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Single-cell landscape of innate and acquired
drug resistance in acute myeloid leukemia
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Deep single-cellmulti-omicprofilingoffers apromising approach tounderstand
and overcome drug resistance in relapsed or refractory (rr) acute myeloid
leukemia (AML). Here, we combine single-cell ex vivo drug profiling (pharma-
coscopy) with single-cell and bulk DNA, RNA, and protein analyses, alongside
clinical data from 21 rrAML patients. Unsupervised data integration reveals
reduced ex vivo response to the Bcl-2 inhibitor venetoclax (VEN) in patients
treatedwith both a hypomethylating agent (HMA) and VEN, compared to those
pre-exposed to chemotherapyorHMAalone. Integrative analysis identifiesboth
known and unreported mechanisms of innate and treatment-related VEN
resistance and suggests alternative treatments, like targeting increased pro-
liferation with the PLK inhibitor volasertib. Additionally, high CD36 expression
in VEN-resistant blasts associates with sensitivity to CD36-targeted antibody
treatment ex vivo. This study demonstrates how single-cell multi-omic profiling
can uncover drug resistance mechanisms and treatment vulnerabilities, pro-
viding a valuable resource for future AML research.

The outcomeof patients with relapsed or refractory (rr) acutemyeloid
leukemia (AML) is poor with an estimated survival of <12 months1,2.
Innate and acquired resistance to standard chemotherapy is driven by
a complex landscape of somatic mutations and clonal evolution3.
Single-cell genomic and transcriptomic sequencing revealed a cellular

hierarchy governed by leukemic stem cells giving rise to a variety of
aberrant progenitor cells with patient-specific gene expression and
differentiationprofiles3–7. Thus, heterogeneity exists evenwithin clonal
populations. Combined with the scarcity of approved targeted thera-
pies for most AML, this makes patient stratification based on genomic
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alterations alone challenging, and more comprehensive approaches
are needed to identify active drugs, particularly in rrAML.

Functional precisionmedicine (FPM) strategies directly assess the
therapeutic impact of drugs on primary patient material. A variety of
studies performing ex vivo drug testing have been performed8–13, and
observational trials reported concordance with ex vivo and clinical
responses13–18. These findings enabled the transition to prospective
interventional studies. Recently, FPM-guided treatment in AML and
other hematologic malignancies was successfully implemented into
clinical decision-making19–21. In particular, using pharmacoscopy (PCY),
a single-cell image-based platform, more than half of 56 patients with
aggressive blood cancers treated according to PCY recommendations
achieved progression-free survival 1.3 times longer than on their pre-
vious treatment duration20,22. This finding was confirmed in a sub-
sequent interventional trial specifically focusing on AML patients with
exhausted standard-of-care treatment options21.

Integrating FPMdatawithmolecular informationhas thepotential
to elucidate mechanisms underlying drug sensitivity and resistance
and to identify drug targets and vulnerabilities. Two recent AML
studies11,23 integrated bulk RNA and genomic sequencing data from
over 800 patients with ex vivo drug sensitivities. By applying compu-
tational deconvolution of bulk transcriptomics data, the maturation
state of eachAMLwas inferred and linked to outcome and ex vivo drug
sensitivity. In particular, the histone deacetylase (HDAC) inhibitor
panobinostat and the B-cell lymphoma 2 (Bcl-2) inhibitor venetoclax
showed completely opposite drug responses based on the AML
maturation state. In another study, bulk proteomic, transcriptomic,
and genomic profiles integrated with ex vivo drug responses revealed
an AML phenotype characterized by high levels of mitochondrial
proteins associated with poor outcome24. This proteomic signature
was uncorrelated to the corresponding gene expression, highlighting
the complementary nature of the two measurements.

Despite the promising results of integrative analyses, compre-
hensive studies combining single-cell resolved measurements of dif-
ferent molecular entities with functional profiling are lacking.

In this work, we perform in-depth molecular characterization of
rrAML samples at the single-cell level and integrate the data with
single-cell resolved ex vivo drug responses. This approach reveals
consistency among themolecular changes underlying both innate and
acquired resistance to the Bcl-2 inhibitor (BCL2i) venetoclax (VEN) and
suggests alternative treatment options for BCL2i resistant patients.We
provide a unique resource of single-cell resolved and clinically anno-
tated multi-omic (DNA, RNA, protein) and functional (ex vivo drug
response) profiling of rrAML patients with clinical implications.

Results
Single-cell molecular and functional profiling of rrAML samples
To gain insights into the molecular determinants of the AML drug
response landscape and identify actionable vulnerabilities, we inte-
grated single-cell and bulkmolecular measurements with ex vivo drug
responses for rrAML patients from the Tumor Profiler (TuPro) study25.
Mononuclear cells (MNCs) isolated from blood or bone marrow
biopsies were comprehensively characterized at the molecular and
functional level (Fig. 1a, Supplementary Data 1) using both clinically
established workflows such as (digital) pathology and targeted next-
generation sequencing (NGS), as well as experimental technologies,
referred to as TuPro technologies. Our genetic analysis encompassed
mutational profiling at the bulk level (FoundationOne Heme assay,
Supplementary Data 2), as well as analysis of single-cell copy number
variations (CNV, Supplementary Data 3). Moreover, we quantified RNA
and protein levels in bulk (RNA-seq, Supplementary Data 4; proteo-
typing, Supplementary Data 5) and with single-cell resolution (scRNA-
seq, SupplementaryData 6; CyTOF, Supplementary Data 7). Finally, we
assayed ex vivo responses to drug perturbations using two image-
based screening technologies: iterative indirect immunofluorescence

imaging drug response profiling (4i DRP,26, Supplementary Data 8)
focusing on short-time signaling responses, and pharmacoscopy
(PCY,13,20,21,27,28, Supplementary Data 9), which measures on-target
reductions in AML blasts after 24 h of ex vivo treatment.

Our cohort included 21 patients in total (Fig. 1a, Supplementary
Data 1), of which seven were profiled at multiple visits during the course
of treatment. These longitudinal samples are further detailed in the
Supplementary Case Studies and Supplementary Figs. 1–6. For the
majority of patients, both blood and bone marrow were collected.
Emphasizing the feasibility of such multi-omic patient sample profiling,
the majority of patient visits (28/31) were analyzed by at least five
technologies, and 10 visits (32%) were analyzed by all technologies
(Fig. 1b). The turnaround time from sampling to completion of analysis
across all nodes was maximally 2 weeks, and 30/31 patient visits (97%)
were discussed within 4 weeks of sampling in a pre-molecular tumor
board (pre-MTB) consisting of members of each technology node as
well as clinical hemato-oncology experts. Because this trial was designed
as an observational study with feasibility as the primary outcome, the
pre-MTB results were not used for actual treatment decisions. Never-
theless, the rapid availability of results underlines the feasibility ofmulti-
modal tumor profiling for guiding treatment decisions.

CyTOF, PCY, and proteotyping analyzed blood and bonemarrow,
whereas all other technologies focused on a single sample per visit.
The main reason for missing data was insufficient numbers of viable
cells for distribution across all technologies (“not received” in sheet 2
of Supplementary Data 1). The cohort spanned diverse WHO subtypes
and treatment histories. Mutations commonly affected FLT3 (7/21
patients), DNMT3A (8/21 patients), and RUNX1 (8/21 patients) (Fig. 1b),
consistent with larger cohorts such as TCGA29 or BEAT-AML30. In
addition, we observed a high frequency (5/21 patients) of single-
nucleotide changes with unknown somatic impact in ROS1, which are
absent in TCGA or BEAT-AML. Large-scale copy number variations
(CNVs) were rare, with approximately half (12/26) of the samples
analyzed by scDNA-seq not containing any CNVs (Fig. 1b).

To assess whether different single-cell technologies were able to
robustly quantify the fraction of AML blasts per sample, we compared
the blast content between different TuPro technologies (Supplemen-
tary Fig. 7a, Fig. 1c) and validated their consistency with the blast
fractions obtainedbycytology (or histology if no cytology readoutwas
available) performed in clinical routine diagnostics (Supplementary
Fig. 7b, Supplementary Data 10). We found strong agreement among
the technologies for blast content, with an average Pearson correlation
of 0.67 between TuPro methods, which increased to 0.84 when
excluding blast content estimates derived from scDNA-seq, in linewith
the large fraction of copy number-neutral tumors. All technologies
were in agreement with pathology (R ≥0.7, mean R =0.76). Further-
more, we assessed the correlation of features measured on matched
blood andbonemarrow samples from the samepatient visit for CyTOF
and PCY (Fig. 1d). Blood and bone marrow samples taken at the same
visit showed highly similar protein levels and ex vivo drug responses.
This similarity slightly decreased when comparing samples from the
same patient across different time points, likely reflecting the effect of
treatment between visits. Nevertheless, it remained greater than that
of unmatched samples. Taken together, these results show that our
approach robustly measures molecular and functional profiles in AML
patient samples, enabling in-depth integrated analysis of drug
responses and their molecular determinants.

