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A large-scale examination of inductive biases
shaping high-level visual representation in
brains and machines

Colin Conwell 1 , Jacob S. Prince1, Kendrick N. Kay2, George A. Alvarez1 &
Talia Konkle1,3,4

The rapid release of high-performing computer vision models offers new
potential to study the impact of different inductive biases on the emergent
brain alignment of learned representations. Here, we perform controlled
comparisons among a curated set of 224 diverse models to test the impact of
specific model properties on visual brain predictivity – a process requiring
over 1.8 billion regressions and 50.3 thousand representational similarity
analyses. We find that models with qualitatively different architectures (e.g.
CNNs versus Transformers) and task objectives (e.g. purely visual contrastive
learning versus vision- language alignment) achieve near equivalent brain
predictivity, when other factors are held constant. Instead, variation across
visual training diets yields the largest, most consistent effect on brain pre-
dictivity. Many models achieve similarly high brain predictivity, despite clear
variation in their underlying representations – suggesting that standard
methods used to link models to brains may be too flexible. Broadly, these
findings challenge common assumptions about the factors underlying emer-
gent brain alignment, and outline how we can leverage controlled model
comparison to probe the common computational principles underlying bio-
logical and artificial visual systems.

The biological visual system transforms patterned light along a hier-
archical series of processing stages into a useful visual format, capable
of supporting object recognition1. Visual neuroscientists have made
significant progress in understanding the nature of the tuning in early
areas like V12, as well as in crafting normative computational accounts
of the ecological and biological conditions under which such tuning
might emerge [e.g. sparse coding of natural image statistics]3. How-
ever, that same computational clarity has been lacking with respect to
the nature of the representation in later stages of the ventral stream
supporting object representation, including human object-responsive
occipitotemporal cortex (OTC), and the analogue monkey infer-
otemporal (IT) cortex. In the past decade, this landscape has drama-
tically changed with the introduction of goal-optimized deep neural

networks [DNNs]4,5. These models have revolutionized our methodo-
logical capacity to explore the format underlying these late-stage
visual representations, and have provided new traction for empirically
testing the impact of different pressures guiding high-level visual
representation formation6–14.

Landmark findings have demonstrated that deep convolutional
neural networks—trained on a rich natural image diet, with the task of
object categorization—learn features that predict neural tuning along
the ventral visual stream5–7,15,16. For example, the responses of single
neurons in monkey IT cortex to different natural images can be cap-
tured by weighted combinations of internal units in DNNs with greater
accuracy than handcrafted features5. The predictive capacity of these
single-neuron encoding models has been further validated in
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experiments that use thesemodels to synthesize visual stimuli capable
of driving neural activity beyond the range evoked by handpicked
natural images17,18. The same encoding model procedures carried out
using functional magnetic resonance imaging (fMRI) data in humans
have shown similarly strong voxel-wise encoding and population-level
geometry modeling7,19–25, providing further evidence of the emergent
correspondence between the structure of biological visual system
responses and the internals of visual DNN models.

However, where there was once a paucity of performant, image-
computable visual representations to study, there is now an over-
abundance. New models with increasingly powerful visual repre-
sentational competencies, and with variable architectures, objectives,
image diets, and learning parameters, are now produced almost
weekly. More often than not, these models are designed to optimize
performance on canonical computer vision tasks, typically with no
reference to brain function nor intent to directly reverse engineer
brain mechanisms per se. This has changed the nature of the problem
faced by computational neuroscientists trying to understand high-
level visual representation, raising new questions for how to proceed.
For example, if these DNN models are to be considered direct models
of the brain, is there onemodel neuroscientists should be using until a
better one comes along? Or, might there be another way to leverage
the model diversity itself for insight into how more general inductive
biases, shared among sets of models, lead to more or less “brain-like”
representation?

Neural benchmarking platforms such as Brain-Score, Algonauts,
and Sensorium directly operationalize the research effort to find the
most brain-like model of biological vision, and do so with impressive
scale and generality26–29. Crowd-sourcing across neuroscientists and
applied machine learning researchers alike, these platforms collect
many brain datasets that sample responses from multiple visual areas
to a variety of stimuli, allowingusers to upload andenter any candidate
model for scoring. An automated pipeline fits unit-wise encoding
models (under prespecified linking assumptions) to each candidate
DNN, and computes an aggregated score across all probe datasets.
These neural benchmarking endeavors seem aimed predominantly at
identifying the single best predictivemodel of the target neural system
(e.g. a mouse primary visual area, the primate ventral stream), a goal
that that is reflected in the leaderboards of top-ranking models that
have become the standard outputs of the pipeline.

Here, we take an alternative but complementary methodological
approach, wherein we explicitly leverage the diversity and quantity of
open-source DNNs as a source of insight into representation forma-
tion. Specifically, we conceptualize each of these DNNs as a different
model organism—a unique artificial visual system—with performant,
human-relevant visual capacities. As such, each DNN is worthy of
study, regardless of whether its properties seem to match the biology
or depart from it. We take as our next premise that different DNNs can
learn different high-level visual representations, based on their archi-
tectures, task objectives, learning rules, and visual “diets”. By com-
paring sets of models that vary only in one of these factors, while
holding other factors constant, we can begin to experimentally
examine which inductive biases lead to learned representations that
are more or less brain-predictive. In our framework, models are not
competing to be the best in-silicomodel of the brain. Instead, we think
of them as powerful visual representation learners, with controlled
comparisons among them providing empirical traction to study the
pressures guiding visual representation formation.

In the current work, we harness sources of controlled variation
already present among pre-existing, open-sourcemodels to ask broad
questions about their emergent brain-predictive capacity. For
instance, about meso-scale architectural motifs: do convolutional or
transformer encoders learn features that better capture high-level
visual responses to natural images, holding task and visual experience
constant? Or, about the goal of high-level vision: when visual

representations are aligned with language representations, does this
provide a better fit to brain responses than purely visual self-
supervised objectives, controlling for architecture and visual experi-
ence?Or, about visual experience: do certain training datasets (such as
faces alone or places alone) lead to more a brain-predictive repre-
sentational format than others? We supplement these experiments
with additional analyses that test the explanatory power of more
general factors (e.g. effective dimensionality) that have been proposed
to underlie increased brain predictivity, but that do not fit as neatly
into the frameworkof inductive bias. Broadly, the goals of thisworkare
to reveal the relationships between model variations and emergent
brain-predictive visual representation, to provide insight into the
principles shaping high-level visual representation in both biological
and artificial visual systems, and to articulate the next steps for the
neuroconnectionist enterprise13.

Results
Our approach involves first searching through pre-trained model
repositories and curating distinct sets of models that have performant
visual capacities, andwhich providemeaningful controlled variation in
key inductivebiases suchas architecture, task objective, and visual diet
(i.e. trainingdataset). Each of these analyses involves insolatingmodels
that vary along only one of these dimensions, while holding the others
constant. In total, we examine the degree to which the representations
of 224 distinct DNNs can predict the responses to natural images
across human occipitotemporal cortex (OTC) in the 7T Natural Scenes
Dataset [NSD]30, using two different model-to-brain linking methods.
Details on all aspects of our procedure are available in the Methods
Section.

The full set of all included models and their most relevant meta-
data is described in Supplementary Information Table 1. Trained
models (N = 160) were sourced from a variety of online repositories
(Fig. 1B). We also collected the randomly-initialized variants (N = 64) of
all ImageNet-1K-trained architectures, using the default random initi-
alization procedure provided by the model repository or original
authors. We then grouped these models into controlled comparison
sets, to enable ‘opportunistic experiments’ betweenmodels that differ
in only one inductive bias, holding the others constant.

The main brain targets of our analyses in this work were OTC
responses to 1000 natural images in voxels sampled from 4 subjects in
the NSD (Fig. 1A). We define the OTC sector individually in each par-
ticipant using a combination of reliability-based (SNR) and functional
metrics. Our key outcomemeasure was the representational geometry
of the OTC brain region, captured by the set of 124,750 pairwise dis-
tances between 500 test images. The representational geometry in this
dataset was highly reliable (noise ceiling mean across subjects:
rPearson =0.8, 95% CI [0.74, 0.85] across subjects), providing a strong
target for arbitrating the relative predictivities of our surveyedmodels.

