained on unannotated bacteriophage genomes with
nucleotide-level tokenization.Wedemonstrate the foundational capabilities of
our model including the prediction of essential genes, genetic variant effects,
regulatory element activity and taxonomy of unannotated sequences. Fur-
thermore, it generates de novo sequences up to 96K base pairs, which contain
potential regulatory elements and annotated proteins with phage-related
functions.

Large pre-trained language models have drastically transformed the
natural language processing (NLP) field1,2. Drawing on the similarity of
natural language and genome sequences, genomic language models
have been developed3. These models are trained on large-scale geno-
mic datasets, and they effectively predict regulatory elements,
uncover co-regulation patterns in proteins, and identify the genome-
wide variant effects4–8. However, it remains an open question whether
language models can be tailored to generate genome-scale sequences
with functional elements while retaining the capacity to decipher the
intricate relationships within DNA sequences.

Most of the current genomic language models use masked lan-
guage modeling like bidirectional encoder representations from
transformers (BERT)1. This approach is not ideal for tasks that require
generating new content. In addition, they face technical constraints
such as short context size and the aggregation of sequences in k-mer
tokenization. These limitations hinder their ability to learn from
genome-scale data with the level of resolution needed for designing
functional elements.

In this work, we introduce megaDNA, a long-context language
model that demonstrates foundational capacities in understanding and
generating genomic sequences. Our model draws inspiration from the
generative pre-trained transformers (GPT) model2, which is renowned
for its proficiency in generating long and coherent texts. We utilize a
multiscale transformer structure, developed by Yu et al.9, which enables
us to train the model on unannotated whole bacteriophage genomes at

the single-nucleotide level in a self-supervised manner. Without further
fine-tuning, our model can predict gene essentiality across the phage
genome in a zero-shot manner. The sequence embeddings computed
by our model can be directly applied to predict the functional proper-
ties of both regulatory elements and proteins. Moreover, the trained
model generates sequences up to 96K base pairs (bp), sharing a similar
genomic structure with natural bacteriophage genomes. We find func-
tional promoters and ribosomebinding sites (RBS) in the 5′untranslated
regions (5′UTR)of thepredicted genes. Theproteins from the generated
sequences are predicted to be structurally plausible. Our model is
available from GitHub.

Results
megaDNA allows zero-shot prediction of gene essentiality
To construct the training dataset, we collected bacteriophage gen-
omes with high confidence from three sources including the NCBI
GenBank, the metagenomic gut virus (MGV) catalog10, and the gut
phage database (GPD)11 (Supplementary Fig. 1). After data cleaning, we
constructed a dataset of 99.7K bacteriophage genomes to pre-train
our model (Methods), and the training data was nucleotide-level
tokenized, where each nucleotide is treated as a separate token.

Traditionally, transformer-based language models only process a
few thousand tokens of context because the computational cost of the
self-attention mechanism scales quadratically with sequence length.
This context window is not sufficient to model nucleotide-level
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tokenized phage genomes. To overcome this problem, we employed a
multi-scale transformer structure9 to model the long-range context
information. This architecture consists of three decoder-only trans-
former layers with multi-head attention, and each layer captures
sequence information at different resolutions: the local layer pro-
cesses embeddings of tokenized sequences within a 16 bp window. Its
output serves as the input to the middle layer, which has a context
window of 1024 bp. Finally, the global layer utilizes information from
the middle layer to model sequence dependencies across the whole
input context (96 Kbp).

We hypothesize that our pretrained language model captures the
structural patterns of bacteriophage genomes in our training dataset,
allowing the model’s loss to approximate the fitness of genome
sequences. To test this hypothesis, we conducted in silicomutagenesis
analysis to predict essential genes in the lambda phage genome12

(Fig. 1b). Without any supervised training, we found mutations within
the coding sequences of essential genes result in higher losses than
non-essential genes (Fig. 1c). Consequently, changes in model loss can
be used as a zero-shot predictor of essential genes (AUROC: 0.86,
Fig. 1d). Similarly, mutations in the start and stop codons of essential
genes lead to higher model losses than non-essential genes (Fig. 1d,
Supplementary Fig. 2). We further analyzed the similarity of sequences
in the training dataset to the lambda phage genome (Supplementary
Fig. 3). We found that 847 training sequences aligned with the lambda
phage genome through BLAST analysis13. Among these sequences,
50 show a sequence identity above 0.4, and 8 have an identity
exceeding 0.9. This finding indicates that our model’s performance
benefits from a broad spectral of related references in the training
dataset, predominantly consisting of low-similarity sequences and
supplementedbya small proportion of highly similar ones. In addition,
about 34% of the phage genomes have more representations in the
training sequences than the lambda phage (Supplementary Fig. 3),
suggesting that the megaDNA model could be potentially utilized to
study essential genes within these genomes.