Venetoclax exposure shapes the ex vivo drug response
landscape
Drug responses in rrAML are governed by a variety of mechanisms,
some of which are intrinsic to a patient’s disease, while others are
induced by exposure to treatments. In order to shed light on the drug
response landscape of rrAML, we assessed ex vivo drug responses by
PCY (Fig. 2a). Overall, we measured responses to 79 drugs or drug
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combinations across 48 samples from 18 patients, and included the
38 samples with >5% blast content by pathology in the downstream
analysis. We used a “PCY score” corresponding to a concentration-
aggregated relative reduction in AML blasts (relative blast fraction,
RBF) as a readout13,20,21. Thus, the PCY score measures a “cellular on-
target effect”, i.e., a specific reduction in the target AML blast cell
population. Treatments commonly used in AML, such as chemother-
apeutic agents (cladribine, cytarabine, fludarabine) and BCL2i (VEN,
navitoclax), were among the drugs with the highest proportion of on-

target effects (Supplementary Fig. 8a). In addition, crenolanib, afatinib,
elesclomol, alvocidib, and omacetaxinemepesuccinate also frequently
scored on-target. Interestingly, we observed a subset of 11 samples
from5patientswith low sensitivity to the above-mentioned treatments
(Fig. 2a, highlighted in red). These samples were increasingly sensitive
to a group of compounds including the receptor tyrosine kinase (RTK)
inhibitors ponatinib, crizotinib, crenolanib, lapatinib, and afatinib as
well as volasertib, a polo-like kinase 1 (PLK1) inhibitor (Fig. 2a, Sup-
plementary Fig. 8b, c). This finding indicates that resistance to specific
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drug classes may be associated with sensitivity to others, consistent
with previously observed opposite sensitivity patterns across samples
for multiple drug classes in the BEAT-AML cohort11.

To investigate the relationshipbetween clinical parameters andex
vivodrug responses and to identify clinically relevant patterns, wenext
associated PCY scores for each of the tested compounds with sample
metadata (Fig. 2a, b). Parameters with less than five patient observa-
tions were excluded from this analysis. The strongest association was
identifiedbetween treatmentwithHMA-VEN right before or at the time
of sampling and the ex vivo response to VEN. VEN PCY scores were
significantly higher in samples from patients who were not exposed to
VENat the timeof sampling compared to thosewhowere (Fig. 2c). This
suggests that we capture treatment-related resistance to VEN in our
PCY assay. However, there was a large spread in the response strength
(i.e., the percentage of reduction in the blast fraction) within the non-
exposed samples, suggesting that some are innately resistant to Bcl-2i.
These observations were further confirmed by 4i DRP, an independent
drug screening measuring morphological and signaling responses
after 8 h of ex vivo drug treatment. Across all features recorded by 4i
DRP, absolute changes in response to short-term VEN exposure cor-
related with the strength of responsemeasured independently by PCY
after 24 h (Supplementary Fig. 9a). Thiswas particularly pronounced in
early markers of cell death, including elevated levels of cleaved cas-
pase 3 and reduced nucleus area, as well as signaling by phospho-AKT
and phospho-STAT3 (Fig. 2d, Supplementary Fig. 9b).

Multi-modal recovery of innate and acquired VEN resistance
mechanisms
Given the ex vivo VEN resistance observed in patients exposed to VEN
at the time of sampling, we compared this treatment-related VEN
resistance with the innate VEN resistance observed ex vivo among the
samples from VEN-naive patients who had never been treated with
venetoclax (Fig. 3a, Supplementary Data 1). The primary target of VEN
is Bcl-2 (encoded by BCL2)31,32. We therefore first focused on the rela-
tionship between VEN resistance and Bcl-2 protein and RNA levels in
AML blasts. Lower levels of Bcl-2 protein or RNA were associated with
VEN resistance irrespective of whether resistance was treatment-
related or innate (Fig. 3b). To further investigate this relationship at the
single-cell level, we clustered the scRNA-seq profiles of 40,369 AML
cells from all samples profiled by both PCY and scRNA-seq and visua-
lized them using t-distributed stochastic neighbor embedding (t-SNE,
Fig. 3c). As expected, single cells from patients with innate and
treatment-related resistance to VEN clustered together, and both
showed decreased expression of BCL2, suggesting a shared molecular
state. Interestingly, some samples contained cells that spanned mul-
tiple phenotypes, indicative of intra-AML heterogeneity with distinct
VEN sensitivity in different cell subsets (Supplementary Fig. 10). Part of
this heterogeneity could be explained by differences in blast matura-
tion states, where in some patient samples, blasts covered the full

spectrum from a hematopoietic stem cell-like phenotype to amyeloid-
like cell, whileother sampleswere restricted to either only immatureor
only more differentiated phenotypes (Supplementary Fig. 10c).

Besides downregulation of BCL2, several mechanisms of VEN
resistance in AML have been described and reviewed33–37. Common
resistance mechanisms include mutations in BCL2, TP53, KRAS, NRAS,
or FLT338,39. Altered apoptotic dependencies, changes in metabolism,
and maturation state are additional known drivers of VEN resistance
which are detectable by changes in transcription (Supplementary
Table 1, Fig. 3d, Supplementary Fig. 11a–c). Consistent with previous
reports,we founddecreased expressionofBCL2 andPMAIP1 (NOXA) to
be associated with VEN resistance, and expression of BIK showed a
similar but weaker trend. CD34 expression was higher in VEN-sensitive
samples, consistent with the notion that VEN primarily targets more
immature AML11,15,23. Finally, the strongest associations in our cohort
were found for previously reported metabolic changes related to
mitochondrial structure and function (upregulation of CLPB40) and
fatty acid metabolism (upregulation of CD3641). CD36 was measured
both at the protein (CyTOF, proteotyping) and RNA (single-cell and
bulk) levels, and its levels in AML blasts were strongly associated with
VEN resistance (Fig. 3e, Supplementary Fig. 11d, e). At the single-cell
level, CD36 and BCL2 expression was nearly mutually exclusive, with
only 2% of cells expressing both genes (Fig. 3c, f).

In summary, innate and treatment-related VEN resistance was
accompanied by similar molecular features, and linked to known
mechanisms of treatment resistance, such as decreased levels of Bcl-2,
more mature cellular state, and changes in mitochondrial metabolism
reflected by upregulation of CLPB and CD36.

Global transcriptional analysis links oxidative phosphorylation,
proliferation, and mitochondrial metabolism to VEN resistance
After investigating previously reported mechanisms of VEN resistance
(Supplementary Table 1), we extended our analysis to the whole
transcriptome in order to identify the gene expression networks
underlying VEN resistance in an unbiased fashion. Consistent with our
previous findings, the associations between innate and treatment-
related resistance were strongly correlated (Fig. 4a, Supplementary
Fig. 12a–c). To link the individual genes to pathways, we performed a
gene set enrichment analysis (GSEA) using the average strength of
associations with innate and acquired resistance to rank the gene list.
This revealed an enrichment of genes related to oxidative phosphor-
ylation (OXPHOS), cell division, ribosome biogenesis, and mitochon-
drial organization among resistance-associated genes (Supplementary
Fig. 12d). This finding was further confirmed by investigating the top
100 genes associated with VEN resistance in the context of their
protein-protein interaction network (based on the STRING database,
Fig. 4b). In addition, we calculated a pathway activation score
(singscore42, reflecting the relative expression level of all genes in a
pathway) for the terms “nuclear division” and “OXPHOS”, and these

