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�
 ABSTRACT 

Breast cancer liver metastases (BCLM) are hypovascular lesions that 
resist intravenously administered therapies and have grim prognosis. 
Immunotherapeutic strategies targeting BCLM critically depend on the 
tumor microenvironment (TME), including tumor-associated macro-
phages. However, a priori characterization of the BCLM TME to opti-
mize therapy is challenging because BCLM tissue is rarely collected. In 
contrast to primary breast tumors for which tissue is usually obtained 
and histologic analysis performed, biopsies or resections of BCLM are 
generally discouraged due to potential complications. This study tested 
the novel hypothesis that BCLM TME characteristics could be inferred 
from the primary tumor tissue. Matched primary and metastatic human 
breast cancer samples were analyzed by imaging mass cytometry, iden-
tifying 20 shared marker clusters denoting macrophages (CD68, CD163, 
and CD206), monocytes (CD14), immune response (CD56, CD4, and 
CD8a), programmed cell death protein 1, PD-L1, tumor tissue (Ki- 
67 and phosphorylated ERK), cell adhesion (E-cadherin), hypoxia 
(hypoxia-inducible factor-1α), vascularity (CD31), and extracellular 

matrix (alpha smooth muscle actin, collagen, and matrix metal-
loproteinase 9). A machine learning workflow was implemented and 
trained on primary tumor clusters to classify each metastatic cluster 
density as being either above or below median values. The proposed 
approach achieved robust classification of BCLM marker data from 
matched primary tumor samples (AUROC ≥ 0.75, 95% confidence 
interval ≥ 0.7, on the validation subsets). Top clusters for prediction 
included CD68+, E-cad+, CD8a+PD1+, CD206+, and CD163+MMP9+. 
We conclude that the proposed workflow using primary breast tumor 
marker data offers the potential to predict BCLM TME characteristics, 
with the longer term goal to inform personalized immunotherapeutic 
strategies targeting BCLM. 

Significance: BCLM tissue characterization to optimize immunotherapy 
is difficult because biopsies or resections are rarely performed. This study 
shows that a machine learning approach offers the potential to infer 
BCLM characteristics from the primary tumor tissue. 

Introduction 
Breast cancer liver metastases (BCLM) are prognostically grim, with median overall 
survival of 20 months (1), presenting a critical need for more effective therapy. 
BCLM typically seem as small, hypovascular nodules under contrast imaging (2), 
which do not rely on angiogenesis by receiving nutrients mainly from surrounding 
hepatic capillaries. Accordingly, transport of intravenously injected therapeutics can 
be impaired due to physiologic drug resistance (3). To facilitate drug transport into 
tumors, targeting of macrophages has emerged as an immunotherapeutic strategy. 
Macrophages are a key phagocytic population of liver resident immune cells, taking 
up nanomaterials and frequently congregating around inflamed tumor lesions (4). 
Macrophages originate from monocyte (CD14+) lineage (5) or yolk sac–derived 
erythro-myeloid progenitors (6) and have been classified into a phenotypic spec-
trum ranging from antitumor (M1; CD68+ and CD163�CD206�) to protumor 
variants (M2; CD68+, CD163+, or CD206+; ref. 7). 

We have previously shown that physiologic resistance to drug therapy in 
BCLM could in principle be overcome by targeting macrophages with 
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nanotherapy (8). With nanoalbumin paclitaxel encapsulated into a solid 
multistage nanovector (nab-PTX-MSV), macrophages were shown to uptake 
significant numbers of nanovectors, acting as “depots” to locally release drug 
in the vicinity of BCLM. Efficacy of this approach, evaluated in vitro (9–11), 
in silico (9–12), and in vivo (8), depends on the BCLM tumor microenvi-
ronment (TME) characteristics and, particularly, the number and phenotype 
of associated macrophages. Contrary to the general notion that M2 macrophages 
solely enhance tumor resistance to therapy by favoring tumor growth, our in 
silico modeling validated through our prior studies underscored the potential role 
of M2 macrophages in sensitizing the TME to nanotherapy, suggesting that a 
balance between M1 and M2 phenotypes may be conducive to an optimal 
antitumor response (10, 11). 