megaDNA learns the functional properties of proteins and reg-
ulatory elements
Sequence embeddings are high-dimensional representations of the
model input that capture rich contextual information. These embed-
dings can be used tomake predictions about the quantitative property
related to the original input. Since our megaDNA model takes DNA
sequences as the input, we could harness the model’s learned repre-
sentations for a wide range of predictive tasks. We first evaluated our
model’s ability to predict the effects of sequencemutations on protein
functions using a deep mutational scanning (DMS) dataset for the E.
coli essential gene infA14 (Fig. 1e). This dataset includes all possible
single codon mutations for infA and the corresponding mutational
effectsmeasured asfitness values through a growth competitive assay.
To model protein fitness, mutated gene coding sequences were used
as inputs. Then a linear regression model was trained on sequence
embeddings derived from the internal activities of neurons within the
megaDNA model to predict the mutational effects. The standard
deviationof theprediction error is 0.16, which ismuchsmaller than the
full dynamic range of the protein fitness measurement (Supplemen-
tary Fig. 4). Our model’s prediction performance closely matched the
state-of-the-art model DeepSequence15 (Fig. 1f), including for a protein
not existing in the training dataset (Supplementary Fig. 5). Moreover,
our model successfully predicted the impact of SNPs across the T7
bacteriophage genome16 (Fig. 1g). In this case, the mutated gene
sequences were used as model input and the sequence embeddings
were utilized to train regression models that predict SNP impacts,
quantified as rates of mutability16. It is worth noting that this dataset
covers only about 15% of all possible SNPs (Supplementary Fig. 6),
which is substantially smaller than the DMS dataset. Despite this con-
straint, the Spearman correlation coefficient between predicted and

measured impact is 0.71 for gene 1.3 and 0.54 for T7 RNAP (Supple-
mentary Fig. 4). For geneswith lower predictionaccuracy, suchasgene
17, our model still identifies mutations with significant fitness effects.

Expression of phage genes relies on the protein synthesis
machinery in host bacteria cells. We investigated the potential of the
model embeddings to predict regulatory element activity in bacteria
genomes (Fig. 1h). The 5′UTR sequences were used as model input to
derive embeddings, which were then used to predict their translation
efficiencies via linear regression.We leveraged the paired RNA-seq and
ribosome profiling datasets to quantify the translation efficiency of 5′
UTR across three bacteria genomes17,18. The translation efficiency was
defined as the ratio of the normalized ribosome density and the RNA
level for the genes. Our model effectively predicted the translation
efficiencies of 5′UTR in both model and non-model organisms,
including K. Oxytoca, P. Protegens, and E. coli (Fig. 1i). In addition to the
endogenous regulatory elements, we also benchmarked the predictive
performanceofour approachon thehigh-throughputmeasurementof
the translational activity of a random 5’UTR library in E. coli19 (Fig. 1i).
The Spearman correlation coefficients range from 0.62 to 0.82 for
these datasets, illustrating ourmodel’s capacity to capture translation-
related sequence features. We also found that the model’s perfor-
mance is robust to the training sample size (Supplementary Fig. 7).

Lastly, we extended our model to identify the taxonomy of
unannotated sequences at the domain level (Fig. 1j). We collected
unannotated sequences from bacteriophage, bacteria, and archaea
genomes, which were used as model input to calculate their embed-
dings. Then these embeddings were mapped into a low-dimensional
space, where we observed clear separations among different domains
(Fig. 1k). By training logistic regression models based on sequence
embeddings and the domain labels, we achieved a high classification
accuracy in the cross-validation tests (average AUROC of 0.98, Sup-
plementary Fig. 8). This high level of accuracy was consistent across
different layers of our model (Supplementary Fig. 8). The prediction
performance of the embeddings from the local and global layer was
slightly lower compared to themiddle layer. This differencemay result
from the local layer’s short context window and the global layer’s
limited resolution for local sequence features. In contrast, the middle
layer’s context window provides an optimal balance of length and
resolution, enabling effective distinction of sequences from different
domains. We further weighted the model predictions on the test
sequences basedon their similarity to the trainingdatasets. Aweight of
0 excludes test sequences that have at least one matched training
sequence, and a weight of 1 includes all test sequences in the AUROC
calculation (methods). Our results indicate that completely ruling out
similar test sequences only results in a reduction of AUROC by 0.03,
0.01, and 0.02 for different model layers (Supplementary Fig. 9). Since
the training data doesn’t contain genome sequences of bacteria or
archaea, these results demonstrate the broad applicability of
our model.