Fig. 1 | Single-cell molecular and functional profiling of AML samples.
a Schematic workflow illustrating the types of analyses performed in this study.
b Cohort overview. From left to right: Barplot depicting the sample composition
(bone marrow; peripheral blood if bone marrow was not sampled) measured by
CyTOF; the number of samples measured per technology and patient visit; clinical
data; whether there were any copy number variations (CNVs) detected by scDNA;
alterations measured by the FoundationOne Heme panel. Patients were diagnosed
according to the WHO 2016 classification (WHO Diagnosis). NOS Not otherwise
specified; MDS-EBmyelodysplastic syndrome with excess of blasts; Mutated genes
are indicated. c Correlation of blast fractions measured by scRNA-seq with those
measured by PCY (top, n = 25 samples from 18 patients) and CyTOF (bottom,
n = 27 samples from 20 patients). Pearson’s R and corresponding P values (two-
sided t-test) are indicated. Lines and shaded area represent a linear regression fit
and 95% confidence bands, respectively. d Correlation (Spearman) of molecular
(CyTOF marker expression across 40 proteins, left) and functional (PCY ex vivo

responses across 79 drugs, right) profiles between 1) pairs of matched blood/bone
marrow samples from the same patient taken at the same visit (CyTOF n = 15; PCY
n = 14), 2) pairs of samples from the same patient taken at different visits (CyTOF
n = 26; PCY n = 26), 3) pairs of samples from different patients (CyTOF n = 820; PCY
n = 663). Only samples with > 5% blast content by pathology are included in this
analysis. Small scatterplots show an example pairwise comparison for each cate-
gory, lines from linear regression. P values from two-sided, two-sample Wilcoxon
test. Box plots indicate the median (horizontal line) and 25% and 75% ranges (box)
and whiskers indicate the 1.5x interquartile range above or below the box. Outliers
beyond this range are shown as individual data points. Abbreviations: T1, T2 Time
point of sampling 1/2; FOne FoundationOne Heme; scDNA single-cell DNA-seq;
bkRNA bulk RNA-seq; scRNA single-cell RNA-seq; CyTOF cytometry by time-of-
flight; IMC imaging mass cytometry; PCY pharmacoscopy; 4i DRP iterative indirect
immunofluorescence imaging drug response profiling; HMA hypomethylating
agent; VEN venetoclax.
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pathway scores were negatively correlated with VEN PCY scores
(Fig. 4c). Consistentwith previous reports24, the abundanceof proteins
in the respiratory chain complex followed a trend opposite to that
observed at the level of RNA expression (Supplementary Fig. 12e, f).

We next aimed to identify alternative treatments among the drugs
tested by PCY that might be effective for patients with VEN resistance.
We utilized our ex vivo drug response data to find compounds that

scored on-target in the majority of VEN-resistant samples (Supple-
mentaryFig. 12g). Among the topcandidates, volasertib, an inhibitorof
polo-like kinase 1 (PLK1) was on-target in six out of eight VEN-resistant
samples (Fig. 4d), coinciding with a negative correlation between PLK1
expression and VEN sensitivity (Fig. 4e). However, PLK1 expression
alone did not fully explain volasertib response (Supplementary
Fig. 12h), and half of the VEN-sensitive samples were sensitive to
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volasertib despite low PLK1 expression, suggesting that there are
additional mechanisms governing drug response.

Taken together, integrating functional and whole-transcriptome
data uncovers similarity in themolecularmechanisms underlying both
innate and treatment-related resistance to VEN, and identifies a trend
towards increased volasertib sensitivity in VEN resistance.

Targeting CD36 in VEN-resistant rrAML
At the single-cell level, both protein and RNA levels of CD36 were
strongly associated with VEN resistance (Fig. 3d, e). CD36 is a mem-
brane glycoprotein, which, among other functions, acts as a receptor
and transporter of fatty acids43, and has been previously implicated in
AML sensitivity to venetoclax41,44–47. Consistently, we found high levels
of CD36 to correlate with reduced overall survival of AML patients in
the TCGA and BEAT-AML cohorts (Fig. 5a and Supplementary Fig. 13).
Re-analysis of data from two independent studies that performed bulk
RNA-seq and ex vivo drug sensitivity testing to venetoclax further
confirmed this association (Fig. 5b, c).

We hypothesized that antibody-mediated blocking of CD36
function may target VEN-resistant AML blasts. We therefore quanti-
fied the effect of the anti-CD36 clone FA6-152, which blocks all
functions of CD3648,49, on seven primary AML specimens by PCY
(Fig. 5d, e). We included samples with low, medium, and high CD36
levels according to CyTOF measurements (Supplementary Data 11).
In two out of three CD36 high samples, we observed a decrease in
AML cells after anti-CD36 exposure (Fig. 5f). This effect was most
pronounced in one sample from patient TP038 taken at the first visit
and was dose-dependent, while CD36 blocking had no effect even at
the highest dose in CD36-low samples such as TP031 baseline
(Fig. 5g). The reduction in AML cells was accompanied by increased
cell-cell interactions (Figure 5h, i), which was again associated with
CD36 expression levels in the tested samples. The majority of cell-
interaction clusters observed consisted of a mixture of cell types
including AML cells, T-cells, monocytes, and others. To assess
potential off-target effects of targeting CD36, we further investigated
which cell types express CD36 in our scRNA-seq dataset (Fig. 5j).
Expression was highest in mature monocyte-like and erythroid cells,
followed bymyeloid-like AML. Immature AML blasts expressed lower
levels of CD36, consistent with the idea that the CD36-high AML cells
may represent a more differentiated monocytic phenotype46 and are
selectively targeted by anti-CD36 antibodies. This notion is further
supported by the increased CD36 expression observed in AML with
(myelo-)monocytic and erythroid phenotypes in the BEAT-AML
cohort (Fig. 5k).

Discussion
In this work, we present deep single-cell multiomics profiling of a
cohort of 21 patients with rrAML that was characterized at the level of
DNA, RNA, protein, and drug response. Our dataset is a unique
resource that complements existing datasets, which typically focus on
measurements at the bulk level (TCGA, BEAT-AML11,29,30), and extends
the repository of available scRNA-seq data on AML4,50–56 withmatching

single-cell resolved and sample-matched DNA, protein, and func-
tional data.

We leveraged the TuPro dataset to investigate clinical and mole-
cular correlates of drug responses in rrAML. An ex vivo drug response
landscape of rrAML measured by PCY highlighted diverse patterns of
sensitivity and resistance. Commonly used AML treatments such as
cytarabine induced a reduction of AML blasts in a large fraction of
samples, suggesting thepresence of a chemosensitiveblast population
in rrAML. We further observed a subset of samples with markedly
different drug response patterns: While sensitivity to cytarabine, as
well as cladribine, fludarabine, and VEN was decreased, these samples
were increasingly sensitive to different RTK inhibitors and the PLK1
inhibitor volasertib. This is in line with previous reports highlighting
opposite drug sensitivity patterns in a maturation-associated
manner11,23. Consistently, we report a positive correlation between
expression of the leukemic stem cell marker CD34 and venetoclax
sensitivity.

By analyzing associations between clinical parameters and ex vivo
response, we identified exposure to the Bcl-2i VEN at the time of
sampling as one of the main drivers of ex vivo VEN resistance. In
addition, large variability in VEN ex vivo responses among VEN naive
samples suggested the presence of innate resistance. In combination
with hypomethylating agents, VEN has markedly changed the per-
spective of patients ineligible for intensive chemotherapy and almost
doubled overall survival38,39. In addition, it has becomeone of themost
promising treatments for rrAML with response rates of up to 70%,
which is remarkable in this disease setting2,57–60. However, the devel-
opment of treatment resistance is still common and treatment options
for VEN-resistant patients are limited. We, therefore, focused on
understanding the mechanisms underlying innate and treatment-
related VEN resistance by performing an in-depth integrative analysis
of the TuPro technologies.