Defining immunotherapy parameters to optimally target BCLM would 
benefit from understanding the patient-specific BCLM TME characteristics. 
Growth of BCLM can be classified from [extracellular matrix (ECM)-pre-
serving] replacement growth to less common (ECM-driven) desmoplastic 
growth (13). Spatially heterogeneous cancer cell proliferation [inferred from 
tumor cell expression of Ki-67 (14) and phosphorylated ERK (15)] as well as 
lesion vascularity (CD31; ref. 16), fosters viable and hypoxic tissue regions. 
Macrophage migration is facilitated toward hypoxic regions [e.g., via 
hypoxia-inducible factor-1α (HIF1α) as a chemoattractant; ref. 17] but can 
be inhibited by dense ECM (primarily comprised of collagen; ref. 18), pro-
moted by fibrogenic activity [identified by alpha smooth muscle actin 
(αSMA); ref. 19] and breached by tumor cells via matrix metalloproteinase 9 
(MMP9; ref. 20). Furthermore, PD-L1, a common inhibitor of CD8a T cell– 
mediated immunotherapy via the programmed cell death protein 1 (PD1)/ 
PD-L1 axis, can be expressed in primary breast tumors by local macrophages 
(21). Macrophage activity can be influenced by helper (CD4+) T cells, which 
can exert protumor or antitumor effects (22). NK (CD56+) cells, an innate 
antitumor immune species common to the liver, also contribute to the tumor 
response (23). 

Tissue availability to obtain information about BCLM characteristics for 
more efficient immunotherapeutic targeting is scarce because biopsy does 
not offer a survival benefit for late metastases (24), and resection is generally 
discouraged (25). In contrast, biopsy or resection from primary breast tu-
mors is usually obtained, and histologic analysis is routinely performed (26). 
Ideally, BCLM TME characteristics could be inferred from the primary tu-
mor tissue. Recent work provides evidence for this possibility, showing the 
feasibility of correlating the immune TME between matched primary colo-
rectal cancer and liver metastases (27). This study hypothesized that the 
BCLM TME characteristics could be inferred from the matched primary 
tumor. To evaluate this hypothesis, imaging mass cytometry (IMC) analysis 
of 23 different markers (related to immune cells, tumor markers, hypoxia, 
vascularity, and ECM, as noted above) was performed on matched samples 
from patients with primary breast cancer and BCLM to associate the TME of 
these two locations using statistical and machine learning (ML) approaches. 

Materials and Methods 
Patient samples 
Despite the scarcity of matched primary breast cancer and BCLM clinical 
samples, this study was able to acquire a set of patient-matched biopsies. De- 
identified patient-matched primary breast cancer and BCLM paraffin slide 
samples (n ¼ 15 pairs) were commercially obtained from BioCoreUSA. 

Patient consent was not required. All patients were female, ranging in age 
from 28 to 69 and from 31 to 73 at collection of primary tumor and BCLM 
samples, respectively. Primary breast cancer samples were collected following 
mastectomy between 2015 and 2018, whereas matched BCLM were collected 
by needle core biopsy between 2018 and 2020. The number in each group 
was considered adequate for proof-of-concept testing (28) of the hypothesis 
that BCLM TME characteristics could be predicted via ML analysis of the 
primary TME. The sampled tissues had no specific clinicopathologic inclu-
sion criteria aside from being patient-matched breast cancer and liver me-
tastasis tissue samples. 

Sample staining analysis 
All patient slides were deparaffined and stained with hematoxylin and eosin 
(Sigma). Slides were holistically imaged, under brightfield microscopy at 10�
magnification (Nikon Eclipse 80i) for examination of specific regions of 
interest (ROI) to identify areas for IMC analysis. Due to the size of the 
histologic cores, five and three ROIs per slide were analyzed in matched 
primary breast and BCLM samples, respectively. ROIs were randomly se-
lected based on the hematoxylin and eosin staining, focusing on areas of high 
nuclear density. Each ROI was chosen at random within unique tumors and 
dependent on slide tissue size. IMC analysis was performed on 
0.7 mm � 0.7 mm tissue samples in each ROI. 

IMC 
IMC allows simultaneous marker detection, making it suitable for profiling 
the TME. IMC data were preprocessed and checked for tissue integrity, 
staining quality, and signal range prior to analysis. For each ROI, single cells 
were segmented using ilastik (29) and CellProfiler (30), based on DNA 
staining (Ir191) and other cell surface markers. Following segmentation, data 
were processed using Histology Topography Cytometry Analysis Toolbox 
(31), in which mean marker intensities for single cells were extracted. Data 
were consolidated in R scripts for downstream analysis. Intensity values were 
clipped at 99.5 percentile to eliminate outliers and subsequently normalized 
to 0 to 1 range, giving equal weights to each marker. For samples from 
different tissue types, expression values were aligned using geometrical 
means of marker expression within the same tissue type before above-
mentioned data normalization to remove tissue type–specific background 
noise and to decrease batch effect. Normalized intensities were used to 
perform unsupervised clustering in Seurat (32) using Louvain algorithm 
(33). Cell clusters were annotated based on the mean expressions of markers 
and consolidated into 23 marker clusters denoting known cell phenotypes. 
Cell densities of each phenotype were calculated by normalizing counts by 
ROI. Neighborhood analysis identified statistically significant neighboring 
status for each pair of phenotypes (31). Neighborhood heatmaps normalized 
results to �1 to 1, in which 1 (or red) denotes that two phenotypes are 
neighboring each other, �1 (or blue) denotes significant separation, and 
0 indicates no significant spatial relationship. IMC ROIs were excluded for 
subsequent analysis if signal lacked tumor-specific markers [Ki-67, αSMA, or 
E-cadherin (E-cad)]. 