We considered two different linking methods to relate the
representations learned inmodels to the response structuremeasured
in brains. Both of thesemethods predict each individual subject’s OTC
representational geometry, using representational similarity analysis
(RSA)31. Thefirstmethod, classicalRSA (cRSA), is themore strict linking
hypothesis, estimating the degree of correspondence between the
brain’s population geometry and the best-fitting model layer’s popu-
lation geometry, without any feature re-weighting procedures. This
measure probes for a fully emergent correspondence between model
and brain, making the clear (and reasonable) assumption that as a
whole, all units of theDNN layermust contribute equally to capture the
population level geometry.

The second method, voxel-encoding RSA (veRSA), tests for the
same correspondence, but allows for guided re-weighting of the DNN
features32–34. Thismethod firstmakes the (also reasonable) assumption
that different voxels are likely tuned to different features, and thus,
that each voxel’s response profile should be modeled as a weighted
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combination of the units in a layer, using independent brain data for
fitting the encoding model. After fitting, each voxel-wise encoding
model is used to predict responses to the test images, for which we
compare the predicted population geometry to the observed popu-
lation geometry of neural responses. Thus, these two mapping pro-
cedures provide two distinct measures of the degree to which each
model’s internal representations are able to predict population geo-
metry of OTC, with either more strict or more flexible linking
assumptions.

All results reported are from the most brain-predictive layer of
each model. This layer is selected through a nested cross-validation
procedure using a training set of 500 images, and the final reported
brain prediction scores are assessed using a held-out test set of 500
test images. This process ensures independence between the selection

of themost predictive layer and its subsequent evaluation. (For results
as a function of model layer depth, see Supplementary Fig. 3).

Architecture comparison
While differences in architecture acrossmodels canbeoperationalized
in many different ways (total number of parameters, total number of
layers, average width of layers, et cetera), here we focus on a distinct
mesoscale architectural motif: the presence (or absence) of an explicit
convolutional bias, which is present in convolutional neural networks
(CNNs) but absent in vision transformers.

CNN architectures applied to image processing were arguably the
central drivers of the last decade’s reinvigorated interest in artificial
intelligence4,35. CNNs are considered to be naturally optimized for
visual processing applications that benefit from a sliding window

Fig. 1 | Overviewof our approach. A The brain region of focus is occipitotemporal
cortex (OTC), here shown for an example subject. The voxel-wise noise-ceiling
signal-to-noise ratio (NCSNR) is indicated in color. B A large set of models were
gathered, schematized here by repository, and colored here by the main experi-
ments to which they contribute. C Brain-linking methods. The left plot depicts the
target representational geometry ofOTC for 1000COCO images, plotted along the
first three principal components of the voxel space. Each dot reflects the encoding
of a natural image, a subset of which are depicted below in a corresponding color
outline. The middle panel shows a DNN representational geometry (here the final
embedding of a CLIP-ResNet50), plotted along its top 3 principal components.

Classical RSA involves directly estimating the emergent similarity between the
brain target and themodel layer representational geometries. The right plot shows
the same DNN layer representation, but after the voxel-wise encoding procedure
(veRSA), which involves first re-weighting the DNN features tomaximize voxel-wise
encoding accuracy, and then estimating the similarity between the target voxel
representations and themodel-predicted voxel representations. (Note: Images in C
are copyright-free images gathered from Pixabay.com using query terms from the
COCO captions for 100 of the original NSD1000 images. We are grateful to the
original creators for the use of these images).
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(weight sharing) strategy, applying learned local features over an
entire image. These models are known for their efficiency, stability,
and shift equivariance36,37. Transformers, originally developed for
natural language processing, have since emerged asmajor challengers
to the centrality of CNNs in AI research, even in vision. Transformers
operate over patched image inputs, using multihead attention mod-
ules instead of convolutions38,39. They are designed to better capture
long-range dependencies, and are considered in some cases to be a
more powerful alternative to CNNs precisely for this reason40. While
many variants of CNNs and some kinds of transformers have appeared
in benchmarking competitions27–29, comparisons between these mod-
els have been largely uncontrolled. Which of these models’ starkly
divergent architectural inductive biases lead to learned representa-
tions that are more predictive of human ventral visual system
responses, controlling for visual input diet and task?

We compared the brain-predictivity scores of 34 CNNs against 21
transformers. Critically, all of these models were trained with the
same dataset (ImageNet1K) and the same task objective (1000-way
image classification). The results are shown in Fig. 2. Surprisingly, we
find that both the CNN and transformer architectures account for the
structure of OTC responses almost equally well: in the veRSA com-
parison, the brain predictivity on average was rPearson = 0.67 [0.67,

0.68] for convolutional models and rPearson = 0.66 [0.65, 0.67] for
transformer models. We did find, however, that the aggregate dif-
ferences between these architectures, while small, were statistically
significant (Wald t-distribution statistics, see Methods). Specifically,
the transformers were on average less predictive than the CNNs, in
both the classical and voxel-encoding RSA metrics (cRSA: β = −0.04
[−0.05, −0.03], p < 0.001; veRSA: β = −0.01 [−0.02, −0.00] p < 0.001).
Thus, the CNNs as a class may introduce an inductive bias that leads
to a slightly more brain-aligned late-stage visual representation, on
average—holding task and visual input diet constant. However, note
that the prediction ranges among the surveyed CNN and transformer
models were substantially overlapping, so this statistical effect
should not be interpreted as a categorical claim that all convolutional
models have greater emergent brain predictivity than all transformer
models.

Given the dramatic differences between these architectural
encoders, we found it surprising how similarly they predicted the
structure of the brain responses in high-level visual cortex, which
suggests that these models are converging on the same representa-
tional format.Worth noting, though, is that the cRSAbrain-predictivity
scores were both much lower and more variable than the veRSA
scores. This implies that feature re-weighting is playing a substantial

Fig. 2 | Architecture variation. Degree of brain predictivity (rPearson) is plotted for
the controlled set of convolutional neural networks (CNNs) and transformer
models in our survey. Each small box corresponds an individual model. The hor-
izontal midline of each box indicates the mean score of each model’s most brain-
predictive layer (selected by cross-validation) across the 4 subjects, with the height
of the box indicating the grand-mean-centered 95% bootstrapped confidence
intervals (CIs)137 of the model’s score across subjects. The cRSA score is plotted in
open boxes, and the veRSA score is plotted in filled boxes. For each class of model

architecture (convolutional, transformer) the class mean is plotted as a striped
horizontal ribbon. The width of this ribbon reflects the 95% grand-mean-centered
bootstrapped 95% CIs over the mean score for all models in a given set. The noise
ceiling of the occipitotemporal brain data is plotted in the gray horizontal ribbon at
the top of the plot, and reflects the mean of the noise ceilings computed for each
individual subject. The secondary y-axis shows explainable variance explained (the
squared model score, divided by the squared noise ceiling). Source data are pro-
vided as a Source Data file.
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role in the degree to which these models capture the representational
geometry of the high-level visual system. This observation is also
consistent with the possibility that the learned representations of
these models all capture similar representational sub-spaces after
feature re-weighting. We return to this possibility analytically in the
“Model-to-Model Comparison” Section.

Task variation
Next, we examined the impact of different task objectives on the
emergent capacity of a model to predict the similarity structure of
brain responses. Our case studies here probe the effect of different
canonical computer vision tasks41, the effect of different self-
supervised algorithms42, and the effect of visual representation learn-
ing with or without language alignment43. Results from these experi-
ments are summarized in Fig. 3.

Task variation: the Taskonomy models
First, we examined the Taskonomy models41,44—an early example of
controlled model rearing. The Taskonomy models were originally
designed to test how well learned representations trained with one

task objective transfer to other tasks. Each of these 24 models were
trained on different tasks spanning a range of unsupervised and
supervised objectives (e.g. autoencoding, depth prediction, scene
classification, surface normals, edge detection), some requiring pixel-
level labeling andothers requiring a single label for thewhole image. In
all cases, the base encoder architecture is a ResNet50, modified with a
specialized projection head to fit the task-specific output. In this ana-
lysis, we consider only the feature spaces of the base ResNet50 enco-
ders. Thedataset onwhich theTaskonomymodels are trained is a large
dataset in terms of raw images, consisting of 4.5 million images, but
depicts only images of indoor scenes, with any images of people
excluded.

