Table 5.
Classifiers | Evaluation Parameters | Classes |
Overall Accuracy |
Error Rate | Cohen’s Kappa | Average F1Score | |||
Covid-19 | PNA | TB | Normal | ||||||
HincV3XGBoost | Precision | 0.99 | 0.98 | 1.00 | 1.00 | 0.9888 | 0.0112 | 0.990001 | 0.9925 |
Recall | 0.99 | 0.99 | 1.00 | 0.99 | |||||
F1-Score | 0.99 | 0.99 | 1.00 | 0.99 | |||||
Specificity | 0.99 | 0.99 | 1.00 | 1.00 | |||||
LT-ViT | Precision | 0.90 | 0.92 | 0.96 | 0.98 | 0.9429 | 0.0571 | 0.9171 | 0.9375 |
Recall | 0.95 | 0.89 | 0.97 | 0.94 | |||||
F1-Score | 0.92 | 0.91 | 0.96 | 0.96 | |||||
Specificity | 0.97 | 0.96 | 0.98 | 0.99 | |||||
BM-Net | Precision | 0.99 | 0.98 | 1.00 | 0.99 | 0.0085 | 0.9932 | 0.99 | |
Recall | 0.99 | 0.98 | 1.00 | 0.99 | 0.9915 | ||||
F1-Score | 0.99 | 0.98 | 1.00 | 0.99 | |||||
Specificity | 0.99 | 1.00 | 1.00 | 1.00 | |||||
VGG-SCNets | Precision | 1.00 | 0.97 | 0.97 | 1.00 | 0.0208 | 0.9700 | 0.985 | |
Recall | 1.00 | 0.97 | 0.98 | 1.00 | 0.9792 | ||||
F1-Score | 1.00 | 0.97 | 0.97 | 1.00 | |||||
Specificity | 0.99 | 0.99 | 0.99 | 0.98 | |||||
MEEDNets | Precision | 0.98 | 1.00 | 1.00 | 1.00 | 0.9919 | 0.0081 | 0.9932 | 0.9925 |
Recall | 0.99 | 0.99 | 1.00 | 0.99 | |||||
F1-Score | 0.99 | 0.99 | 1.00 | 0.99 | |||||
Specificity | 0.99 | 1.00 | 1.00 | 1.00 | |||||
ResGANet | Precision | 0.96 | 0.97 | 1.00 | 0.96 | 0.021 | 0.9666 | 0.975 | |
Recall | 0.96 | 0.96 | 1.00 | 0.98 | 0.9790 | ||||
F1-Score | 0.96 | 0.97 | 1.00 | 0.97 | |||||
Specificity | 0.98 | 0.99 | 1.00 | 0.98 | |||||
Ensemble Except FL Modeling | Precision | 0.98 | 0.99 | 0.99 | 0.98 | 0.9795 | 0.0205 | 0.980002 | 0.96 |
Recall | 0.98 | 0.96 | 1.00 | 1.00 | |||||
F1-Score | 0.98 | 0.98 | 0.89 | 0.99 | |||||
Specificity | 0.99 | 0.99 | 0.99 | 0.99 | |||||
Proposed FDEIoL | Precision | 1.00 | 0.99 | 1.00 | 1.00 | 0.9924 | 0.0076 | 0.996667 | 0.995 |
Recall | 1.00 | 1.00 | 1.00 | 0.99 | |||||
F1-Score | 1.00 | 0.99 | 1.00 | 0.99 | |||||
Specificity | 1.00 | 1.00 | 1.00 | 1.00 |