IMC data preprocessing 
To prevent biasing due to tissue type, preprocessing steps were performed on 
breast and liver IMC data separately. Marker cluster densities were first 
transformed using base 10 logarithm to reduce heteroskedasticity (34). Each 
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ROI was then scaled by total cluster intensities to control for differences in 
tissue mass represented per ROI. The IMC data were processed and clustered 
in two analytical batches. Thus, each batch (primary tumor and BCLM) was 
separately centered to focus on differences in expression (34). Finally, each 
cluster was averaged across ROIs on a per-patient basis to create one rep-
resentative primary tumor and BCLM sample pair per patient. 

ML analysis 
To predict relative cluster density expression in BCLM TME from the pri-
mary TME, a comprehensive ML analysis was performed across all BCLM 
cluster densities using caret package in R (v. 4.2.2). For each cluster, patients 
were separated into low (< median) or high (≥ median) expression groups. 
Multiple ML models were tested, including neural networks [neural net-
works with principal component step (pcaNNet), neural network (nnet), 
model averaged neural network (avNNet), multilayer perceptron with mul-
tiple layers (mlpWeightDecayML)], k-nearest neighbors (knn), näıve Bayes 
(naive_bayes), linear models [generalized (glm), boosted (glmboost)], ran-
dom forests [random forest (rf), oblique random forest with SVM as splitting 
model (ORFsvm)], and support vector machines [linear kernel (svmLinear), 
radial basis function kernel (svmRadial), class weights (svmRadialWeights), 
and polynomial kernel (svmPoly)]. For each model, features were ranked 
using varImp, with all feature subsets tested from the top two primary tumor 
clusters as ranked by varImp to all primary tumor clusters. The calculation of 
variable importance by varImp included model-specific learning methods 
(e.g., random forest) and generalized ROC curve analysis, such as for näıve 
Bayes. Then, each model was re-trained on a feature subset generated by 
sequentially adding features in the order determined by varImp feature 
rankings. Five-fold cross-validation with 20 resampling iterations was per-
formed to obtain a total of 100 unique permutations. Kappa was selected as 
the optimization metric for caret model training. 

To evaluate classifications, AUROC was calculated for each BCLM cluster 
and feature number combination, along with variable importance data. 
Performance metrics were calculated as the average across all folds and 
resampling iterations. AUROC 95% confidence intervals (CI) were generated 
using t test distribution SE. A single AUROC-optimized model was selected 
for each cluster. F1 as the average of precision and recall was also computed. 
All plots were generated using ggplot2 package (RRID: SCR_014601). 
Comparisons between differing ML feature rankings were calculated in 
terms of relative values because the scale of the rankings differs based on the 
ML model selected. To prevent ranking biases, clusters with equal variable 
importance were equally ranked. 

Statistical analysis 
All statistical analyses were performed in R (v. 4.2.2). A comparison between 
marker cluster densities was performed with t test or Wilcoxon test depending on 
normality of the data per Shapiro–Wilk test with P ≤ 0.05 as threshold. Corre-
lations were done with corrplot package using Pearson or Spearman correlations, 
depending on normality of the data per Shapiro–Wilk test. Strong correlation was 
defined as |r| ≥ 0.75 or |ρ| ≥ 0.75 for Pearson and Spearman, respectively. Bon-
ferroni correction was applied to adjust for repeated t-test (for parametric data) or 
Wilcoxon rank sum test (for non-parametric data) across patient groups, with 
two-sided P value < 0.0025 (P-adj) considered significant. Partial least squares 
discriminant analysis (PLS-DA) was performed using plsda function from mda-
tools package. 

Data availability 
The data generated in this study are available upon request from the cor-
responding authors. 