Comparing the brain-predictivity scores of the Taskonomy mod-
els (Fig. 3A), wemake two key observations. The first is that across the
different task objectives, there was indeed a large range of scores. The
least brain-aligned task—autoencoding—yielded a rPearson = 0.077
[0.066, 0.085] in cRSA and rPearson = 0.103 [0.096, 0.11] in veRSA,while
themost brain-aligned task––object classification––yielded a rPearson =
0.189 [0.178, 0.201] in cRSA and rPearson =0.436 [0.419, 0.454]
in veRSA).

Fig. 3 | Task variation. Degree of brain predictivity (rPearson) is plotted for the sets
of models with controlled variation in task. A The first set of models shows scores
across the ResNet50 encoders fromTaskonomy, trained on a custom dataset of 4.5
million indoor scenes. B The second set of models shows the difference between
contrastive and non-contrastive self-supervised learning ResNet50 models (with a
category-supervised ResNet50 for reference), trained on ImageNet1K. C The third
set of models shows the scores across the vision-only and vision-language con-
trastive learning ViT-[Small,Base,Large] models from FaceBook’s SLIP Project,
trained on the images (or image-text pairs) of YFCC15M. Each small box corre-
sponds an individual model. In all subplots, the horizontal midline of each box
indicates the mean score of each model’s most brain-predictive layer (selected by

cross-validation) across the 4 subjects, with the height of the box indicating the
grand-mean-centered 95% bootstrapped confidence intervals (CIs) of the model’s
score across subjects. The cRSAscore is plotted inopen boxes, and the veRSA score
is plotted in filled boxes. The classmean for each distinct set ofmodels is plotted in
striped horizontal ribbons across the individual models. The width of this ribbon
reflects the 95% grand-mean-centered bootstrapped 95% CIs over the mean score
for all models in this set. The noise ceiling of the occipitotemporal brain data is
plotted in the gray horizontal ribbon at the top of the plot, and reflects themean of
the noise ceilings computed for each individual subject. The secondary y-axis
shows explainable variance explained (the squared model score, divided by the
squared noise ceiling). Source data are provided as a Source Data file.
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The second key observation is that the overall range of brain-
predictivity scores among these models was relatively low—even for
the highest-scoring tasks: for object classification, the veRSA scorewas
only rPearson =0.44 [0.42, 0.45]. For reference, a standard ResNet50
architecture also trained on image classification, but over the Ima-
geNet dataset, shows an average brain predictivity of rPearson = 0.68
[0.63, 0.72] (tStudent(3) = −14.3, p < 0.001). Note that this difference
manifests in spite of Taskonomy’s larger training set (∼4.5M images),
nearly thrice that of the ImageNet1K (∼1.2M images). This observation
leads to the hypothesis that the relatively weaker overall brain-
predictivity scores for Taskonomy models are related to insufficient
diversity of the Taskonomy images. Indeed, the Taskonomy authors
estimate that only 100of the 1000 ImageNet classes are present across
the ‘scenes’ of the Taskonomy dataset41.

Task variation: self-supervised algorithms
Early variants of self-supervised objectives involved learning repre-
sentations by predicting image rotations (RotNet) or unscrambling
images (JigSaw). More modern variants of self-supervised objectives
operate by learning to represent individual images distinctly from one
another in an embedding space (SimCLR, BarlowTwins). In particular,
contrastive learning objectives typically build a high-level embedding
of images by representing samples (augmentations) of the same image
nearby in feature space, and far from the representations of other
images. Critically, when these learned representations are probed on
the canonical computer vision task of image classification, emergent
categorization capacity is nearly comparable to that of models trained
with category supervision45,46. Additionally, these contrastive learning
models have also been shown to predict brain activity on par with
category-supervised models in mice, humans, and non-human
primates34,47–49. However, there has not been a systematic compar-
ison of brain predictivity for models trained with these different kinds
of self-supervised objectives.

In this experiment (Fig. 3B), we examine the different brain pre-
dictivities of contrastive versus non-constrastive self-supervised
learning methods using a suite of 10 models from the VISSL model
zoo42. Each of these models are trained using a different method of
self-supervision, but all with a ResNet50 architectural backbone, and a
training dataset that consists of the images (but not the labels) of the
ImageNet1K dataset. We divide the models of this set into two groups:
models that employ instance-level contrastive learning (N = 6: PIRL,
DeepClusterV2, MoCoV2, SwaV, SimCLR, BarlowTwins) and models
that do not (N = 4: RotNet, two Jigsaw variants, ClusterFit).

These two different classes of self-supervised learning objectives
yield significantly different brain predictivities. Instance-level con-
trastive learning objectives lead to more brain-predictive representa-
tions than non-contrastive objectives by a significant, midsize margin
(cRSA: β = −0.06 [−0.04, −0.09], p<0.001; veRSA: β = −0.09 [−0.07,
−0.11] p <0.001). And, consistent with prior work34,49, most instance-
level contrastive objectives provide comparable brain predictivity to
the matched category-supervised model, holding architecture and
visual input diet constant. (For example, the average predictivity of
VISSL’s ResNet50-BarlowTwins was 0.367 [0.353, 0.381] in cRSA and
0.679 [0.637, 0.720] in veRSA; the predictivity of Torchvision’s
ImageNet1K-trained category-supervised ResNet50 was rPearson =0.379
[0.363, 0.39] in cRSA and 0.680 [0.640, 0.718] in veRSA. These models
share identical architectures in PyTorch.) Broadly, these results high-
light the potential for understanding biological visual representation
through deeper exploration of instance-level contrastive objectives,
which focus on learning invariances over samples from the same image,
while also learning features that discriminate distinct individual images.

Task variation: language alignment (the SLIP models)
Another recent development in self-supervised contrastive learning
involves leveraging the structure of another modality—language—to

influence representations learned in vision. The preeminent
example of this ‘language-aligned’ learning is OpenAI’s CLIP model
(Contrastive Language-Image-Pretraining50), which builds repre-
sentations designed to maximize the cosine similarity between the
latent representation of an image and the latent representation of
that image’s caption. In computer vision research, CLIP has demon-
strated remarkable zero-shot generalization to image classification
task variants without further retraining. Indeed, across all the models
in our set, the model with the highest brain predictivity is OpenAI’s
CLIP-ResNet50 model, with 4 other CLIP-trained models from
OpenAI also in the top 10 (see Supplementary Information SI.1). If the
constraint of language alignment is key in building more brain-
aligned representations, this constitutes a development of deep
theoretical import when considering the pressures guiding late stage
representations in the ventral visual hierarchy.

A critical issue in using OpenAI’s CLIP model for brain prediction,
however, is the fact that OpenAI not only introduced a new objective
(image-text alignment via contrastive learning), but also amassive new
training dataset (a highly curated and proprietary dataset of 400 mil-
lion image-text pairs, which has yet to be made available for public
research). This makes the direct comparison of CLIP to other models
empirically dubious, as it leaves open whether gains in predictivity are
attributable to language alignment per se, to massive dataset differ-
ences, or the interaction of the two.

Fortunately, Meta AI has since released a set of models—the SLIP
models43—that compare self-supervised contrastive learning models
with and without language alignment, controlling for training dataset
and architecture. These models are trained with one of 3 learning
objectives: pure self-supervision (SimCLR), pure language alignment
(CLIP), or a combination of self-supervision and language alignment
(SLIP). All models consist of a Vision Transformer backbone (three
sizes: Small [ViT-S], Base [ViT-B], & Large [ViT-L]), and are all trained on
the YFCC15Mdataset (15million images or image-text pairs). Thus, any
differences in brain predictivity across thesemodels reflect the impact
of language alignment per se, holding image diet and architecture
constant.

Comparing OTC predictivity across these models (Fig. 3C), we
find that all models have relatively high brain-predictivity scores, with
no substantial differences between objectives with and without lan-
guage alignment. If anything, we see a slight but significant decrease in
accuracy for the pure language-alignedCLIP objective. Specifically, in a
linear model regressing brain predictivity on the interaction of model
size (ViT-[S,B,L]) and task (SimCLR, CLIP, SLIP) plus an additive effect
of subject ID, the only significant experimental effect is a slight
decrease in the predictive accuracy of the pure CLIP model relative to
SimCLR in both metrics (cRSA: β = −0.05 [−0.06, −0.03], p < 0.001;
veRSA: β = −0.02 [−0.04, −0.01] p = 0.005). We find no effect of the
model size, nor an interaction with the task objective.

