Skip to main content
. 2024 Oct 30;14:26068. doi: 10.1038/s41598-024-77196-x

Table 5.

Performance evaluation of the proposed FDEIoL using various DL models on the CXR images dataset.

Classifiers Evaluation Parameters Classes

Overall

Accuracy

Error Rate Cohen’s Kappa Average F1Score
Covid-19 PNA TB Normal
HincV3XGBoost Precision 0.99 0.98 1.00 1.00 0.9888 0.0112 0.990001 0.9925
Recall 0.99 0.99 1.00 0.99
F1-Score 0.99 0.99 1.00 0.99
Specificity 0.99 0.99 1.00 1.00
LT-ViT Precision 0.90 0.92 0.96 0.98 0.9429 0.0571 0.9171 0.9375
Recall 0.95 0.89 0.97 0.94
F1-Score 0.92 0.91 0.96 0.96
Specificity 0.97 0.96 0.98 0.99
BM-Net Precision 0.99 0.98 1.00 0.99 0.0085 0.9932 0.99
Recall 0.99 0.98 1.00 0.99 0.9915
F1-Score 0.99 0.98 1.00 0.99
Specificity 0.99 1.00 1.00 1.00
VGG-SCNets Precision 1.00 0.97 0.97 1.00 0.0208 0.9700 0.985
Recall 1.00 0.97 0.98 1.00 0.9792
F1-Score 1.00 0.97 0.97 1.00
Specificity 0.99 0.99 0.99 0.98
MEEDNets Precision 0.98 1.00 1.00 1.00 0.9919 0.0081 0.9932 0.9925
Recall 0.99 0.99 1.00 0.99
F1-Score 0.99 0.99 1.00 0.99
Specificity 0.99 1.00 1.00 1.00
ResGANet Precision 0.96 0.97 1.00 0.96 0.021 0.9666 0.975
Recall 0.96 0.96 1.00 0.98 0.9790
F1-Score 0.96 0.97 1.00 0.97
Specificity 0.98 0.99 1.00 0.98
Ensemble Except FL Modeling Precision 0.98 0.99 0.99 0.98 0.9795 0.0205 0.980002 0.96
Recall 0.98 0.96 1.00 1.00
F1-Score 0.98 0.98 0.89 0.99
Specificity 0.99 0.99 0.99 0.99
Proposed FDEIoL Precision 1.00 0.99 1.00 1.00 0.9924 0.0076 0.996667 0.995
Recall 1.00 1.00 1.00 0.99
F1-Score 1.00 0.99 1.00 0.99
Specificity 1.00 1.00 1.00 1.00