Results 
Patient characteristics and study methodology 
Characteristics related to the matched (primary breast tumor and BCLM) 
samples, as well as the number of IMC ROI samples preserved for analysis 
per patient, are summarized in Table 1. All patients were female. Average 
patient age was 49.2 years (SD 12.7 years) with BCLM core needle biopsy 
taken on average 2.5 years (SD 1.2 years) after primary tumor resection (by 
mastectomy). Most patients when initially diagnosed had American Joint 
Committee on Cancer (AJCC) stage III (n ¼ 8), followed by stage I (n ¼ 4) 
and stage II (n ¼ 3). Most patients were T1 (n ¼ 7) or T2 (n ¼ 6), with only 
two being T3 (n ¼ 1) or T4 (n ¼ 1). Patients were roughly evenly distributed 
across lymph node classifications: N0 (n ¼ 3), N1 (n ¼ 4), N2 (n ¼ 5), and N3 
(n ¼ 3). For most patients, primary tumor ER, PR, and HER2 classifications 
matched those in the metastasis. For HER2 staining, scores of 0 and 1+ were 
considered negative, score 2+ was borderline (qFISH information was unavailable 
from the vendor), and score 3+ was considered HER2-positive. Primary tumors 
included one triple-negative, seven HER2-negative (with ER- or PR-positive), five 
HER2 borderline (with two ER/PR-negative and three ER- or PR-positive), two 
HER2-positive (both ER/PR-negative), and no triple-positive. Although 10 pa-
tients had either ER+ or PR+ primary tumors (with nine of them also ER+ or PR+ 

BCLM), only one of the HER2-positive primary cases had HER2+ BCLM. The 
study methodology is summarized in Fig. 1. 

Marker clusters identified from IMC data 
Representative matched primary tumor and BCLM samples are shown in 
Fig. 2. The IMC cluster densities originating from primary tumor and 
BCLM before and after mean aggregation of ROIs are visualized in Sup-
plementary Figs. S1 and S2, respectively. To confirm that the clusters were 
not skewed by analytical batch, a PLS-DA of the postpreprocessed data was 
performed, showing that the batches were homogeneous (Supplementary 
Fig. S3). Out of 23 marker clusters identified across batches, 20 were shared 
among all batches and were kept for analysis. Uniform Manifold Ap-
proximation and Projection (UMAP) representation of the 20 identified 
clusters from primary and metastatic liver tumors and a heatmap of the 
corresponding cluster and marker IMC intensities are shown in Fig. 3, 
whereas a representative example of mapping of the annotated phenotype 
to corresponding segmented cells based on the markers identified by IMC 
for paired primary tumor and BCLM is illustrated in Supplementary 
Fig. S4. 

Primary tumor and BCLM IMC markers in preserved clusters (Table 2) were 
associated with macrophages (CD68, CD163, and CD206), monocytes 
(CD14), immune response (CD56, CD4, and CD8a), PD1, PD-L1, tumor 
tissue (Ki-67 and phosphorylated ERK), cell adhesion (E-cad), hypoxia 
(HIF1α), vascularity (CD31), and ECM (αSMA, collagen, and MMP9). To 
evaluate whether IMC clusters from patients with BCLM could in principle 
be separated into low (< median) or high (≥ median) groups using primary 
tumor cluster densities, a PLS-DA showed that this separation was feasible 
(P < 0.01; Supplementary Fig. S5). This separation was not possible using 
covariates only (Supplementary Fig. S6). A comparison of marker cluster 
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densities of patients whose tumor subtypes differed between primary tumor 
and liver metastasis to those patients whose subtypes matched indicates that 
CD68+MMP9+ in the primary was lower (P ¼ 0.034) in patients with differing ER 
subtype, whereas BCLM HIF1α+ and CD163+MMP9+ were lower (P ¼ 0.014 and 
0.032, respectively) and E-cad+ was higher (P ¼ 0.018) in patients with differing 
HER2 subtype. There were no disparities based on differing PR status. 

Correlations between marker clusters 
To quantify the relationships between cluster densities, a correlation 
analysis between primary tumor and BCLM data was performed (Fig. 4). 

Within primary tumor, CD163+ was positively correlated with CD163+-
MMP9+ (r ¼ 0.751, P ¼ 0.0013) and CD68+CD163+CD206+ (ρ ¼ 0.762, 
P ¼ 9.7E�4). For BCLM, CD68+MMP9+ was positively correlated with 
MMP9+ (r ¼ 0.861, P ¼ 3.8E�5). Strong correlations between primary 
tumor clusters and BCLM clusters were observed that highlight relation-
ships between the respective TMEs. Primary tumor CD68+ expression was 
negatively correlated with BCLM CD14+ (r ¼ �0.751, P ¼ 0.0012) and 
positively correlated with BCLM CD31+ (r ¼ 0.763, P ¼ 9.3E�4). Addi-
tionally, primary tumor CD163+MMP9+ was positively correlated with 
BCLM CD163+MMP9+ (r ¼ 0.763, P ¼ 9.4E�4). Interestingly, there were 

TABLE 1 Characteristics of patients with breast cancer. TNM classification was 0 and 1 for primary tumor and liver metastatic disease, respectively 