These results thus lead to the somewhat surprising conclusion
that, in terms of brain predictivity, the superior performance of
OpenAI’s CLIP models is likely due to the expanded and proprietary
image database, rather than the influence of language alignment
per se (though it is possible the benefits of language alignment only
emerge at datasets of this more massive scale). Likewise, emerging
insights in the machine learning community are also finding that the
visual representational robustness of OpenAI’s CLIP is almost
exclusively conferred by image dataset51. Our conclusions about the
negligible impact of language alignment on brain predictivity also
directly contrast with those of recent papers that conclude the
opposite, based on uncontrolled comparisons of CLIP-ResNet50
against ImageNet-1K-trained ResNet5052. Thus, our work also
strongly underscores the need for more empirically controlled
model sets (like those of SLIP) that could better arbitrate questions
about the emergent properties of language-aligned models trained
on massive datasets.
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Input variation
We next directly examined the impact of a model’s input diet on brain
predictivity. Here, we define amodel’s input diet as the images used to
train the model, irrespective of whether their labels factor into the
training procedure. While there are many different datasets used
across the 160 models in our model set, there were actually relatively
few subsets that enabled controlled comparison of the impact of
dataset while holding architecture and objective constant. In the two
controlled experiments possible, we examined the relative brain pre-
dictivity of architecture-matched models trained on ImageNet1K ver-
sus ImageNet21K, and of instance-prototype contrastive learning
(IPCL34) models trained on datasets of faces, places, objects. The
results of these experiments are summarized in Fig. 4.

Input variation: Imagenet1K versus Imagenet21K
The first controlled dataset comparison we performed was between
models trained either on ImageNet1Kor ImageNet21K. Deep learning is
notoriously data-intensive, and most if not all DNNs are known to
benefit from more training samples when it comes to overall classifi-
cation accuracy53,54. ImageNet21K is a dataset of ∼14.2 million images
across 21,843 classes (many of which are hierarchically labeled). The
more popular version of ImageNet1K (with 1000 classes) is a ∼1.2

million image subset of this larger dataset. ImageNet21K is considered
by some to be a more diverse dataset55,56, though exact quantification
of this diversity has proven difficult. Does training on this larger and
purportedlymore diverse dataset lead to increased brain predictivity?

We considered 14 pairs of models from the PyTorch-Image-
Models57 repository with matched architecture and task-objective,
trained either on the ImageNet1K or the ImageNet21K dataset (Fig. 4A).
Performing paired statistical comparisons between their prediction
levels, we find no effect of input diet on resulting brain predictivity, in
either metric (cRSA β = 0.0 [−0.03, 0.03], p =0.957; veRSA β = 0.01
[0.00, 0.03], p = 0.147). This result highlights first that the rawquantity
of training images does not necessarily lead to increased brain-
predictivity. This result also highlights that whatever the increased
diversity of ImageNet21K, it does not manifest in this particular com-
parison to high-level visual representations in human OTC.

Input variation: objects versus places versus faces
The second controlled dataset experiment we perform is based on the
set of IPCL-Alexnet models, trained on 4 different datasets: object-
focused image sets (ImageNet-1K, OpenImages), scene-focused image
sets (Places365), or face-focused image sets (VGGFace2). This model
set uses the same architecture and the same self-supervised, instance

Fig. 4 | Input variation.Degree of brain predictivity (rPearson) is plotted for the sets
of models with controlled variation in input diet. A The first set of models shows
scores across paired model architectures trained either on ImageNet1K or Ima-
geNet21K (a ∼13× increase in number of training images). B The second set of
models shows scores across 4 variants of a self-supervised IPCL-AlexNet model
trained on different image datasets. Each small box corresponds an individual
model. In all subplots, the horizontal midline of each box indicates the mean score
of each model’s most brain-predictive layer (selected by cross-validation) across
the 4 subjects, with the height of the box indicating the grand-mean-centered 95%
bootstrapped confidence intervals (CIs) of the model’s score across subjects. The

cRSA score is plotted in open boxes, and the veRSA score is plotted in filled boxes.
The class mean for each distinct set of models is plotted in striped horizontal
ribbons across the individual models. The width of this ribbon reflects the 95%
grand-mean-centered bootstrapped 95% CIs over the mean score for all models in
this set. The noise ceiling of the occipitotemporal brain data is plotted in the gray
horizontal ribbon at the top of the plot, and reflects the mean of the noise ceilings
computed for each individual subject. The secondary y-axis shows explainable
variance explained (the squaredmodel score, divided by the squared noise ceiling).
Source data are provided as a Source Data file.
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prototype contrastive learning objective34. Notably, these models are
trained without labels—further deconfounding task and visual
input diet.

In this model set (Fig. 4B), we find that the ImageNet diet leads to
the highest overall brain predictivity: relative to the ImageNet-trained
model, the OpenImages-trained model yields a decrease in score of
β = −0.02 [−0.03,−0.01], p =0.002 in cRSA, and β = −0.04 [−0.07,
−0.02], p < 0.001 in veRSA). The Places-365 trained model yields a
decrease in score of β = −0.03 [−0.04,−0.02], p <0.001 in cRSA, and
β = −0.07 [−0.09, −0.04], p < 0.001 in veRSA. Finally, the VGGFace2-
trained model is significantly worse than the ImageNet-trained model
by a substantial margin in both metrics (cRSA β = −0.17 [−0.18,−0.16],
p <0.001; veRSA β = −0.27 [−0.30, −0.25], p <0.001). These results
highlight that—at least for this model architecture and objective—the
visual diet leads to substantial variation in brain predictivity.

Finally, we note that in each of these cases, the VGGFace2 and
Places-365 dataset actually contain more images than ImageNet
(∼2.75× and ∼1.5×, respectively), again underscoring that the quantity
of images is not the relevant factor here. Broadly, these results hint yet
again at the importance of a latent dataset diversity factor that has yet
to be quantified. A speculative but intriguing reverse inference sug-
gests that ImageNet, OpenImages, Places-365, and VGGFace2 may be
ranked in terms of diversity from greatest to least, based on their
ability to capture the representational structure of OTC in response to
hundreds of natural images.

Impact of training
Research in network initialization techniques has in recent years led to
the development of models with randomized, hierarchical repre-
sentations (effectively, multiscale hierarchical random projections)
that are sometimes powerful enough to serve as functional substitutes
for trained features in a variety of tasks58. Past experiments with brain-
to-model mappings, for example, have suggested that randomly
initialized models may, in some cases, be as predictive of the brain as

trainedmodels (25,59, see also refs. 60,61 for further studies of untrained
models). However, subsequent work has largely converged on the
result that trained models have better predictive capacity of visual
brain responses25,47,62–64.

Here, we include another such test: for every trained model
architecture we test from the TorchVision and PyTorch-Image-Models
repositories, we also test one randomly initialized counterpart
(N = 64). This paired statistical test confirms that training has a
resounding effect on brain predictivity in both metrics (cRSA β = 0.30
[0.29, 0.31], p < 0.001; veRSA β =0.56 [0.55, 0.75], p <0.001; see also
Supplementary Fig. 3)—the single largest andmost robust effect across
all of our analyses. In short, training matters.

Overall variation across models
In all analyses to this point, we have focused on understanding varia-
tion in brain-predictivity scores through targetedmodel comparisons,
with controlled differences in inductive biases defined by their archi-
tecture, task, or input diet. We next focus on understanding variation
in brain predictivity across all models in our survey.

Across the full set of 224 models we tested (including randomly-
initialized variants) and both metrics, we observe predictivity scores
that span nearly the full range possible between 0 and the noise
ceiling (rPearson = 0.8 [0.741, 0.847]). Figure 5A shows the brain pre-
dictivity of all 224 models. From this graph, it is clear that a large
number of models perform comparably well, with 126 models
yielding veRSA brain-predictivity scores that differ by less than
rPearson = 0.1. (A bootstrapped segmented regression analysis over
these scores indicate a break point at rank 124 [123.6, 124.7] / 224,
corresponding to scores of rPearson = 0.623 and lower). The ranks
beyond this elbow are populated almost entirely by models trained
on image diets less diverse than ImageNet (e.g. Taskonomy), and
untrained models. See Supplementary Information for additional
analyses on the stability and variation of these scores across subjects
(SI.3 and Supplementary Fig. 2.)