megaDNA generates de novo genomic sequences
Our approach enables de novo generation of the genome sequence of
bacteriophage (Fig. 2a).We generated a total of 1024 sequences longer
than 1 K bp and applied geNomad20 for functional annotation of the
generated sequences. The average sequence length is 43 K bp, and the
average number of predicted genes per sequence is 67, which is similar
to the training dataset (mean length: 48 Kbp, average number of
predicted genes: 68). The gene length distribution of the generated
sequences is close to that of the training dataset (Fig. 2b, average gene
length: 558bp vs 646 bp), while the gene number distribution shows
wider spread (Supplementary Fig. 10). In addition, the gene densities
of the generated and training sequences are close with each other
(Supplementary Fig. 10). The median virus score of all generated
sequences is 0.75 and the maximum score is 0.97. These scores are
lower than those of natural bacteriophage genomes, which have a
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Fig. 1 | Foundational capacities of our languagemodel. aOverview of the model
applications. b In silico mutagenesis analysis to identify essential genes in the
bacteriophage genome. cModel loss variation across the lambda phage genome in
the mutagenesis analysis. Upper, essential, and non-essential genes in the genome.
Lower: changes in model loss for 50 bp non-overlapping windows across the gen-
ome (blue). The step size is 50bp, and moving averages of model loss across
5000bp windows are denoted in red. d Zero-shot prediction of essential genes by
calculating the effects of mutations in the gene coding region (blue), start codon
(orange) and stop codon (green). Area under the ROC curve (AUROC) scores are
reported. e Prediction of mutational effects on protein functions using model
embeddings. f Prediction of mutational effects for the deep mutational scanning
experiment of the infA gene. Spearman correlation coefficients of the predicted
and reported fitness from fivefold cross-validation tests are reported (Blue:

megaDNA, gray: DeepSequence). n is the number of training samples. g Prediction
of the impacts of Single Nucleotide Polymorphisms (SNPs) in the T7 bacteriophage
genome. Spearman correlation of the predicted and reported fitness from fivefold
cross-validation tests is reported. h Prediction of regulatory element activity using
model embeddings. i Prediction of translation efficiencies for non-model organ-
isms and high-throughput gene expression libraries. For K. oxytoca, P. protegens,
and E. coli DH10B, we evaluated the model performance on endogenous genes.
Fivefold cross-validation tests were used for all calculations. j Classifying taxo-
nomies of unannotated sequences usingmodel embeddings. k UMAP visualization
of model embeddings for sequences from bacteriophages, bacteria, and archaea
(model middle layer, sample size: n = 5000 per group). For f, g, and i, data are
presented as mean values ± SEM from fivefold cross-validation tests (n = 5 folds).
Source data are provided as a Source Data file.
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medianvalueof 0.98 (Fig. 2c). 228out of all generated sequences (22%)
are predicted to be Caudoviricetes by geNomad (Fig. 2d). As a com-
parison, 98% of the genomes in the training dataset were classified as
Caudoviricetes. We further analyzed the generated sequences using
vContact221 and found that all generated sequences form singletons,
indicating a high diversity among them.

We then examined the 5′UTR of the annotated genes in the gen-
erated sequences to determine if they contain potential regulatory
elements such as promoters and RBS to initiate transcription and
translation. We chose the generated sequence #87 for further analysis
due to its high predicted virus score (0.96) and its relatively small size
(28 K bp). Using a machine learning tool (Promoter Calculator)22, we
identified the −35 box and −10 box of the promoterwithin the 5’UTRof
the predicted phage stabilization protein. Notably, their sequences are
close to the established consensus motifs: TTGACA and TATAAT
(Fig. 2e). Prior to the start codon of the same gene, we observed a
region enriched in adenine (A) and guanine (G) nucleotides, indicative
of a functional ribosome binding site (Fig. 2e). Analyzing all 5’UTR of
the predicted genes from this sequence, we found a significantly