Patient 
Disease 
status 

Age at 
sample 
collection Grade 

Primary 
tumor (T) 
classification 

Regional 
lymph 
node (N) 
classification 

AJCC 
staging 

ER intensity, 
% positivity 

PR intensity, 
% positivity HER2 

#IMC ROI 
samples for 
ML analysis 

1 Primary 55 II 1 2 IIIA — — 3+ 5 
Metastatic 57 II N/A N/A IV — — 3+ 4 

2 Primary 53 III 2 2 IIIA — — 0 5 
Metastatic 56 III N/A N/A IV — — 0 5 

3 Primary 63 R: II 
L: II 

R: 2 
L: 2 

R: 1a 
L: 0 

R: IIB 
L: IIA 

— — 2+ 5 

Metastatic 64 N/A N/A N/A IV — — 2+ 4 
4 Primary 35 III 3 3a IIIC Medium, 1% — 0 5 

Metastatic 36 N/A N/A N/A IV — — 0 4 
5 Primary 51 III 1a 0 IA — — 3+ 5 

Metastatic 53 N/A N/A N/A IV — — 2+ 2 
6 Primary 30 II 1c 0 IA Weak, 60% Medium, 3% 2+ 4 

Metastatic 32 N/A N/A N/A IV Medium, 6% Medium, 2% 2+ 2 
7 Primary 51 III 2 2a IIIA Weak, 5% Medium, 3% 1+ 5 

Metastatic 52 N/A N/A N/A IV Medium, 15% Medium, 50% 2+ 2 
8 Primary 59 III 4b 2a IIIB — — 2+ 4 

Metastatic 61 N/A N/A N/A IV — — 2+ 3 
9 Primary 28 II 2 3 IIIC Medium, 30% — 0 5 

Metastatic 31 N/A N/A N/A IV Medium, 60% Weak, 8% 1+ 5 
10 Primary 69 II 2 2 IIIA Strong. 100% Strong, 80% 1+ 5 

Metastatic 73 N/A N/A N/A IV Strong, 95% Strong, 65% 2+ 5 
11 Primary 49 R: III 

L: II 
R: 2 
L: 1c 

R: 3 
L: 1 

R: IIIC 
L: IIA 

R: Medium, 40% 
L: Medium, 70% 

R: Strong, 70% 
L: Strong, 30% 

R: 1+ 
L: 0 

5 

Metastatic 53 N/A N/A N/A IV Strong, 95% — 1+ 3 
12 Primary 45 II 1b 1mi IB Strong, 70% Strong, 65% 1+ 5 

Metastatic 48 N/A N/A N/A IV Weak, 5% — 2+ 5 
13 Primary 32 N/A 1c 1 IIA Strong, 90% Strong, 90% 1+ 5 

Metastatic 36 N/A N/A N/A IV Weak, 50% — 2+ 4 
14 Primary 61 II 1c 0 IA Weak, 50% Strong, 40% 2+ 5 

Metastatic 65 N/A N/A N/A IV Strong, 50% Strong, 6% 2+ 3 
15 Primary 57 II 1c 1 IIA Medium, 20% — 2+ 5 

Metastatic 58 N/A N/A N/A IV Medium, 30% — 2+ 4 

Note: “1mi” denotes micrometastases (<2 mm), classified as 1. For HER2 staining, scores of 0 and 1+ are considered negative; score 2+ is borderline (qFISH 
information was unavailable from the vendor); and score 3+ is HER2-positive. 
Abbreviations: N/A, not available; “R,” right; “L,” left; TNM, tumor–node–metastasis. 
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no strong correlations for HIF1α, Ki67, MMP9, or PD-L1 at the primary 
with marker clusters in the BCLM. Because no primary tumor clusters 
were found to significantly differ after Bonferroni adjustment between 

patients separated by low (< median) or high (≥ median) BCLM cluster 
expression (P-adj ¼ 0.0025), statistical analyses alone were considered 
insufficient to predict the BCLM TME from the primary tumor TME. 

Patients diagnosed with

breast cancer

(n = 15)

A

B

C

Patients diagnosed with liver

metastases
(n = 15)

Progressed to stage IV

Obtain breast
cancer

samples
Perform IMC
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n = 4
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staining for tumor

For primary and liver

data separately

Correlation analysis

PLS-DA
Classify patients with

BCLM into low (< median)

or high (≥ median)

Relative rankings of

primary clusters

from optimal models

Forward feature

selection of
primary clusters

via varImp

Evaluate

validation
performance
AUROC   F1

Train ML models

Class A:
Class B:
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Iteration 1 Permutation 1 1 2 3

Folds

4 1 2 3

Training data Validation subset

545

1 2 3

Folds
…

4 1 2 3

Training data Validation subset

545

1 2 3

Folds

4 1 2 3

Training data Validation subset

545

Permutation 2

Permutation 20

Iteration 2

Iteration 20

Split into k folds Train model with
k – 1 folds

Test model with
kth fold

Repeat until all

folds have been
used as validation

(...)