Fig. 5 | OverallModel Variation.ABrain predictivity is plotted for allmodels in this
survey (N = 224), sorted by veRSA score. Each point is the score from the most
brain-predictive layer (selected by cross-validation) of a single model, plotted for
both cRSA (open) and veRSA (filled)metrics.Models trainedondifferent image sets
are labeled in color. B Brain predictivity is plotted as a function of the effective
dimensionality of themost predictive layer, with veRSA scores in the top panel and

cRSA scores in the bottom panel. The regression (± 95% CIs) line is fit only on
trained variants of themodels (excluding untrained variants).C Brain predictivity is
plotted as a function of the top-1 ImageNet1K-categorization accuracy for the
models (N = 108) whose metadata includes this measure (veRSA, top panel; cRSA
bottom panel). The noise ceiling of the OTC brain data is shown as the gray hor-
izontal bar at the top of each plot. Source data are provided as a Source Data file.
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Given this degree of variation, we next focused on three more
general factors that have been hypothesized to account for a model’s
emergent brain predictivity beyond differences in inductive bias:
effective dimensionality, classification accuracy, and parameter count.

Overall variation: effective dimensionality
Recent work in DNNmodeling of high-level visual cortical responses in
both human and non-human pri- mates has suggested a general prin-
ciple, where model representations with a higher ‘latent’ or ‘effective’
dimensionality65 are more predictive of high-level visual cortex66.
Effective dimensionality (ED), in this case, is a property of manifold
geometry defined as the “continuous measurement of the number of
principal components needed to explain most of the variance in a
dataset”66.

In this analysis, we sought to test whether the relationship
between ED and brain predictivity holds across the full set ofmodels in
our survey. To do so, we computed the ED of the most OTC-aligned
layer representations from each model (as measured by our veRSA
metric), using the same 1000 COCO images from our main analysis
(see Methods and Supplementary Information for details). The rela-
tionship between model layer effective dimensionality and its corre-
sponding brain predictivity is shown in Fig. 5B.

Wefirst considered variation in EDacross allmodels—both trained
and randomly-initialized, akin to prior work66. From this perspective,
ED appears to be a significant, moderately high predictor of each
model’s veRSA score: rSpearman = 0.489 [0.381, 0.580], p <0.001, across
1000 bootstraps of the sampled models. However, in our data, this
relationship seems to be driven almost entirely by the predictivity
differences between trained and untrained models. When we com-
puted the relationship between ED and prediction scores for trained
and randomly-initialized models separately, variation in the ED of
trained models showed no correlation with the veRSA score
(rSpearman = −0.063 [−0.31, 0.099], p = 0.692). Similarly, variation in ED
among randomly-initialized model layers produced a non-significant,
slightly negative correlation with OTC prediction (rSpearman = −0.142
[−0.307, 0.118], p =0.077). See Supplementary Information SI.2 for a
more detailed exploration of the impact of ED in our data in relation to
Elmoznino and Bonner66, and the different analytical choices that may
underlie the divergence in our results.

Overall, our analyses suggest that this particular effective
dimensionality metric is not a general principle explaining emergent
brain predictivity. This is by no means a rejection of the more general
hypothesis that the geometric and statistical properties of neural
manifolds might well transcend inductive bias as predictors of brain
similarity, but it does suggest that we may need different metrics
(e.g.,67,68) to unveil these underlying principles moving forward.

Overall variation: classification accuracy
Early studies of brain-predictive DNNs provided evidence of a link
between a model’s ability to accurately perform object categorization
and its capacity to predict the responses to neurons along the primate
ventral visual stream5.However,more recentwork suggests that across
modern neural network architectures, ImageNet top-1 performance
acts as a weaker or even null predictor of brain similarity26,27,34,69. We
next examined this relationship in our human OTC data, considering
the N = 99 trained models for which we have the ImageNet-1K top-1
categorization accuracy available. We focused on trainedmodels here,
because we reasoned that if gradations in top-1 accuracy are reliable
indicators of emergent brain predictivity, then this relationship should
also hold among trained models alone (and not solely rely on the gap
between untrained and trained models).

Fig. 5C plots a model’s top-1 accuracy against the brain pre-
dictivity of that model’s best-predicting layer. We find little to no
relationship between classification accuracy and brain predictivity

across these trained models, for either cRSA or veRSA
(rSpearman = −0.0057, p =0.96 in cRSA; rSpearman =0.17, p = 0.088 in
veRSA; rank-order correlation is appropriate given the non-normality
of top-1 accuracies). Our results also do not show anobvious plateau in
accuracies above 70% (c.f.26); rather, themodels in our comparison set
have a relatively wide range of top-1 accuracies with a relatively
restricted range of brain-predictivity scores. Thus, among trained
models, variations in brain predictivity do not seem to be well cap-
tured by the fine-grained metric of top-1 object recognition accuracy
that was once the primary indicator of this particular competence.

Overall variation: number of trainable parameters
Model size is another attribute commonly suspected to influencemany
DNN outcome metrics, including emergent predictivity of human
brain and behavioral data27,53,70–72, and is typically measured via quan-
tification of depth, width, or total number of parameters. Here, we test
for differences in brain predictivity as a function of total parameter
count for all models, excluding the Taskonomy and VISSL ResNet50s,
as well as IPCL-AlexNetmodels, which (sharing the samearchitectures)
do not vary in their total number of parameters. We find a somewhat
irregular set of patterns. As parameter count increases in trained
models, there is a significant, midsize decrease in cRSA brain-
predictivity (rSpearman = −0.45, p =0.026e−7, and a non-significant
increase in veRSA brain-predictivity (rSpearman = 0.14, p = 0.129). As
parameter count increases in untrained models, there is a significant,
small-to-midsize increase in cRSA score (0.28, p = 0.0225), coupled
with another non-significant increase in veRSA score (0.083, p =0.513).
In short, there is no consistent influence of total trainable parameter
count on subsequent brain predictivity.

Model-to-Model comparison (RSA)
Considered in the aggregate, the opportunistic experiments and
overarching statistics in this work are underwritten by over 1.8 billion
regression fits and 50,300 representational similarity analyses. Given
the scale of our analyses and the surprisingly modest set of significant
relationships that arise from them, it would not be entirely unreason-
able at this point to arrive at a somewhat deflationary conclusion—that
almost none of the factors hypothesized as central to the better
modeling of brains actually translate to more brain-aligned repre-
sentations in practice. Convolutions, language alignment, effective
dimensionality—all concepts of deep theoretical import—make almost
no difference when it comes to predicting how well a model will ulti-
mately explain high-level visual cortical representations in the largest
such fMRI dataset gathered todate. 126models—manyofwhichappear
to differ fundamentally in their design—have veRSA brain-predictivity
scores within rPearson =0.1 of a notably high noise ceiling.

A key question for this research enterprise, then, is to understand
whether the different architectures, objectives, and diets actually lead
todifferent representations in thefirst place. For example, are all of the
most brain-aligned models converging on effectively the same repre-
sentational structure?

To explore this question, we performed a direct model-to-model
similarity analysis. Specifically, we computed the pairwise similarities
of the most brain-aligned feature spaces from each model, and com-
pared each of these model representations to those from all other
models. Critically, we did this using two methods. The first method
operates over the classical representational similarity matrices
(cRSMs) from each model (i.e. the unweighted RSMs), assessing the
pairwise similarity of eachmodel’s cRSM to every othermodel’s cRSM.
The secondmethod operates over the voxel-wise encoding RSMs from
each model (i.e. the RSM that is produced after feature reweighting),
assessing the pairwise similarity of each model’s veRSM to each other
model’s veRSM. Taken together, the output of this analysis is effec-
tively two model-to-model meta-RSMs whose constituent pairwise
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similarities allow us to assess how similar differentmodels’most brain-
aligned layer representations are, with and without being linearly
reweighted to predict fMRI responses.

The results are shown in Fig. 6. Considering only the top 124
most brain-predictive models, we find that a direct pairwise
comparison of their most brain-aligned layers yields substantial
variation in representational similarity, with a range that extends
from rPearson = −0.107 to 0.983 (mean = 0.448, SD = 0.148). Thus,
these model layers express substantially different representa-
tional structure in response to the 500 natural image probe set
we use in this analysis. However, the feature-reweighted model
representational structure showed a much tighter distribution
(mean = 0.881, SD = 0.0313). Thus, the linear reweighting of DNN
features in veRSA seems to reveal a remarkably brain-aligned,
shared subspace in almost all trained models (or at least, those
models trained on a sufficiently diverse image diet).