higher promoter activity compared to random sequences of the same
length (Fig. 2f). Intriguingly, the proportion of A and G nucleotides
peaked around 10 bp upstream of the start codon, aligning closely to
the optimal position for an RBS to drive translation initiation (Fig. 2g).
In another sequence example (#212), we observed similar promoter
activities and RBS characteristics, and we found a consensus −10
sequence TATAAT that located upstream of the N-terminus of the
major capsid protein (Supplementary Fig. 11). This trend of A/G
enrichment and high promoter activity within the 5′UTRs is also con-
sistent across all the generated sequences (Supplementary
Figs. 12 and 13). We found a low correlation between the promoter
activities and virus scores,whichmaysuggest that themodel learns the
two features independently (Supplementary Fig. 12). In short, our
generated sequences harbor potential regulatory sequences that
could enable the expression of the predicted genes.

In the generated sequences, 343 annotated genes were predicted
to match geNomad markers. These genes share very little homology
with the training dataset (Supplementary Table 1). The query genes
and their matches do not belong to the same gene family. We
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employed ESMFold23 to predict their structures and calculated the
average predicted Local DistanceDifference Test (pLDDT) scores. This
score reflects the confidence of ESMFold in the predicted structures.
The median pLDDT score for these proteins is higher than that of
random peptide sequences (28 vs 18, Fig. 2h). We further randomly
sampled 10K annotated genes from all the generated sequences and
found high pLDDT scores for them (median value of 36, Supplemen-
tary Fig. 14). These results may suggest inherent similarities between
the generated sequences and sequences used in training ESMFold. We
further annotated gene functions using phold24. In brief, phold
leverages a protein language model25 to derive structural information
from protein sequences. This information is compared against a
structural database via Foldseek26 to obtain PHROG annotations27.
Although the generated sequences do not include a coherent set of
genes necessary for the full phage life cycle, our analysis reveals several
large protein families associated with phage-related functions, such as
head and packaging, and nucleotide metabolism (Fig. 2i). Among
these, several proteins were predicted to have DNA-binding activity,
and the predicted structure also resembles the canonical helix-turn-
helix (HTH) domain in this protein family (Supplementary Fig. 15).
Moreover, the predicted structure of a generated protein aligns with
the experimental structure in the PDBdatabase, further demonstrating
the model’s ability to capture biologically relevant features (Supple-
mentary Fig. 15).

Discussion
In this work, we present a long-context generative model for genomic
sequences, which effectively learns the language of gene coding and
regulatory sequences via a single step of self-supervised training on
unannotatedwhole genomes.We demonstrated that themodel loss can
be utilized for unsupervised prediction of essential genes in phage
genomes, and the information-rich sequence embeddings enable the
prediction of genetic variant effects and regulatory element activities
across a wide range of organisms. The generated sequences match the
length of natural bacteriophage genomes and display functional geno-
mic architectures. It is worth noting that these sequences have not been
optimized at the codon or gene level to allow for efficient protein
expression in bacteria. In addition, the training dataset only covers a
limited subset of the global phage diversity, which may impact the
model’s ability to generalize to phage taxa not included in the training
data. A recent study by Ratcliff et al. also shows that the generated
sequences are compositionally more similar to certain bacteriophage
families than the others28. Lastly, our pretrained model still lacks the
ability to generate the complete set of genes covering all the necessary
functions of the phage life cycle. Despite these limitations, we envision
that our generative genomicmodel represents the first step towards the
de novo design of the whole functional genome, paving the way for
advancements in medicine, agriculture, and environmental science.
Improvements of generative language models have been driven by the
scaling-up of training dataset and model size, along with techniques for
model fine-tuning and alignment with human input. Such approaches
are likely to further improve the performance of the megaDNA model.
This field also faces ongoing challenges in ethical considerations, bio-
safety, and regulatory frameworks, which are critical for the responsible
advancement of generative modeling in synthetic biology29.