Our analysis highlighted similar mechanisms governing both
avenues of treatment resistance. We first focused on knownmolecular
changes involved in Bcl-2 inhibitor response33–37. Altered apoptotic
dependency was reflected in decreased levels of Bcl-2 (protein and
RNA), PMAIP1 (NOXA), and BIK. Changes in mitochondrial structure
and function affect the readiness to undergo apoptosis in AML cells,
and deletion of CLPB, which promotes the formation of tighter mito-
chondrial cristae rescued VEN sensitivity40. Consistent with these
observations, high CLPB expression was associated with innate and
treatment-related VEN resistance in this cohort. In addition to changes
in mitochondrial structure, alterations in OXPHOS have also been
implicated in VEN resistance44,45,61–63. In this cohort, increased
expression of genes involved in OXPHOS was associated with VEN
resistance, in addition to elevated levels of the fatty acid receptor
and transporter CD36. Switching from amino acids to fatty acids to
fuel the TCA cycle and OXPHOS has previously been identified as a
mechanism by which AML cells circumvent the metabolic effects of
Bcl-2 inhibition45, thereby leading to venetoclax resistance41. Based
on these prior studies and our data, we hypothesize that increased
OXPHOS might be linked to increased availability of fatty acids

Fig. 2 | The ex vivo drug response landscape of rrAML. a Heatmap showing the
PCY-based ex vivo responses (PCY scores) of 38 rrAML samples with blast content
>5% by pathology to 79 drugs and drug combinations. Relative blast fraction (RBF)
is the fractionof AML cells after 24 h of drug treatment relative to themean fraction
of AML cells after 24h of control treatment. PCY score represents aggregated 1-RBF
values across replicate wells and drug concentrations (seeMethods). Thus, positive
values indicate on-target reduction in AML cells. Samples and drugs are ordered by
hierarchical clustering (Euclidean distance, complete linkage), a cluster of samples
characterized by ex vivo resistance to common AML treatments is highlighted in
red. b Volcano plot showing associations of PCY scores with clinical parameters
shown in (a), for clinical characteristics with at least 5 patient observations (for
exact sample- and patient numbers per comparison, see Source Data). X-axis

corresponds to effect size (delta median(1-RBF)), y-axis represents −log10 uncor-
rected P value from two-sided two-sample Wilcoxon test. Labels correspond to
“drug - clinical parameter name: clinical parameter value”. c Venetoclax (VEN) PCY
scores stratified by whether or not a patient was exposed to VEN right before or at
the time of sampling. P value as in (b). Box plots indicate the median (horizontal
line) and 25% and 75% ranges (box), whiskers indicate the 1.5x interquartile range
above or below the box, individual data points are displayed. d Selected 4i DRP
features after 8 h of VEN ex vivo treatment normalized to control treatment,
associated with VEN PCY score. Linear regression line with 95% confidence bands,
corresponding Pearson’s R and P value (two-sided t-test) are indicated. Number of
samples (n.sam) and number of patients (n.pat) are annotated for each panel.
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Fig. 3 | The molecular landscape of innate and treatment-related VEN resis-
tance. a Definition of innate and treatment-related VEN resistance. Shown are VEN
PCY scores for samples exposed to VEN at the time of sampling (treatment-related
resistance, n = 7 samples from 5 patients) and VEN naive samples (n = 21 samples
from 12 patients). Within the VEN naive samples, the spread of response scores
defines the amount of innate resistance, with lower response scores indicating
higher resistance. b RNA and protein levels of the VEN target Bcl-2 measured by
scRNA-seq and CyTOF, averaged across all AML blasts per sample. Scatterplots
show Bcl-2 levels as a function of innate resistance in VEN naive samples. Linear
regression lines with 95% confidence bands, Pearson’s R, and corresponding P
values (two-sided t-test) are indicated. Box plots compare Bcl-2 levels between VEN
naive and exposed samples, P values from two-tailed Welch’s t-test. c t-SNE of
scRNA-seq data, showing only cells classified as AML (n = 40’369 cells, 24 samples,
18 patients). Left: colored by prior VEN exposure, middle: colored by PCY-based
VEN ex vivo response, right: colored by BCL2 expression. d Association of known

genes involved in VEN resistance with innate or treatment-related VEN resistance.
Values are derived from bulkified scRNA-seq AML cell transcriptomes. For
treatment-related resistance, effect size corresponds to the delta mean gene
expression between samples from patients that were or were not exposed to
venetoclax, and P value was calculated using a two-sided Welch’s t-test. For innate
resistance, the effect size and P value are obtained from a linear regression mod-
eling gene expression as a function of VENPCY score (see (a,b)). e Protein (left) and
RNA (right) levels of CD36 as a function of VEN PCY score. Linear regression lines
with 95% confidence bands, Pearson’s R, and corresponding P values (two-sided t-
test) are indicated. f t-SNE as in (c), colored by expression of CD36. All analyses
presented here were performed on samples with >5% blast content. In (a, b, and d),
samples from patients who received venetoclax in earlier previous treatment lines
were excluded. Number of samples (n.sam) and number of patients (n.pat) are
annotated. Box plots indicate the median (horizontal line) and 25% and 75% ranges
(box) and whiskers indicate the 1.5x interquartile range above or below the box.
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(through CD36) to fuel the TCA cycle. In turn, highmetabolic activity
might enable increased proliferation rates, which we also observe in
VEN-resistant samples.

CD36 has been implicated in multiple cancers, and high expres-
sion is generally associated with poor prognosis64. CD36 in solid
tumors is associated with increased proliferation, plasticity, epithelial-
mesenchymal transition, and metastatic potential. Blocking CD36 in a
mouse model of human oral carcinomas decreased metastasis
potential49. Anti-CD36 thus emerged as a promising target to prevent
cancer spread and is currently being developed as a therapeutic
agent65. In the context of AML, high expression of CD36correlateswith
poor prognosis in TCGA and BEAT-AML and was associated with che-
moresistance, relapse, and extramedullary disease66 as well as resis-
tance to VEN41,46,47.

Having observed a correlation between VEN ex vivo sensitivity
and CD36 levels, we used antibody-mediated CD36 blocking to
specifically target VEN-resistant AML cells. We observed reduced
numbers of AML cells upon exposure to anti-CD36, in conjunction
with increased cell clumping. Cell clusters were composed of both
AML cells, T-cells, and myeloid cells. Increased cell-cell interaction

likely indicates an immune activation phenotype triggered by the
presence of antibody-coated cells. Thus, we hypothesize that CD36
treatment may target leukemic cells on multiple levels. Firstly, by
blocking the CD36-mediated uptake of fatty acids, it may impact the
cells metabolic landscape and potentially lower OXPHOS and cell
growth41,45. Second, it may guide the immune-mediated destruction
of CD36-expressing cells. Interestingly, blocking CD36 on T-cells
has also been reported to decrease the immunosuppressive function
of regulatory T-cells67, which could further enhance this effect.
Overall, our findings propose CD36 as a promising immunother-
apeutic target for VEN-resistant rrAML. CD36 blockage showed pro-
mising activity in vivo in a mouse model of human oral carcinoma49.
In the future, our findings will need to be validated in an AML patient-
derived xenograft model treated with an anti-CD36 blocking anti-
body in order to improve the pre-clinical evaluation of this approach.

Our data also highlighted a role for increased proliferation inVEN-
resistant samples, which has been observed before in CLL68 but not
AML. This proliferative signature was accompanied by increased
expression of PLK1 and ex vivo sensitivity to the PLK1 inhibitor vola-
sertib in 75%of theVEN-resistant samples. Volasertib asamonotherapy

Fig. 4 | Global association between transcriptomics and VEN resistance.
a Comparison of associations between gene expression (bulkified scRNA-seq in
AML cells) with innate and treatment-related VEN resistance, respectively. The
x-axis corresponds to the delta mean gene expression between samples from
patients that were or were not exposed to venetoclax at the time of sampling
(exposed: n = 5 samples from 5 patients, naïve: n = 13 samples from 12 patients).
The y-axis corresponds to the slope of a linear regression modeling gene
expression as a function of venetoclax ex vivo response (PCY score) in samples
from VEN- naïve patients. The RBX1 gene is highlighted and example plots are
shown on the right. Small dots represent individual samples, large dots and lines
in the top panel represent the mean and SEM. b STRING interaction network of
the top 100 genes whose expression was inversely correlated with VEN PCY
scores. Only clusters containing at least 3 genes are shown. c Correlation of VEN

PCY scores with pathway activation scores (singscore42, see Methods) for the two
most significantly enriched pathways among genes associated with VEN resis-
tance, nuclear division (GO:0000280) and oxidative phosphorylation
(GO:0006119). d Fractions of samples that are sensitive to volasertib, grouped
according to VEN sensitivity. P value from a two-sided Chi-squared test of inde-
pendence. eCorrelation of PCY-based VEN ex vivo response and the expression of
PLK1 (bulkified scRNA-seq in AML cells). Linear regression lines with 95% con-
fidence bands, Pearson’s R and P values (two-sided t-test) are indicated in
(a, c, and e). All analyses presented here were performed on samples with >5%
blast content. In (a and b), samples from patients who received venetoclax in
earlier previous treatment lines were excluded. Number of samples (n.sam) and
number of patients (n.pat) are annotated.
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or in combination with low-dose cytarabine or decitabine has shown
promising activity as a treatment for AML patients who are not eligible
for intensive chemotherapy in phase 1/2 clinical trials69,70. However,
this could not be confirmed in a follow-up phase 3 trial, and volasertib
development has since been discontinued71. These findings suggest
that Volasertib could still be evaluated in the setting of VEN resistance,
particularly in rrAML patients with high PLK1 expression.