The adjacent subplots in Fig. 6 show a multidimensional scaling
plot of the model-to-model comparisons (using all N = 160 trained
models), with the axis scales held constant across all facets. Model
layers with more similar representational structure are displayed
nearby. These plotsmake clear that there is a substantial degree of raw
representational variation amongst these models, which is dramati-
cally compressed when these feature spaces are mapped onto
responses in human OTC.

Thesefindings suggest that the somewhathidden factor ofmodel-
to-brain mapping method (and the linking assumptions inherent to
thesemethods) is at least as consequential, if not more consequential,
than differences in inductive bias. Indeed, if we treat our metrics
themselves (cRSA versus veRSA) as a factor in the same kind of linear
regression model we use for our controlled model comparisons, we
find that the difference between the two constitutes one of the most
substantial effects on brain predictivity of any we assess (second only
to that of trained versus random weights): β = 0.23 [0.21, 0.25],
p <0.001 for all models, trained and random; β =0.30 [0.29, 0.31],
p <0.001 for trained models only.

Discussion
As performant image-computable representation learners, with
accessible internal parameters, deep neural networks offer tools for
directly operationalizing and testing hypotheses about the formation
of high-level visual representations in the brain. This is arguably the
core tenet of theoretical frameworks proposed in recent years to unify
deep learning and experimental neuroscience (e.g.,11), and encapsu-
lated most strongly in what has been called the “neuroconnectionist
research programme”13. According to these frameworks, controlled
manipulation across DNNs that learn with different inductive biases,
combined with appropriate linking methods and predictivity metrics,
has the potential to unveil the pressures that have shaped the repre-
sentation we measure in the brain, answering questions about “why”
these representations appear as they do (14, see also refs. 73,74).

Our work operates within this framework to explore the predic-
tion of representations in human occipitotemporal cortex, using a
diverse arrayof open-sourceDNNmodels and a large-scale samplingof
brain responses to natural images, related usingmodel-to-brain linking
methods that have become the de facto standard in the field. Sur-
prisingly, many of the controlled comparisons among qualitatively
differentmodels yield only very small differences in their prediction of
high-level visual cortical responses. For example, networks with qua-
litatively different computational architectures (e.g. convolutional
neural networks and vision transformers) yield almost indistinguish-
able brain-predictivity scores. Furthermore, networks trained to
represent natural images using vision-language contrastive learning
versus purely visual contrastive learning show remarkably similar
capacity to predict OTC responses.

Instead, our analyses point to the importance of a model’s visual
experience (i.e. input diet) as a key determinant of downstream brain
predictivity that is particularly evident in the poor performance of the
indoor-only-trained taskonomy models, and the high performance of
OpenAI models trained on their 400M proprietary image-text data-
base. These results indirectly reveal a currently unquantified factor of
dataset diversity as an important predictor of more brain-like visual

Fig. 6 | Model-to-Model comparison. Leftmost Panel: Histogram of the pairwise
model-to-model representational similarity for the 124 highest-ranking trained
models in our survey. The top panel indicates direct layer-to-layer comparisons,
while the bottom panel reflects the feature-reweighted layer-to-layer comparisons.
Rightward Panels: Results of a multidimensional scaling (MDS) analysis of the
model-to-model comparisons, where models whose most brain-predictive layers
(selected by cross-validation) share greater representational structure appear in
closer proximity. The 3 plots in each row show datapoints output from the same

MDS procedure (cRSA, top row; veRSA, bottom row), and the columns show dif-
ferent colored convex hulls that highlight the different model sets from the
opportunistic experiments. Note the scale of the MDS plots is the same across all
panels. NC-SSL and C-SSL correspond to Non-Contrastive and Contrastive Self-
Supervised Learning, respectively. Objects, Faces, and Places correspond to the
IPCL models trained on ImageNet1K / OpenImages, Places256, and VGGFace2,
respectively. Source data are provided as a Source Data file.
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representation. In addition, our work highlights a critical need to re-
examine our standard linking assumptions and model-to-brain pipe-
lines, potentially reducing their flexibility in order to better draw out
the representational differences. We next discuss each of these results
in turn, and highlight the limitations of the current approach alongside
directions for future work in metrics of model-brain representational
alignment.

The importance of visual experience
Anumber of our analyses point to the impact of visual input—not in the
size of the image database, but in the diversity of image content—on a
model’s emergent brain predictivity. First, we found that the single
biggest effect was that of training: untrained models with no visual
experience were unable to capture the rich representational structure
evident in the late stages of the visual system. Second, impoverished
diets (e.g. only faces) yield substantially lower capacity to predict brain
responses than richer diets. Taskonomy models showed uniformly
lower brain predictivity across the board, which we attribute to an
image diet consisting of only indoor scenes. Indeed, many of the tasks
in Taskonomy that seem to predict visual cortex rather poorly (e.g.
semantic segmentation) seem perfectly capable of producing brain-
predictive representations when trained on more diverse image sets
(e.g. as is the case with the Detectron models, which rank among the
most predictive models in our broader survey). While there has been
significant interest in the Taskonomy models for controlled model
comparisons (including by us47,75–77), a direct implication of these
results is that these models should not be used in future research to
make arguments about which brain regions are best fit to which tasks.

The effects of increasing dataset diversity or richness beyond
ImageNet1K on brain predictivity are relatively small and difficult to
isolate given currently available models and datasets, but are perhaps
still evident in our study. For example, we did not find clear
improvements between ImageNet1K and 21K, but did find that Open-
AI’s 400 million image set seems to be an important factor in posi-
tioning the CLIP models as the most predictive of all the models we
surveyed (see also51). As a field, computational cognitive neuroscience
currently has no single satisfying measure of dataset diversity or
richness. Structured image similarity metrics (e.g. SSIM78,79) and per-
ceptual losses (such as those behind neural style-transfer80,81) are in
some sense early attempts to address the problem of capturing image
similarity in latent representational spaces more complex than pixel
statistics, but these algorithms have not been applied directly to the
problem of characterizing the intrinsic richness of a visual diet. Key to
solving this issue may actually be recent attempts in the computer
vision community to distill smaller, less redundant, and more efficient
training data from larger image sets by way of “semantic deduplica-
tion”—the removal of images from large corpora that image-aligned
models like CLIP embed as effectively the same point in their latent
spaces82,83—or, similarly, through targeted pruning84. The success of
semantic deduplication suggests cognitive neuroscience may be able
to leverage comparablemeasures for understanding theminimal set of
visual inputs or experiences necessary for recapitulating the overall
patterns of brain responses to natural images.

Finally, another hidden factor of variation related to the input diet
is not just the images themselves, but also the suite of data augmen-
tations and related hyperparameters applied over these images during
training85. For example, some models experience the ImageNet1K
input with a ‘standard’ set of augmentations

which crop and rescale an image each time, with flipped left-right
variation and color variation. Other models experience these same
images, but with additional augmentations, leveraging some of the
newer techniques that blend images and interpolate their labels86,87,
increasing performance over standard augmentation schemes36,85.
Relatedly, some training regimes use progressive resizing, beginning
with small blurred images that ramp upward in resolution over

training88,89. These hidden hyperparameters influence what kind of
image data is fed to the model at different points in training, and may
by implication influence the emergent brain predictivity of learned
representations. More generally, there is a need to further curate (or
build) sets of DNNs with controlled variation in image diet,
image augmentation scheme, and training recipe to explore these
factors further.

Model-to-Brain linking methods
In the present work we considered two different model-to-brain link-
ing pipelines. Considered purely in isolation, our cRSA metric might
lead us to conclude that our most predictive model layers explain less
than a third (∼31%) of the explainable variance in the Natural Scenes
Dataset; conversely, our veRSA metric would suggest we have
explained the vast majority of that variance (∼79.5%). Currently, it is
somewhat unclearwhichof these is themorecorrect, not leastbecause
we have yet to cohere as a field on the principles of mechanistic inte-
pretability in modeling that logically favor one over the other8,12,90.
Relatedly, our model-to-model comparisons highlight that models
trained with different inductive biases are indeed learning different
representational formats, as revealed by classical RSA. However, the
feature re-weighting procedure effectively solves for a similar sub-
space present in all of the learned feature spaces. This difference
demonstrates that there is meaningful diversity in the learned repre-
sentations of models that our metrics are failing to translate into sig-
nificantly different brain-predictivity scores. These observations lead
to several possible directions for stronger, more diagnostic model-to-
brain comparisons.