Methods
Model training
Our training dataset was curated from three sources. Firstly, we
downloaded all the complete virus genomes fromNCBIGenBank (asof
February 2023) and retained only those with “phage” in the organism’s
name. Secondly, the phage genomes from MGV (version 1.0) were
downloaded, and we only included genomes with a completeness
score larger than 95% and classified under the order Caudovirales. Our
third source was GPD (https://www.sanger.ac.uk/data/gut-phage-

database/), and we kept all the genomes with a completeness score
above0.95. Following the initial collection,weundertook anadditional
round of filtering.We used geNomad (version 1.6.1, default parameters
with “—relaxed” flag) to predict the taxonomy of these genomes and
then deleted all the genomes whose predicted host is not a unicellular
organism. All genomes smaller than 96K bp were then collected to
construct the final training dataset.

OurmegaDNAmodel utilized a three-layer transformer structure9.
Each layer had a depth of 8 and progressively larger dimensions (local:
196, middle: 256, global: 512). The context lengths for the three layers
are 16, 64, and 128. The model contains 145M parameters in total. We
assignednumerical tokens (1, 2, 3, and 4) to the nucleotides A, T, C, and
G, respectively. Formodel training,weused abatch size of 1 and set the
learning rate at 0.0002. The learning rate was progressively increased
during the initial 50,000 steps as part of a warmup schedule. We used
the Adam optimizer and applied gradient clipping with a norm of 0.5
to prevent gradient explosion.

In silico mutagenesis of phage genomes
Lambda phage genome sequence and annotations were downloaded
from NCBI (Accession number: NC_001416.1). Essential genes were
identified according to Piya et al.12.We conducted in silicomutagenesis
using a 50 bp sliding window across the genome, and each nucleotide
was randomly mutated to A, T, C, or G with equal probability. The
impact ofmutations was assessed by computing themodel loss, which
is further comparedwith their original counterparts. For both essential
genes and non-essential genes, we calculated the meanmodel loss for
all the windows within the gene coding region. Mann–Whitney U test
was used to evaluate statistical differences between these two groups
(scipy.stats.mannwhitneyu). Furthermore, mutations targeting the
start and stop codons of all coding genes were simulated. We also
generated a control set comprising an equivalent number of 3-nt
mutations randomly distributed across the genome. The effect of
these mutations on model loss was analyzed to infer their impact on
fitness. The changes in model loss were used as a predictor of gene
essentiality, and we computed the receiver operating characteristic
(ROC) curve and the area under the ROC curve (AUROC) based on
model predictions and experimental results12. We used the BLAST
analysis to identify training sequences similar to the lambda phage
genome (version 2.8.1+, default parameters and max_target_seqs set
to 30,000).

Prediction of mutational effects on protein function
Sequence embeddings are high-dimensional representations of the
model input produced by the language models. The assumption is
that these embeddings capture complex patterns and relationships
within the data, which has been supported by previous studies in the
field of protein language models30,31. Technically speaking, model
embeddings are vectors corresponding to the activities of a series
of neurons within our model. We used the DNA sequences of the
mutated genes as the model input and embeddings from three dif-
ferent layers of themodelwere extracted (dimensional = 196, 256, 512).
These embeddings were concatenated to form a 964-dimensional
vector representing each gene coding sequence. We then used a
ridge regression model to predict the fitness value of the mutated
sequence based on its embedding (sklearn.linear_regression.RidgeCV).
We used the 5-fold cross validation to evaluate the prediction perfor-
mance of our model. In each fold, one-fifth of the data was held out as
test data while the remaining data were used as training data.
The predictive performance of this model was then evaluated on
the test dataset. The infA gene dataset was obtained fromKelsic et al.14.
For the T7 bacteriophage dataset16, the genome sequence and
annotations were downloaded from NCBI (Accession number:
V01146.1). The model performance was evaluated for each gene in the
same manner.
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Prediction of translation efficiency
We assessed the translation efficiency (TE) of genes in Klebsiella oxy-
toca, Pseudomonas protegenes Pf-5, and Escherichia coli DH10B by cal-
culating the ratio of average ribosome density (RD) to mRNA
expression. The ribosome density of each gene was calculated by
averaging ribosome occupancies over the length of the gene. The
mRNA expression in FPKM (fragments per kilobase of transcript per
millionmapped reads) of each gene was calculated by normalizing the
read counts to the gene length and the total number ofmapped reads.
The ribosome profiling and RNA-seq datasets of K. oxytoca and P.
protegenes Pf-5 were obtained from the Sequence Read Archive with
the accession code PRJNA57976717. The E. coli DH10B datasets were
obtained from the NCBI GEO database with accession number
GSE15266418. We used the DNA sequences spanning from −160 to 160
relative to the start codon as the input to our model. Model embed-
dings were extracted from three layers (dim= 196, 256, 512) and con-
catenated together to form a 964-dim vector for each input sequence.
To mitigate the influence of lowly expressed genes on TE calculations,
we focused on the top 25% expressed genes in Klebsiella oxytoca and
Escherichia coli DH10B, and the top 20% expressed genes in P. prote-
genes Pf-5. We used 5-fold cross validation to evaluate the performance
of ourmodel. In each fold, a ridge regressionmodel was trained on the
input and TE values in the training dataset with default parameters
(sklearn.linear_regression.RidgeCV). The trained model was then used
to predict TE values in the test dataset. For the Evfratov et al. dataset19,
20 nt and 30 nt 5′UTR sequences were used as the input. The model
performance was evaluated as previously described.