In conclusion, we here provide a valuable resource ofmulti-modal
molecular and functional profiling of rrAML at single-cell resolution.
Analysis results were availablewithin 2weeks of sampling, highlighting
the feasibility and clinical applicability of our approach. The resulting
integrative analysis revealed sharedmolecular signatures of innate and
acquired resistance to venetoclax and identified emerging treatment
opportunities.
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Methods
Study design and participants
The Swiss TumorProfiler (TuPro) was conducted as a prospective, non-
randomized observational clinical study with feasibility as the primary
outcome. Treatments of this AML cohort during the study were solely
based on current clinical guidelines and the decisions made by the
treating physician and the patient. For the hematology arm of the
TuPro presented in this work, patients with acute myeloid leukemia
according to WHO 2016 who were refractory to standard therapy or
who developed a relapse were eligible if they fulfilled the following
additional criteria:

• Age ≥ 18 years
• Written informed consent according to national legal and reg-
ulatory requirements prior to any project-specific procedures
Patients, who fulfilled the following exclusion criteria were not
considered for this project:

• Any other serious underlying medical, psychiatric, psychological,
familial, or geographical condition, which in the judgment of the
project leader may interfere with the project or affect patient
compliance

• Concurrent history of active malignancy in the two past years
prior to diagnosis (except basal and squamous cell carcinoma of
the skin and in situ carcinoma of the cervix)

• Concurrent severe and/or uncontrolled medical condition (e.g.,
uncontrolled diabetes, infection, hypertension, pulmonary
disease)

• Cardiac dysfunction (NYHA classification II-IV or unstable angina
or unstable cardiac arrhythmias)

• Legal incompetence

In total, 21 patients were enrolled in this study over a period of
18 months starting in September 2019 and finishing at the end of
March 2021. Follow-up samples were obtained for 7 patients. TP035
was apatientwithmyelodysplastic syndromewith excessof blastswith
disease progression at the time of TuPro sampling. At the majority of
patient visits, both blood and bonemarrow were sampled, resulting in
a total of 57 samples collected and included in this study. Cohort
characteristics are summarized in Supplementary Data 1.

The research project was carried out in accordance with the
research plan and with principles enunciated in the current version
of the Declaration of Helsinki (DoH), the Principles of Good Clinical
Practice (GCP), the Swiss Law, and Swiss regulatory authority’s
requirements as applicable. All patients provided written informed
consent to publish their anonymized clinical and molecular data as
part of this study. Ethical approval was granted by the Ethics
Committee of the Canton of Zurich (CEC Zurich, BASEC-Nr:
2019-01326).

Sample preparation
Blood samples and/or bone marrow aspirates were collected in BD
vacutainer EDTA tubes and PBMC was immediately isolated by histo-
paque gradient purification (Histopaque-1077, Sigma-Aldrich). Live
cell number was established using a nucleocounter NC 200 using Via1
Cassettes (Chemometec) and the required number of cells was pre-
pared for the different technology platforms. For Pharmacoscopy and
scRNA sequencing, cells were viably frozen in 10%DMSO in RPMI 1640
medium (Gibco). For Proteotyping, cells were snap frozen as a dry
pellet in liquid nitrogen upon red blood cell lysis (10x Red Blood Cell
Lysis solution, Biolegend). For CyTOF, cells were stained for dead cells
using 25μM Pt194 (Standard BioTools) in a 1min pulse before
quenching with 10% FBS. Cells were then fixed with 1.6% paraf-
ormaldehyde (Electron Microscopy Sciences) for 10min at room
temperature and stored at −80 °C. Ready-to-use samples were sent to
the technology platforms in a coordinated way to be processed
simultaneously, with an expected 2-week turn-around time.

Pharmacoscopy
Experimental
Compounds and drug plates. All compounds were purchased from
Sigma-Aldrich as 5mM stock solutions in DMSO. 384-well flat-bottom
plates (Perkin Elmer PhenoPlate) containing between 0.1 and 10μMof
drugs or drug combinations per well (Supplementary Data 12) were
prepared using an Echo liquid handling robot (Labcyte). Plates were
sealed with aluminum foil and stored at −20 °C until used.

Ex vivo drug response assay. Pharmacoscopy (PCY) was performed
as previously described13,20,27,72. Briefly, mononuclear cells isolated
from blood or bone marrow were resuspended in media (RPMI-1640
(Gibco) + 10% fetal bovine serum (Gibco)) at a density of around 0.1
million cells/ml. 50μl of cell suspension (5000 cells) were then seeded
into each well of a drug assay plate. Cells were incubated with com-
pounds at 37 °C, 5% CO2 for 24 h. Afterward, the media was aspirated
and cells were fixed with 10% (v/v) formalin (Sigma-Aldrich F8775,
36–38% formaldehyde + 10–15%methanol in water) for 10min at room
temperature. Fixative was aspirated and the cells were resuspended in
PBS. To quench background fluorescence, the plate was put on an LED
lamp overnight. Afterward, PBS was aspirated and 20μl / well of 5%
(v/v) FBS, 0.1% (v/v) Triton-X, 5μg/ml 4′,6-Diamidino-2-phenyl-indol-
dihydrochlorid (DAPI) were added to the cells to block nonspecific
antibody binding, permeabilize them and stain the nucleus. After
30min at room temperature, this solutionwas aspirated and 20μl/well
staining solution (10mg/ml BSA in PBS, fluorescently labeled anti-
bodies CD117 [AF488, BioLegend 313234], CD34 [PE, BioLegend
343505], andCD33 [AF647, BioLegend366626], each antibody at 1:300
dilution) was added. Cells were stained overnight at 4 °C. Afterwards,

Fig. 5 | Targeting CD36 in VEN resistant patient samples. a Kaplan-Meier curve
for patients in the TCGA-LAML cohort, stratified by CD36 expression level (bulk
RNA-seq). P value from a log-rank test is indicated. CD36 high n = 85, CD36 low
n = 55 patients. Lines indicate the Kaplan-Meier survival probability estimate, sha-
ded areas correspond to the 95% confidence interval and tick marks represent
censored events. b Association of CD36 expression (bulk RNA-seq) and VEN ex vivo
response (Area under the curve (AUC), bulk viability assay, higher values indicate
increased resistance) in the BEAT-AML cohort11,30. Data from n = 386 patients.
c Association of CD36 expression (bulk RNA-seq) and venetoclax ex vivo response
(selective drug sensitivity score, sDSS) from n = 82 patients presented in Malani
et al.19. d Schematic illustrating the CD36 blocking experiment performed here.
e Example images showing cells from the CD36 high TP038 baseline blood sample
after exposure to isotype control (left) or anti-CD36 (right). Image represents a
total of 225 images taken across 9 technical replicate wells, and three CD36-high
samples (biological replicates). fNumber of AML cells after 24 h of incubation with
anti-CD36 relative to isotype control, stratified by CD36 level. g Dose-response
curves showing the reduction in AML cell number for CD36 high (top) and low

(bottom) samples. h Fraction of interacting cells after 24h of incubation with anti-
CD36 relative to isotype control, stratified by CD36 level. i Dose-response curves
showing the increase in cell-cell interactions for CD36 high (top) and low (bottom)
samples. j Expression of CD36 across AML subtypes and nonmalignant cell types.
Values represent average expression (variance-stabilizing transformation (VST96) of
normalized counts) per cell type and sample derived from scRNA-seq data. Data
from n = 29 samples. k CD36 expression stratified by French-American-British
(FAB)-based AML maturation state in the BEAT-AML cohort. P values from two-
sided two-sample Wilcoxon tests. Data from n = 237 patients. Lines and shaded
areas in (b) and (c) correspond to a linear regression fit with 95% confidence bands,
P values (two-sided t-test), and Pearson’s R are indicated. Each dot in (f) and (h)
represents themeannumberofAMLcells across 18 technical replicatewells and the
two highest antibody concentrations for a single sample (n = 7 samples from 6
patients). Each dot in (g) and (i) represents a technical replicate well (n = 9 per
antibody concentration). P values in (f) and (h) from Kruskal-Wallis ANOVA. Box
plots indicate the median (horizontal line) and 25% and 75% ranges (box) and
whiskers indicate the 1.5x interquartile range above or below the box.
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the staining solution was aspirated and wells were covered with
70μl of PBS.