(...)

(...)

...

For each

BCLM cluster

Initial data analysis

Base 10 log 

transformation and
mean centering

Aggregate batches

Average across ROIs for

each patient

Obtain cell marker

clusters by IMC

Exclude IMC ROI with no
tumor markers present

20 primary and BCLM
clusters in common

between two batches

2. Data preprocessing 3. ML analysis

Stage II
n = 3

Stage III
n = 8

Obtain BCLM core needle biopsy

Perform IMC

……

FIGURE 1 Workflow of study design. A, Study profile. Primary breast cancer samples were taken from 15 patients. After subsequent diagnosis of 
BCLM, a core needle biopsy was also obtained. B, Summary of analysis. ROIs from primary tumor and BCLM were identified using H&E staining for 
tumor tissue and TME. Multiple marker clusters were quantified by IMC, producing 20 common clusters between two analytical batches. IMC ROI 
missing multiple tumor markers (Ki-67, E-cad+, or αSMA) were excluded. Multiple ML models were trained to classify BCLM cluster expression into 
low (< median) or high (≥ median) groups using primary tumor cluster data. Forward feature selection was performed on preprocessed data using 
varImp to identify primary TME markers associated with BCLM classification. C, Diagram of model training and validation. Primary tumor data were 
randomly sorted and split into k folds (subsets; here, k ¼ 5). Each model was trained with k-1 folds and validated with the kth fold. This process was 
repeated until all folds were used once as the validation set. Twenty permutations were performed in total, repeating the validation process for each 
fold within each permutation. Final results of each model are the averages of the validations across all folds and all iterations (n ¼ 100). H&E, 
hematoxylin and eosin. 
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Prediction of BCLM TME from primary tumor marker 
clusters 

To evaluate the predictive potential of the primary tumor TME at predicting 
the BCLM TME, ML models were trained to classify BCLM cluster densities 
as having low (< median) or high (≥ median) values. Using all 20 primary 
marker clusters, the models were selected by maximum validation subset 
AUROC per BCLM cluster (Supplementary Table S1). AUROC for all op-
timized models was ≥0.75, with 95% confidence in all cases ≥0.70 (Fig. 5). 
This performance was supported by F1 ≥ 0.70 for all models. The lowest 
AUROC and F1 were for predicting BCLM CD56+, with glmboost 
AUROC ¼ 0.770 (95% CI, 0.705–0.835) and F1 ¼ 0.726. Variable impor-
tance of primary tumor clusters to predict BCLM clusters is summarized in 

Supplementary Table S2 through Supplementary Table S21 and visualized in 
Supplementary Fig. S7 through Supplementary Fig. S11. AUROC and F1 across 
feature subsets are visualized in Supplementary Figs. S12 and S13, respectively. 

Prediction of BCLM TME using covariates 
To evaluate the predictive value of covariates alone to predict the BCLM TME, 
the ML workflow was executed using covariates as features. Covariates included 
patient age at primary tumor resection, time between primary tumor and BCLM 
sample collections, T and N components from tumor–node–metastasis score, 
AJCC staging, and cell receptor status. Patients with more than one tumor– 
node–metastasis, AJCC, or receptor level were ascribed the more advanced level. 
Only CD68+CD163+CD206+ had higher validation subset AUROC using 
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covariates (0.922; 95% CI, 0.890–0.955) than cluster density–informed ML 
models (0.860; 95% CI, 0.807–0.913; Supplementary Figu. S14). Consistent with 
the PLS-DA classification using covariates only (Supplementary Fig. S6), these 
results indicate that covariates alone would generally underperform to predict the 
BCLM TME compared with the marker clusters. 

Identification of key primary tumor marker clusters 
To identify which primary tumor marker clusters were most important to 
predict the BCLM TME, the variable importance rank for each primary 
tumor cluster was determined for prediction of each of the 20 BCLM cluster 
densities. Comparisons between differing ML feature rankings show that 
CD68+ had the highest average relative rank of all 20 clusters (5.55), whereas 
collagen+ had the lowest (11.28; Fig. 6). 

Discussion 
This study provides evidence that the BCLM TME can in principle be inferred 
from the primary breast tumor tissue. Using a dataset of patient-matched pri-
mary breast cancer and BCLM samples, IMC cluster densities from BCLM were 
predicted as being either above or below median values using IMC cluster 
density data from the primary tumor (AUROC ≥ 0.75 on the validation subset 
with 95% CI ≥ 0.7 for all markers). Because tissue from primary tumors is usually 

obtained (e.g., via resection), the proposed approach involving IMC analysis of 
primary tumor tissue and ML could longer term aid in targeting BCLM with 
immunotherapeutic regimens without requiring BCLM tissue analysis, which is 
generally unavailable. These regimens critically depend on the characteristics of 
the associated TME, such as tumor-associated macrophages (TAM). The TME 
has an important role not only in immunotherapy but also in other therapeutic 
approaches, emphasizing the need for patient-specific evaluation of liver me-
tastases to optimize treatment efficacy. 