Analytically, one possible way forward is to develop deeper the-
oretical commitments to the relationship between single units in the
model and single neurons or voxels. For example, adding a sparse
positive regularization term to our linear encoding models might
better capture the functional role of model unit tuning and require
more aligned tuning curves62. Relatedly, we could consider different
commitments on the coverage between a given set of model units and
brain targets: Perhaps we should allow for the selection of units from
across multiple model layers to better account for differences in
representational hierarchy63, or maybe even explore one-to-one map-
pings that require single units or features in models to directly predict
single units in the brain91,92? Finally, we could expand the brain target
to include not just prediction of the regional geometry and single unit
or voxel tuning, but also its topographic organization93–96. Indeed, the
right choice of metric (or set of metrics) to evaluate representational
alignment between two systems remains an active research frontier
(92,97; see ref. 98 for review).

Empirically, another possible route forward is to more carefully
select the set of images from which both brain data and model
responses are measured. Here, we leveraged the Natural Scenes
Dataset30, which contains reliably measured brain responses to a wide
variety of natural images—a reasonable and ecologically rich target to
try to predict. However, our results highlight that, with this widely
sampled natural image set, basically all performant models can cap-
ture the major large-scale representational distinctions present in the
visual system responses. It is possible—even likely—that this widely
sampled image set may actually be obscuring finer-scale representa-
tional differences among models and human brain responses that
would be revealed with more targeted stimulus comparisons (e.g. the
texture-shape cue conflict stimuli of 99; see also refs. 100,101). Exposing
models to a targeted array of artificial stimuli (such as line drawings or
geometric shapes), or conducting diagnostic psychophysical com-
parisons (for instance, comparing responses to upright versus inverted
or scrambled faces), could help further differentiate models in their
ability not only to predict visual brain responses, but visual
behavior102–104. Another promising directionwouldbe to pre-select and
measure responses to ‘controversial stimuli’, which are novel synthetic
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images generated to actively differentiate one model from
another105,106. A related idea that couldbe applied to existingdatasets is
‘controversial selection’—selecting a subset of images to draw out the
differences in model representational geometries, rather than using
the whole set.

In sum, it is critical to understand that the results reported here,
including themagnitude of RSA scores and the patterns of predictivity
across model factors, do not represent absolute truths regarding how
“brain-like” these artificial models are across all possible stimuli. All of
our conclusions must be understood in the context of both our
empirical and analytical choices, which are scoped to assess the
brain predictivity ofmodel setswithin the class of natural scenes, using
two currently standard linking approaches. Relatedly, this means that
our method of curating these model sets alsomatters for the scope of
our claims. For example, we intentionally selected models for our
comparison of convolutional and transformer architectures fromwell-
known and high-performing model repositories favored by the Neu-
roAI community. As such, all conclusions about the average effec-
tiveness of convolutional models versus transformer models must be
understood with this sampling in mind, and not be interpreted as
claims about these classes writ large.

Relationship to prior work
Our approach has some similarities to existing neural benchmarking
endeavors, aimed at identifying the most ‘brain-like’ model of the
visual system, whether in primates ormice26–29. This approach typically
focuses on an aggregate ‘brain-score’, which involves scoring models
on data from multiple hierarchical regions, across multiple datasets,
and ranking models on a leaderboard according to these aggregate
scores. The key addition required of these platforms or pipelines to
allow for analyses like ours would be to add a comprehensive collec-
tion of model metadata, to serve as the basis of statistical grouping
operations. Notably, benchmarking approaches and controlled model
comparisons tend to have different theoretical goals. Leaderboards
are typically aimed at identifying the single best in-silico model of the
biological system. Controlled model comparison is aimed at under-
standing how higher-order principles govern visual representation
formation and emergent brain alignment.

A number of our findings are presaged by previous work that
probed individual aspects of the neuroconnectionist research pro-
gramme, though not necessarily at scale. Regarding architecture, early
model-to-brain comparisons found no substantive differences among
a set of 9 classic convolutional neural networks (e.g. AlexNet, VGG16,
ResNet18) following feature re-mixing and re-weighting25. Regarding
input diet, researchers attempting to create a less erroneously labeled
alternative to ImageNet found that a more targeted selection of ‘eco-
logically’ realistic images (‘Eco-Set’) produced amodest but significant
effect on downstream predictivity of the human ventral visual system
(107; see also ref. 108 for similar findings in mouse visual brain pre-
dictivity). More recently and perhaps most relevantly, researchers
studying alignment of neural network representations with human
similarity judgments (i.e. visual behavior) found also that models
trained on ‘larger, more diverse datasets’ (not necessarily in terms of
image count alone) were the best predictors of these judgments71.

A number of our findings also contrast with some of the emerging
concurrent work in this domain, e.g. arguing for effective
dimensionality66, or the primacy of language-aligned features52 as
sources of increased brain predictivity. For example, our work does
not provide immediate support for effective dimensionality as a
model-agnostic predictor of higher brain predictivity. Importantly,
however, we do not consider this a claim on the importance of similar
model-agnostic metrics more generally: the intersection of manifold
statistics and neural coding schemes is an emerging field68,109–111, which
we believe will be fruitful for the neuroconnectionist research pro-
gram, providing deeper insights into representation learning in brains

and models alike. Relatedly, another divergent result from our work
suggests that language alignment is not in fact the key pressure gov-
erning the superlative performance of the OpenAI-CLIP models. Here,
too, however, we note that there remains substantial room for more
targeted analyses at finer-grained neural resolution and with targeted
stimuli that emphasize vision-only versus language-aligned models.
These kinds of analyses will be crucial for elucidating what are hypo-
thesized to be significant interactions between vision and language at
the most anterior portions of the ventral stream112,113. Indeed, one
limitation of our analysis in its current form is that differences in
predictivity in smaller (sub)regions of occipitotemporal cortex may
potentially be obscured in our more general mask (for example, see
ref. 114).

Final considerations
More broadly, even with the 1.8 billion regressions and 50.3 thousand
representational similarity analyses underlying the results reported in
this paper, we note that our survey approach reflects only a small slice
of the possibility space for model-to-brain comparisons with this
dataset. For example, we did not try to link hierarchical model layers
withhierarchicalbrain regions (e.g.63), or focus in on category-selective
regions (e.g62,64,115) and early visual cortex (though see Supplementary
Information SI.5 for initial analyses). To facilitate future work on these
fronts, we have open-sourced our codebase (see Data and Code
Availability Section), which can be used to conduct these model-to-
model, and model-to-brain analyses at scale.

Our aim here was to provide a broad ‘lay-of-the-land’ for relating
deep neural network models to the high-level visual system—lever-
aging controlled variation present in the diversity of available models
to conduct opportunistic experiments that isolate factors of archi-
tecture, task, and dataset13,14,71,116. Taken together, our results call for a
deeper investigation into the impact of visual diet diversity, and
highlight the need for conceptual advances in developing
theoretically-constrained linking procedures that relate models to
brains, along with more diagnostic image sets to further differentiate
these highly performant computer vision models.

Methods
Model selection
We collected a set of 224 distinct models (160 trained; 64 randomly-
initialized), sourced from the following repositories: the Torchvision
(PyTorch)model zoo117; the Pytorch-Image-Models (timm) library57; the
VISSL (self-supervised) model zoo42; the OpenAI CLIP collection50; the
PyTorch Taskonomy (visualpriors) project41,44,118; the Detectron2
model zoo119; and Harvard Vision Sciences Laboratory’s Open-IPCL
project34.

This set of models was collected with a focus on high-level visual
representation, and was explicitly intended to span different archi-
tectural types, training objectives, and other available variations. Our
64 randomly-initialized models consist of the untrained variants of
each ImageNet-1K-trained architecture from the Torchvision and
Pytorch-Image-Models repository. (These models were initialized
using the default parameters provided by the package, and in most
cases are the recommended defaults specified by the contributing
authors). Where possible, we extracted the relevant metadata for each
model using automatic parsing of web data from the associated
repositories; where this automatic parsing was not possible, we
manually annotated each model with respect to its associated pub-
lication. A list of all included models and their most significant meta-
data (architecture, task, training data) is included in SI Table 1.