CD36 blocking experiment. CD36 blocking experiment was per-
formed analogous to ex vivo drug screening described above. Instead
of smallmolecules,weaddedbetween0.01 and 1μg/ml anti-CD36FA6-
152 (Abcam ab17044) or matching isotype control (Mouse IgG1 kappa,
BioLegend 401401) per well. Cells were fixed and stained as described
above, with the only difference being that we swapped the CD33
antibody for a combination of CD3 (BioLegend 300416) and CD14
(BioLegend 325612).

High-throughput confocal microscopy. All plates were imaged on
an automated spinning-disk confocal microscope (PerkinElmer
Opera Phenix), using 10x magnification and 9 images per well to
cover the entire well area. We used five channels with non-
overlapping excitation/emission filters to image the following
features: Channel 1 (transmission / 650–760 nm) for brightfield to
capture general cell shape and texture, channel 2 (405 nm/
435–480 nm) for DAPI/nuclei, channel 3 (488 nm/500–550 nm) for
CD117, channel 4 (561 nm/570–630 nm) for CD34, and channel 5
(640 nm/650–760 nm) for CD33. For the CD36 blocking experi-
ment, we used the same parameters but imaged at 20x magnifi-
cation with 25 images per well.

Analysis
Image analysis and feature extraction. Raw images were first ana-
lyzed using CellProfiler v.2.2.073. Individual cells were detected based
on maximum correlation thresholding of the DAPI signal. Staining
intensities were extracted for the nucleus and a region of 6 pixels
around the nucleus that was used as a proxy for cytoplasmic intensity.
For downstream analysis, intensities were log10 transformed and
corrected for variation in local background as described by Vladimer
et al.74.

Filtering. Cellswith very lowDAPI intensities or abnormally highor low
nucleus area likely represent segmentation artifacts and were there-
fore removed from the analysis by manual gating. In addition, outlier
wells (very low or high total cell numbers, or aberrant staining pat-
terns) were removed if the observed patterns could be attributed to
pipetting mistakes or the presence of large cell clumps by visual
inspection.

Identification of AML cells. AML cells were identified by thresholding
the CD117 and CD34 intensities. Any cell positive for at least one of
these two markers was considered a blast.

Calculation of drug response scores. Drug response scores (1-rela-
tive blast fraction, RBF) per well were calculated as follows:

1-RBF= 1-(fraction of blast cells in drug condition/mean(fraction
of blast cells in DMSO))

The responses were then averaged (mean) across replicate wells
per condition (where a condition describes one drug at one con-
centration), and responses per drug were further aggregated into a
PCY score by taking the mean across these condition averages per
drug. Thus, PCY score = mean per drug(mean per condition(1-RBF)).

Clustering of drug responses for visualization. For visualization in
Fig. 2A, drug responses were clustered across drugs and samples using
hierarchical clustering as implemented by theMatlab linkage function,
using Euclideandistance and complete linkage. Only sampleswith > 5%
blasts by pathology were included in this analysis.

Associations with clinical parameters. Associations with clinical
parameters were calculated for each individual drug. Samples were

split by the levels of each clinical parameter, and each level was tested
separately against all the others. For statistical testing, a Wilcoxon
rank-sum test was used (Matlab ranksum). P values were corrected for
multiple testing using the Benjamini-Hochberg procedure. (Matlab
mafdr with BHFDR set to true).

Quantification of cell-cell interactions. Cell-cell interactions in the
CD36 blocking experiment were quantified from the nucleus center
positions obtained from CellProfiler. A cell was considered to be
interacting if there was at least one other nucleus within 30 pixels
from its own nucleus center. We used the fraction of interacting
cells among all cells per well as a readout. Due to the non-adherent
nature of AML cells, cells tend to cluster at the edges of the well and
in the corners as a result of our washing and staining procedure. To
avoid technical artifacts, we therefore restricted this analysis to
nuclei that were at least 3000 pixels (900 μm) away from the well
border.

scRNA-seq
Experimental. Viability and cell count of the single-cell suspensions
were assessedwith aCellometerK2 (NexcelomBioscience). Single cells
were captured with the Chromium Controller and scRNA-seq libraries
were prepared with the Chromium Single Cell 3’ v3 Library & Gel Bead
Kit (10x Genomics) according to the manufacturer’s instructions. QC
assessment of cDNAs and libraries was performed with Fragment
Analyzers (Advanced Analytical, AATI). Libraries were sequenced with
Illumina NextSeq 500 and NovaSeq 6000 systems according to the
manufacturer’s guidelines.

Analysis
Data pre-processing. A detailed description of the scRNA analysis
pipeline used in this study was published previously75. Briefly, the
analysis consists of the following steps: (1) read data processing,
quality control, and normalization, (2) cellular composition analysis
including cell type classification and unsupervised clustering, (3) dif-
ferential gene expression analysis, (4) gene expression and pathway
scoring.

Cell typing. Each cell in the dataset was assigned a label using the
scROSHI76 workflow. Briefly, cells are classified based on expression of
cell-type specific genes (Supplementary Data 13) using a two-step
procedure that takes into account the hierarchical nature of cell types.
In the first step, a “major cell type” (e.g., myeloid blast, T-cell, B-cell) is
assigned. In the second step, this assignment is refined and cell sub-
types are assigned within each major cell type. The gene lists for the
major cell types were generated based on unsupervised clustering and
marker identification (Seurat: FindMarkers77,78) of the first three sam-
ples in this study (Sample IDs: DOROFEG, UBADAFA, DOROBOF). The
markers for non-malignant cell subtypes were obtained from
CIBERSORT79, and the markers for AML subtypes were based on van
Galen et al.4.

Bulkification. For cohort-level analyses, where the patient is the fun-
damental subject of observation, and in order to reduce complexity,
read counts for each gene were aggregated (summed up) selectively
across groups of cells within a patient. Depending on the focus of the
analysis, the grouping is performed on cells within a cell type orwithin
a cluster of cells within a cell type. This procedure is sometimes called
selective bulkification. As a consequence of this aggregation, gene
counts are not low and sparse as in single-cell data but large and fre-
quent enough to be analyzed with conventional bulk methods. For all
sample-level analyses presented in this manuscript, we used selective
bulkification across all cells typed as “AML” per sample. Thus, the
scRNA-seq expression represents the average expression in AMLblasts
per sample.
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Aggregation across patients and calculation of tSNE. For the t-SNEs
shown in Fig. 3c, f, andSupplementary Fig. 10a–c, raw counts of all cells
classified as AML from all samples with >5% blast content were
aggregated and normalized using scran (v.1.20.1)80. The normalized
counts were then batch-corrected using the mnnCorrect function
implemented in the Batchelor R package (v.1.8.0)81, with patient IDs as
batches. Top 10% most variable genes were identified by the NBDrop
method implemented in the M3Drop R package (v.1.18.0) applied to
the raw counts. The batch-corrected expression values of these most
variable genes were used as input for t-SNE. The embedding was cal-
culated using fitsne implemented in the R package snifter (v.1.2.0),
which provides a wrapper to the FI-tSNE implementation from the
Python package openTNSE82,83. Perplexity was set to 50 and exag-
geration to 1. All other parameters were left at their defaults.

Clustering of single-cell expression profiles. Single-cell clusters
shown in Supplementary Fig. 10 were obtained by spectral clustering
using Rphenograph (v.0.99.1). The batch-corrected expression values
were used as input, and the number of nearest neighbors k = 50 was
used. All other parameters were left at their default values.

Calculation of pathway scores. Pathway activation scores were cal-
culated from bulkified expression profiles using a rank-based method
as implemented in the singscoreRpackage42, with all parameters left at
their default values. This method works by first ranking all genes per
sample by increasing expression level. A directed pathway score
(assuming that a pathway is more active the higher the corresponding
genes are expressed) for a given gene set is then defined as the aver-
age, mean-centered rank of all genes in that gene set. Pathway scores
thus reflect the relative mean percentile rank of the target gene sets
within each sample, and a sample with a high score has higher relative
expression of the genes in a given pathway.

scDNA-seq
Experimental. Viability and cell count of the single-cell suspensions
were assessedwith aCellometerK2 (NexcelomBioscience). Single cells
were captured with the Chromium Controller and scDNA-seq libraries
were prepared with the Chromium Single Cell DNA Library & Gel Bead
Kit (10x Genomics) according to the manufacturer’s instructions. QC
assessment of sequencing libraries was performed with Fragment
Analyzers (Advanced Analytical, AATI). Libraries were sequenced with
Illumina’s NovaSeq 6000 system according to the manufacturer’s
guidelines.