Rankings of different primary tumor clusters based on their importance for ML 
classification highlight the predictive value of macrophages. These rankings in-
dicate that primary tumor CD68, a pan-macrophage marker (35), was the most 
significant feature overall in the primary TME for predicting the BCLM TME 
(Fig. 6). Interestingly, CD31 expression in BCLM was positively correlated with 
CD68+ in the primary (Fig. 4B), suggesting that vascularization at the metastatic 
site was associated with macrophage presence at the primary. Furthermore, 
CD163, a marker of TAMs, especially M2, was present in CD163+MMP9+ and 
CD163+ primary tumor clusters (Fig. 6; ref. 7). The marker cluster data also 
indicate that BCLM CD163+ coupled with MMP9+ was positively correlated with 
the same at the primary (Fig. 4B), indicating that primary tumor intrinsic 
characteristics were reflected at the remote site. MMPs are well known as key 
components of the tumor-promoting and immune-suppressive TME (36). In 
contrast, monocyte/macrophage presence (CD14+) in BCLM was negatively 

TABLE 2 Markers identified by IMC in primary breast tumor and BCLM samples 

Biological marker Associated cell expressions in TME 
Metal/channels 
for IMC analysis 

Antibody source for 
IMC (vendor/clone) Reference 

CD14 Monocytes/macrophages – co-receptor of Toll- 
like receptor 4 

Gd160 Abcam/EPR3653 5 

CD163 TAM, alternatively activated or anti-inflammatory 
macrophage (M2) scavenger receptor 

Sm152 Bio-Rad/MCA1853 7 

CD206 M2 macrophages – mannose receptor Nd144 Abnova/22-130 39 
CD31 Endothelial marker Sm149 Abcam/C31.3+JC/70A 16 
CD4 Helper T cells – transmembrane glycoprotein Nd145 Abcam/EPR6855 22 
CD56 NK mainly and some T cells, monocytes, and 

dendritic cells 
Yb176 Invitrogen/123C3 23 

CD68 Circulating/tissue macrophages (monocytic 
lineage), mainly M1 – promote phagocytosis 

Tb159 BioLegend/ KP1 35 

CD8a Cytotoxic T cells and some NKs – 
transmembrane glycoprotein 

Nd146 Invitrogen/C8/144B 55 

Collagen Collagen marker Tm169 Novus/ Polyclonal 18 
E-cad Cell adhesion; expressed in normal breast tissue Gd158 Cell Signaling Technology/24E10 50 
HIF1α Hypoxia Ho165 Abcam/EP1215Y 17 
Ki-67 Cancer cells – proliferation Er167 BD Biosciences/B56 14 
MMP9 Tissue remodeling and inflammation Yb172 Abcam/ EP1255Y 20 
PD1 Immune cells including T cells – programmed cell 

death protein 1 
Eu151 BioLegend/NAT105 21 

PD-L1 Suppression of adaptive immunity – cancer 
prognostic marker 

Nd150 BioLegend/ 29E2A3 21 

pERK Signal transduction protein – regulates a variety 
of cellular processes 

Sm147 Cell Signaling Technology/ 
T202/Y204 

15 

αSMA Alpha smooth muscle actin; marker for 
fibrogenic activity 

Pr141 Invitrogen/1A4 19 
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correlated with M1 (CD68+) macrophage presence in the primary (Fig. 4B), 
suggesting that macrophage involvement at the metastatic site is linked to the 
extent of M1 antitumor activity at the primary. Interestingly, the comparison of 
marker cluster densities of patients whose tumor subtypes differed between 
primary and BCLM to those patients with consistent subtypes revealed that 
CD68+MMP9+ in the primary was lower in patients with differing ER subtype 
whereas BCLM CD163+MMP9+ and HIF1α+ were lower in patients with dif-
fering HER2 subtype. ER+ tumors have been shown to exhibit differential 
macrophage phenotypes (37), whereas a prognostic role for TAMs in HER2+ 

tumors has been established (38). Additionally, CD206 expressed primarily by 

M2-like macrophages and dendritic cells (39) was the fourth most important 
feature by an average relative rank (Fig. 6). 