Classification taxonomy of unannotated sequences
We collected complete genome sequences of bacteria, archaea, and
bacteriophage from NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes,
n = 5000 each) via the wget command in Linux. The data can also be
accessed from https://ftp.ncbi.nlm.nih.gov/genomes/genbank/. We
randomly sampled 10K bp sequence fragments from genomes
longer than 10K bp. For a total of 15,000 sequences, sequence
embeddings were generated using our model across three layers
(dim = 196, 256, 512). For embedding visualization, we used Uniform
Manifold Approximation and Projection (UMAP)32 as implemented in
the Python package umap-learn. To classify these sequences at the
domain level, we employed a logistic regression model to evaluate
the predictive performance of the sequence embeddings across
multiple classes (sklearn.linear_model.LogisticRegression). The mod-
el’s performance was assessed using a 5-fold stratified cross-
validation test. This method ensures that each fold is a good repre-
sentative of the whole by maintaining the same proportion of sam-
ples for each class as in the complete dataset. Within each fold, the
model was trained on a subset of the data and then used to predict
probabilities on the test subset. The results for each domain were
reported using AUROC (sklearn.metrics.roc_auc_score).

To further control for the sequence similarity between the test
and training datasets, we introduced a weighted scheme in our model
evaluation. For each fold, sequences in the test dataset that have at
least one match in the training dataset (identified through the BLAST
analysis with default parameters and max_target_seqs set to 30,000)
are assigned a weight (w) ranging from 0 to 1. A weight of 0 removes
these sequences from the AUROC calculation completely, while a
weight of 1 includes all test sequences.

Model inference
We generated sequences from the trained model using a predefined
set of parameters. Specifically, we adjusted the temperature to 0.95 to
ensure a balance between variety and coherence in the sequences and
kept the filter threshold at 0.0 to avoid limiting the range of token
probabilities. For model training and inference, we utilized Nvidia’s

A100 GPU (40GB) and 3090 Ti GPU (24GB) and used the PyTorch
version 2.1.1 software package.

Analysis of the generated sequence
geNomad20 was used to annotate generated sequences with default
parameters and the “—relaxed” flag (version 1.6.1). The 100 base pair
regions preceding the start codon of each predicted gene were
designated as the 5′UTR. We employed the Promoter Calculator
(v1.0)22 to find the promoters in these regions. Only the promoter with
the highest predicted activity in the forward direction was annotated.
For protein structure prediction, we used the ESMFoldmodel v123. The
chunk size of the model was set to 64 for proteins longer than 700
amino acids (AA) and 128 for shorter proteins.We limited our structure
calculation to proteins less than 1000 AA in length. Function predic-
tion for these proteins within each PHROGs category was carried out
using pharokka33 (version 1.7.1) and phold24 (version 0.1.4) with default
parameters, as available on GitHub (https://github.com/gbouras13/
pharokka, https://github.com/gbouras13/phold). Genome similarities
of the generated sequences were analyzed using vContact221 with
default parameters.

Statistics and reproducibility
No statistical method was used to predetermine sample size; No data
were excluded from the analyses; The experiments were not rando-
mized; The investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The bacteriophage genomes were downloaded from public databases
including: NCBI GenBank (https://ftp.ncbi.nlm.nih.gov/genomes/
genbank/), n = 16,609; MGV, n = 53,032; GPD (https://www.sanger.ac.
uk/data/gut-phage-database/), n = 30,032. Details about the training
dataset including the accession codes of genome sequences are
available from GitHub. Source data are provided in this paper.

Code availability
Our trained model and model inference codes are available from
GitHub.
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