Analysis. In total, 26 clinical samples were processed from 18 patients.
After each sample was sequenced, the barcoded reads were mapped
and assigned to their individual cells. The reads are binned into 20 kb
genomic regions which are corrected for GC content and mappability
using the CellRanger software. The adjusted number of reads in each
bin reflects the underlying copy number state of that genomic region.

To identify copy number aberrations, we first detect potential
breakpoints by pooling information related to differences in read
counts across all cells. After segmenting the genome in this fashion,
cells are clustered into clones and the copy number profiles of the
clones along with their phylogenetic relationships are inferred. These
analyses were performed using a version of the SCICoNE software84.

Close to half (12/26) of the AML samples have no detected CNAs.
Amongst the non-diploid cells, the downstream analysis identified 34
clones among the remaining 14 samples.

Bulk RNA-seq
Experimental. Total RNA was isolated from cell suspensions using the
Quick-RNA Microprep Kit (Zymo Research) including DNase I treat-
ment according to the manufacturer’s instructions. The quality of the
isolated RNA was checked with a 4200 TapeStation device (Agilent).

RNA-seq libraries were prepared using TruSeq Stranded Total RNA
Library Prep Gold reagent kits (Illumina) according to Illumina’s
guidelines. QC of sequencing libraries was performed using Fragment
Analyzer systems (Advanced Analytical, AATI). Libraries were pooled
and sequenced PE100 on an Illumina NovaSeq 6000 system to target
100 million reads per library.

Analysis. Alignment to the reference genome (GRCh38) was per-
formed with STAR85. The raw expression counts were obtained using
simple counting, an in-house pipeline accessible through github:
gromics (at commit #67e1f4e).

Counts were normalized for differences in library size using
relative log expression as implemented in edgeR’s calcNormFactor,
with the method parameter set to ‘RLE’. Note that this is equivalent to
the default normalization employed by DESeq2. For downstream
analysis, a pseudocount of 1 was added to the normalized counts and
they were log2 transformed.

CyTOF
Experimental. PBMCs isolated from BM or peripheral blood were
stained for viability with 25μM cisplatin (Enzo Life Sciences) in a 1min
pulse before quenching with 10% FBS. Up to 10 patient samples were
barcoded and mixed with a pre-barcoded set of reference cells as
described previously in order to allow for batch correction86. Pooled
barcoded cells were incubated for 10min at 4 °C with FcR blocking
reagent (Miltenyi Biotec) and were subsequently split in two aliquots
and stained with 100 µL of an AML antibody panel per 107 cells (Sup-
plementary Data 14). Upon staining, cells were washed three times in
Cell Staining Media (CSM, PBS 0.5% BSA and 2mM EDTA). To enable
cell detection, cells were stained overnight at 4 °C with the DNA
intercalator Ir191/193 (0.5 µM, Standard BioTools). Samples were then
prepared for CyTOF acquisition by washing the cells successively in
CSM, PBS, and water. Cells were then diluted to 0.5 × 106 cells/mL in
Cell Acquisition Solution (Standard BioTools) containing 10% EQ™
Four Element CalibrationBeads (StandardBioTools) and acquired on a
Helios upgraded CyTOF 2 (Standard BioTools).

Analysis
Data pre-processing and cell type classification. FCS files were
preprocessed as described previously to identify individual patient
samples based on single-cell debarcoding and to perform spillover
correction, batch correction, and live cell identification86,87.

The main cell types present in each sample, including B-cells, T/
NK-cells, myeloid cells, granulocytes, platelets, and AML cells were
identified using a random forest classifier trained on manually gated
cell populations in Cytobank. Specifically, CD34-positive AML cells
were defined asCD34highCD45 low.Wealsoobserved a populationof
cells that was negative formost of the testedmarkers. This population
may represent an atypical type of AMLcell andwas labeled as “putative
AML” (see Supplementary Fig. 8a). Because this population likely
includes both malignant and nonmalignant myeloid progenitors, we
also considered those cells asAML, however, we only included samples
with > 5% blasts by pathology in the downstream analyses.

Cohort-level analyses. For comparisons of marker intensities across
the full cohort, the levels of each protein were averaged across all cells
of a certain cell type per sample. All comparisons shown in this work
were performed using the average marker intensities across all AML
cells (CD34 positive and putative AML).

Proteotyping
Experimental. Samples for proteotyping were generated using the
PreOmics iST kit (PreOmics). In short, cells were lysed, digested, and
cleaned up according to the manufacturer’s recommendations. Lysis
was supported but an additional sonication step using three 30 s
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sonication pulses in a VialTweeter (Dr. Hielscher). The tryptic digest
was performed for 3 h. Samples were resuspended at a concentration
of 1μg/μl forMSmeasurements. As control and reference between the
different sample batches leukemia cell lines NB-4,CMK-11-5, and MV-4-
11 were mixed in a ratio of 1:1:1 and then digested and prepared as
described above.

34 patient samples (n = 1) together with 13 controls were mea-
sured on an Orbitrap Lumos mass spectrometer (Thermo Fisher Sci-
entific) or alternatively on a Q Exactive HF-X mass spectrometer
(Thermo Fisher Scientific) equipped with an Easy-nLC 1200 (Thermo
Fisher Scientific). Peptides were separated on a C18 50cm EASY-
Spray™ HPLC column (2 µm, 100Å, 75 µm i.d.(ES903, Thermo Fisher
Scientific)). Mobile phase A consisted of HPLC-grade water with 0.1%
formic acid, and mobile phase B consisted of HPLC-grade ACN (80%)
with HPLC-grade water and 0.1% (v/v) formic acid. Peptides were
eluted at a flow rate of 200nl/min using a non-linear gradient from 4%
to 52% mobile phase B in 117min. For data-independent acquisition
(DIA) on theHF-X, DIA isolationwindowswere set to 15m/z, and amass
range of m/z 400-1210 was covered. A total of 54 DIA scan windows
were recorded at a resolutionof 30,000with anAGC target value set to
1e688,89. ForDIAon the Lumos, DIA isolationwindowswerevariable and
a mass range of m/z 350–1650 was covered. Resolution was set to
30,000 with a normalized AGC target of 2000%. HCD fragmentation
was set to 24%, 27%, 30% stepped (Lumos), or 28% normalized (HF-X)
collision. FullMS spectrawere recorded at a resolutionof 120,000with
a normalized AGC target of 250% and a maximum injection time of
60ms (Lumos) or anAGC target of 3e6 andmaximum injection timeof
50ms (HF-X).

Analysis. DIA data were analyzed using Spectronaut v13 (Biognosys).
MS1 values were used for peptide quantification, peptide quantity was
set to sum. Data were filtered using Qvalue with a precursor Qvalue
cut-off of 0.001 and a protein Qvalue cut-off of 0.01 FDR. PTM locali-
zation was set to True and the probability cutoff to 0.75. Interference
correction was performed. Quantitation was set to Qvalue identified,
missing values were imputed with the missing values derived from the
experiment-wide distribution of quantities.

Data were searched against a Uniprot human library (release
September 2019) together with standards and common contaminants
in standard DIA with an in-house generated spectral library containing
cell lines, patients, and healthy samples. Protease cleavagewas defined
as Trypsin (full) with a maximum of two miscelavages.
C-Carbamidomethylation was set as static, M-Oxidation, and
N-terminal acetylation as dynamicmodifications. Theminimal peptide
length threshold was six amino acids. Mass tolerance for precursors
was 10 ppm and fragment ion mass tolerance was set to 0.02Da. The
minimum number of unique peptides for protein identification was
one. Batch correction on the Spectronaut peptide output was per-
formed using proBatch90.

Calculation of pathway scores. Pathway activation scores were cal-
culated fromblast-content correctedprotein abundance profiles using
the same method as described above for scRNA-seq (singscore42).