These findings are consistent with previous work documenting macrophage 
influence on cancer progression and that the M1:M2 ratio can serve as a 
prognostic marker in multiple tumor types when considering conventional 
therapies (40). M1 macrophages target tumor cells via multiple mechanisms, 
including release of inflammatory cytokines (such as IL6 and TNFα), reactive 
oxygen species, nitrogen intermediates, and other factors, whereas M2 promotes 
immunosuppression, tumor growth, progression, and resistance to therapy via 
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regulation of factors such as TGFβ and IL10, VEGF-A that mediates angio-
genesis, and other growth factors (41). TGFβ has been linked to ECM dysre-
gulation across multiple cancer types (42). Our previous work has found that 
M2 macrophages could potentially sensitize tumors to nanotherapy-mediated 
drug delivery (11). Furthermore, macrophages influence T-cell activation and 
function (43). Altogether, based on the multifaceted influence of macrophages in 
the TME, the results in this study could help in identifying patients who may 
benefit from T cell–based immunotherapies, especially as macrophages are 
known to limit cytotoxic T-cell efficacy in liver metastases (44). 

The CD8a+PD1+ cluster (Fig. 6) combines CD8a, a cytotoxic T-cell surface 
marker, and PD1, a CD8+ T-cell marker for which increased and sustained 

expression is associated with PD-L1–induced T-cell exhaustion (Table 2). 
Exhausted cytotoxic T cells characterize decreased immunotherapeutic effi-
cacy in breast cancer (45). Inhibiting PD-L1 has been shown to improve 
survival in triple-negative breast cancer independently of pathologic com-
plete response (46). Interestingly, it has been reported that PD-L1 expression 
in liver metastasis of colorectal tumors was higher than that in primary 
tumors (47). Future work could explore the potential of therapy targeting 
PD1 or PD-L1 expression combined with nanovector-mediated tumor cy-
totoxic drug delivery. This would require evaluating the levels of 
PD1 expression, which were not assessed in this study’s IMC, to determine 
whether the cytotoxic T-cell population found on primary tumors corre-
sponds to exhausted CD8+ T cells in the BCLM. However, preclinical models 
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have found that resistance to anti-PD1/PD-L1 antibody therapy can be 
explained by the immunotolerant microenvironment of the liver (48). It 
is, therefore, unclear whether predicting PD-L1 expression in the liver 
metastases could translate into effective immunotherapy combinations 
for breast or other cancer types. Lastly, the CD56+ primary tumor cluster 
indicates NK cell presence, which may reflect sensitivity to NK-mediated 
cytotoxicity (49). 

In addition to the importance of markers associated with immune cells in the 
primary tumor to predict the BCLM TME, the relevance of primary tumor 
cell–ECM interactions, including E-cad, MMP9, and αSMA, was evident by 
their rankings for ML classification (Fig. 6). Previous work has shown that 
E-cad expression is required for metastatic formation, whereas low E-cad 
may increase tumor invasiveness; recently, the functional state of E-cad was 
shown to determine metastatic potential in a preclinical model of breast 
cancer (50). MMP9 expression has been consistently associated with tumor 
growth and metastasis and has been considered a potential therapeutic target 
in breast cancer (20). 

Despite the wide range of markers covered by the clusters detected in this 
study, these markers are only associated with a subset of the TME. T-cell 
markers such as forkhead box protein P3 (51) or CD45 (52) could be in-
cluded to further assess T cell–mediated activity. The influence of other 
immune markers, such as CD86 expressed by B cells and antigen presenting 
cells (53), could be investigated. Although the availability of matched human 

primary and BCLM samples is limited and only 15 pairs were available for 
this proof-of-concept study, future work will strive for larger sample sizes 
and diverse sampling pools to prospectively confirm and further refine the 
ML model predictions. BCLM ROIs were obtained via core needle biopsies, 
which, in the case of metastatic malignancies in the liver, have been found to 
afford more tissue for analysis and improve diagnostic quality relative to fine 
needle aspiration biopsies (54). Considering the rarity of matched breast and 
BCLM samples, this study emphasized cohort size; thus, BCLM ROI per 
patient was varied from two to five depending on the number of ROI 
deemed eligible for analysis. Subsequent studies could focus on addi-
tional ROI to overcome this limitation. Although tissue-specific sample 
details, IHC, and tissue staging details are known, no details were 
available from the vendor with regard to treatment regimens pre-biopsy, 
after initial breast cancer diagnosis, or after liver metastasis diagnosis. 
The effect of therapy on primary and metastatic TMEs will need future 
evaluation. In addition to information obtained from primary tumor 
biopsies and resections, other predictors of the BCLM TME such as from 
proteomic or metabolomic analysis could be investigated. Mechanistic 
modeling using primary tumor characteristics could be used to predict 
BCLM response to immunotherapy, e.g., by applying techniques that 
have simulated BCLM response to nanotherapy targeting TAMs (9). 
A combination of such approaches could help bolster the TME links 
between primary breast tumors and BCLM to arrive at optimal patient- 
specific immunotherapeutic strategies. 
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