4i DRP
Experimental. Prior to cell seeding, 384-well plateswere coated for 2 h
at room temperature (RT) with a coating mix (1:1 Poly-L-Lysine (Sigma
Aldrich, P4832-50ML), 1:100 Fibronectin (Sigma Aldric, F0895-2MG) in
PBS). The coating mix was removed using an EL406 Washer-Dispense
(WD) and the 384-well plate was left 1 h at RT to dry. Depending on the
abundance of live cells in the patient samples, 3500–7500 cells were
seededperwell of a 384-well plate using theWD’s peripumpcassette in
culture medium (RPMI without L-Glutamine (Sigma Aldrich, R0883),
10% FCS (Sigma Aldrich), 1mM Sodium Pyruvate (Thermo Fisher Sci-
entific, 11360070), 2mML-Glutamine (SigmaAldrich, G7513), Anti/Anti

100x (GibcoCatNr: 15240-096)). The cells were incubated overnight at
37 °C and 5% CO2. The next day, drugs were added using a BRAVO
liquid handling robot to the seeded cells at a final concentration of
5 µMand0.5%DMSO.Vehicle-treated control cellswereonly incubated
with0.5%DMSO. Thedrug-treated cellswere incubated at 37 °Cand 5%
CO2 for a further 8 h. After elapsing of the incubation time, the cells
were fixed at 4% Paraformaldehyde (Electron Microscopy Sciences) in
PBS for 15min. After which, they were washed 4 times with PBS and
permeabilized at 0.5% Triton X-100 (Sigma Aldrich) in PBS for 15min.
Next, the cells were washed 4 times with double distilled water
(ddH2O). Next, iterative indirect immunofluorescence imaging (4i)
was performed on the samples to acquire the following molecular
markers: CD33, CD34, CD117, CD45, Histone H3 Lysine 4 methylation
(H3K4Met), proliferating cell nuclear antigen (PCNA), phospho-ERK,
phospho-STAT3, phospho-AKT, phospho- ribosomal protein S6 kinase
1 (pS6K1), c-Myc, tubulin, cleaved caspase 3 (Cl.CASP3), and SC-35
(Supplementary Data 8). For a detailed 4i protocol, see refs. 26,91.
Sample blocking, primary and secondary incubation were performed
for 1 h. The nucleus of cells was stained using DAPI (every cycle). The
cell out stainingwasperformed asdescribedbyBattichet al.92. Imaging
was performed using a Cytiva INCell 6000 at 20Xmagnification with a
Nikon Plan Apo (0.95 NA), correction collar 0.11-0.23 CFI/Lambda
objective. 16 fields of view were imaged per well, with 3 z-sections per
field. The Z-sections were collapsed to one image by Maximum
Intensity Projection. Laser lines used for the study: 406 nm, 488 nm,
568 nm, 625 nm.

Analysis. Image processing and image analysis tasks on the 4i images
were performed using TissueMaps (https://github.com/pelkmanslab/
TissueMAPS). The tasks include image alignment of 4i cycles based on
the DAPI signal, correction of the illumination bias, nuclear and cell
segmentation, measurements of nuclear and cell morphology as well
as measurements of intensity moments of the different fluorescence
signals in nucleus and cell objects.

To link the 4i DRP features to PCY-based ex vivo responses, single-
cell resolved measurements in AML blasts (CD34 or CD117 positive)
were averaged across drug-containing wells and normalized to DMSO
control. Associationwith PCY ex vivo responseswasperformedusing a
linear regression model with the PCY response to VEN as a predictor
and eachDMSO-normalized 4i DRP feature in the VEN condition as the
response variable.

Integrative analysis
For all integrative analyses, we excluded samples with <5% blast con-
tent by pathology (see Supplementary Data 1, column “Flagged for low
blast content”). Sex-stratified analysis was not performed due to the
limited size of the cohort.

Association of innate and treatment-related VEN resistance with
molecular measurements. To quantify the association of treatment-
related VEN resistance with patient-level gene and protein expression,
we first z-scored the expression data derived fromCyTOF, scRNA, bulk
RNA, and prototyping. Then, we performed one two-tailed Welch’s
t-test (R t.test, var.equal set to false) per gene/protein, comparing
samples with exposure to VEN at the time of sampling to those with-
out. The effect size was calculated as the difference in mean RNA /
protein level between VEN naive and VEN exposed samples.

To assess the relationship between innate resistance and protein/
RNA expression levels, we subset the cohort to only contain VEN naive
samples. Then, we performed a linear regression model per protein/
gene, with the z-scored protein/RNA levels as the response variable
and ex vivo response scores to VEN as a predictor. The slope of the
regression line was then used to measure effect size. In order to have
effect sizes on a similar scale as for the association with acquired
resistance, we scaled the ex vivo response scores to between 0 and 1.
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In all of those comparisons, samples from patients who had
received venetoclax in earlier treatment lines (not directly at the time
of sampling) were excluded.

Gene set enrichment analysis (GSEA) for VEN resistance-
associated genes. GSEA was performed on GO Terms using the
gseGO function from the clusterProfiler R package93,94. We restricted
the analysis to the GO:Biological process (BP) gene set category and
the eps parameter was set to 0. All other parameters were left at their
default values. Genes were ranked by their average association with
innate and acquired VEN resistance. Top termswere selected based on
the adjusted P value of the enrichment and sorted by normalized
enrichment score (NES) for visualization.

Visualizing the STRING network of top associated genes. A com-
plete network of human protein interactions was obtained from
STRING, using the STRINGdb R package (v. 2.4.2, database version
11.5)95 A score threshold of 500 was used. This network was then fil-
tered to only retain the top 100 genes associated with VEN resistance.
As for GSEA, genes were ranked by their mean association with innate
and acquired VEN resistance. For visualization, only genes connected
to at least one other gene were retained. In addition, clusters with less
than 3 genes were omitted.

Analysis of publicly available datasets
TCGA: association of CD36 expression and overall survival. Gene
expression data (“rna_seq.augmented_star_gene_counts.tsv”) from the
TCGA-LAML cohort was downloaded from the GDC data portal (https://
portal.gdc.cancer.gov/projects/TCGA-LAML, accessed 15th September
2023). Raw counts were normalized and transformed using the norm-
Transform function in DESEq2 (v.1.32.0)96. The cohort was stratified into
low and high CD36 expression using an automatically determined
threshold as implemented in the surv_cutpoint function from the surv-
miner R package (v.0.4.9). Overall survival was obtained from the TCGA
clinical data (“days_to_death”). Patients with vital status “Alive” were
marked as censored at the time of last follow-up (“day-
s_to_last_follow_up”). Survival analysis was performed using the R pack-
age survival (v3.2-11), using a log-rank test as implemented in the survfit
function, and the result was visualized using survminer’s ggsurvplot.

BEAT-AML: correlation of CD36 expression with VEN ex vivo
response. CD36 gene expression, clinical data, and venetoclax ex vivo
responsesweredownloaded from the BEAT-AMLweb interface (http://
www.vizome.org/aml2/, accessed 12. September 2023). Association
between CD36 expression and venetoclax ex vivo response (AUC) was
assessed using a linear regression model.

BEAT-AML: association of CD36 expression and overall survival.
Survival data and harmonized gene expression data across all 4 waves
of BEAT-AML were downloaded from https://biodev.github.io/
BeatAML2/ (accessed 24. May 2024). The cohort was stratified into
low and high CD36 expression using an automatically determined
threshold as implemented in the surv_cutpoint function from the
survminer R package (v.0.4.9). Survival analysis was performed using
theRpackage survival (v3.2-11), using a log-rank test as implemented in
the survfit function, and the result was visualized using survminer’s
ggsurvplot.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The publicly available data used in this study are available from BEAT-
AML under http://www.vizome.org/aml2 and https://biodev.github.io/

BeatAML2/11; TCGA under https://portal.gdc.cancer.gov/projects/
TCGA-LAML29; and the STRING database under https://string-db.org/
or via the stringdb R package (v. 2.4.2)95. The raw sequencing data
(bulk- and single cell RNA-seq, single-cell DNA-seq) generated in this
study have been deposited in the EuropeanGenome-PhenomeArchive
(EGA) under the accession codes EGAD50000000822,
EGAD50000000823 and EGAD50000000824. The data is available
under restricted access due to patient privacy concerns. Access can be
requested by contacting the Tumor Profiler Center (TPC) leadership
(https://tumorprofilercenter.ch/contacts). Data access will be granted
to registered users listed on the data access agreement with the TPC
within four weeks of receipt of the Data Access Agreement, provided
that the applicant provides all necessary ethics committee approval
and supporting documents needed to meet the requirements of the
agreement. The user institution agrees to destroy or discard the data
once it is no longer used for the project, and in cases where data must
be archived, it must be deleted within 10 years of the project’s com-
pletion. If data hasnot been archived, itmust be deleted no later than2
years following the completion of the project. An extension to this
period can be provided upon request to the TPC leadership. The raw
proteomics data generated in this study have been deposited in Mas-
sIVE under the accession MSV000092970. The processed data for
scRNA-seq and CyTOF are available from Zenodo under https://doi.
org/10.5281/zenodo.13837019. The remaining data are available within
the Article, Supplementary Information, or Source Data file. Source
data are provided with this paper.
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