Human fMRI data
The Natural Scenes Dataset30 contains measurements of over 70,000
unique stimuli from the Microsoft Common Objects in Context
(COCO) dataset120 at high resolution (7T field strength, 1.6-s TR,
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1.8mm3 voxel size). In this analysis, we focus on the brain responses to
1000 COCO stimuli that overlapped between subjects, and limit ana-
lyses to the 4 subjects (subjects 01, 02, 05, 07) that saw these images in
each of their 3 repetitions across scans. The 3 image repetitions were
averaged to yield the final voxel-level response values in response to
each stimulus. All responses were estimated using a new, publicly
available GLM toolbox [GLMsingle121], which implements optimized
denoising and regularization procedures to accurately measure
changes in brain activity evoked by experimental stimuli.

Voxel selection procedure
To obtain a reasonable signal-to-noise ratio (SNR) in our target data,
we implement a reliability-based voxel selection procedure122 to sub-
select voxels containing stable structure in their responses. Specifi-
cally, we use the NCSNR (“noise ceiling signal-to-noise ratio”) metric
computed for each voxel as part of the NSD metadata30 as our relia-
bility metric. In this analysis, we include only those voxels with
NCSNR>0.2.

After filtering voxels based on their NCSNR, we then filtered
voxels based on region-of-interest (ROI). In our main analyses, we
focus on voxels within occipitotemporal cortex (OTC; also referred to
as human IT). Our goal was to identify a sector of cortex beyond early
visual cortex that covers the ventral and lateral object-responsive
cortex, including category-selective regions. To do so, we first con-
sidered voxels within a liberal mask of the visual system (“nsdgeneral”
ROI). Next we isolated the subset within either the mid-to-high ventral
or mid-to-high lateral ROIs (“streams” ROIs). Then, we included all
voxels from 11 category-selective ROIs (face, body, word, and scene
ROIs, excluding RSC) with a t-contrast statistic > 1; whilemany of these
voxels were already contained in the streams ROIs, this ensures that
these regions were included in the larger scale OTC sector. The num-
ber of OTC voxels included were 8088 for subject 01, 7528 for subject
02, 8015 for subject 05, and 5849 for subject 07, for a combined total
of 29,480 voxels.

Noise ceilings
To contextualize model performance results, we estimated noise
ceilings for each of the target brain ROIs. These noise ceilings indicate
the maximum possible performance that can be achieved given the
level of measurement noise in the data. Importantly, in the present
context, noise ceiling estimates refer to within-subject representa-
tional similarity matrices (RSMs), where noise reflects trial-to-trial
variability in a given subject. This stands in contrast to more conven-
tional group-level representational dissimilarity matrices31, where
noise reflects variability across subjects. To estimate within-subject
noise ceilings, we developed a novel method based on generative
modeling of signal and noise, which we term GSN123. This method
estimates, for a given ROI, multivariate Gaussian distributions char-
acterizing the signal and the noise under the assumption thatobserved
responses canbe characterized as sumsof samples from the signal and
noise distributions. A post-hoc scaling is then applied to the signal
distribution such that the signal and noise distributions generate
accurate matches to the empirically observed reliability of RSMs
across independent splits of the experimental data. Noise ceilings are
estimated using Monte Carlo simulations in which a noiseless RSM
(generated from the estimated signal distribution) is correlated with
RSMs constructed from noisy measurements (generated from the
estimated signal and noise distributions). All noise ceiling calculations
were performed on independent data outside the main analysis.

Feature mapping methods
Feature extraction procedure. For each of our candidate DNN mod-
els, we first transform each of our probe images into tensors using the
evaluation (“test-time”) image transforms provided with a given
model. These image transforms typically involve a resizing operation,

followed by pixel normalization using the mean and standard devia-
tion of images within the model’s training dataset. For randomly
initialized models, we exclude this normalization step. For the few
models whose image transforms are not explicitly defined in the
source code, we reconstruct the transforms as faithfully as possible
from the associated publication.

We then extract features in response to each of the tensorized
probe stimuli at each distinct layer of the network. Importantly, we
define a layer here as a distinct computational (sub)module. This
means, for example, that we treat convolution and the rectified non-
linearity that follows it as two distinct feature maps; crucially, for
transformers, this also means we analyze the outputs not only of each
attention head, but of the individual key-query-value modules used to
compute them. At the end of our feature extraction procedure, for
each model and each model layer, we arrive at a feature matrix of
dimensionality number-of-images x number-of-features, the latter
value of which represents the flattened dimensions of the original
feature map. Beyond flattening, we perform no other transformation
of the original features during extraction.

Classical RSA (cRSA). To compute the classical representational
similarity (cRSA) score31 for a single layer, we used the following pro-
cedure: First, we split the 1000 images into two sets of 500 (a training
set, and a testing set). Using the training set of images,we compute the
representational similaritymatrices (RSMs) of eachmodel layer (500 ×
500 × number-of-layers) using Pearson correlation as the distance
metric.We then compare each layer’s RSM to the brain RSM, also using
Pearson similarity, and identify the layerwith the highest correlation as
themodel’smost brain-predictive layer. Finally, using the held-out test
set of 500 images, we compute that target layer’s RSM and correlate it
with the brain RSM. This test score from the most predictive layer
serves as the overall cRSA score for the target model.

Voxel-encoding RSA (veRSA). To arrive at a voxel-encoding repre-
sentational similarity (veRSA) score32–34 for a single model, the overall
procedure was similar to that of cRSA, but with the addition of an
intermediate encoding procedure wherein layerwise model features
were fit to each individual voxel’s response profile across the image
probe set.

The first step in the encoding procedure is the dimensionality
reduction of model feature maps. We perform this step for two rea-
sons: first, the features extracted from various deep neural networks
can sometimes be massive (the first convolutional layer of VGG16, for
example, yields aflattened featurematrixwith∼3.2million dimensions
per image); and second, the same dimensionality reduction procedure
applied to all layers ensures that the explicit degrees of freedomacross
model layers is constant. To reduce dimensionality, we apply the
SciKit-Learn implementation of sparse random projection124. This
procedure relies on the Johnson-Lindenstrauss (JL) lemma125, which
takes in a target number of samples and an epsilon distortion para-
meter, and returns the number of random projections necessary to
preserve the euclidean distance between any two points up to a factor
of 1 ± epsilion. (Note that this is a general formula; no brain data enter
into this calculation). In our case, with the number of samples set to
1000 (the total number of images) and an epsilon distortion of 0.1, the
JL lemma yields a target dimensionality of 5920 projections.

After computing this target dimensionality, we then proceed to
compute the sparse random projection for each layer of our target
DNN. The sparse random projection matrix consists of zeros and
sparse ones, forming nearly orthogonal dimensions, which are
then normalized by the density of the matrix (the inverse square root
of the total number of features). The layerwise feature maps are then
projected onto this matrix by taking the dot product between them.
The output of the procedure is a reduced layerwise feature space of
size of 1000 images × 5920 dimensions with a preserved
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representational geometry. Note that in cases where the number of
features is less than the number of projections suggested by the JL
lemma, the original feature map is effectively upsampled through the
random projection matrix, again yielding a matrix of 1000 × 5920
dimensions.

We compute our encoding model for each voxel as a weighted
combination of these 5920 dimensions, using brain data from our
training set of 500 images. (We note that while the number of
dimensions needed for only 500 images would be only D = 5326
according to the JL lemma, adding extra dimensions will only preserve
the geometry with nominally less distortion than the epsilon provided,
and does notmeaningfully affect the results). The fitting procedure for
each voxel leverages SciKit-Learn’s cross-validated ridge regression
function (“RidgeCV”), a hyperefficient regression method that uses
generalized cross-validation to provide a LOOCV prediction per image
(per output). This fit was computed over a logarithmic range of alpha
penalty parameters (1e−1 to 1e7), to identify each voxel’s optimal alpha
parameter. We modified the RidgeCV function in order to select the
best alpha using Pearson correlation as a score function (the same
score functionweuse to evaluate themodel at large), and to parallelize
an internal for-loop for greater efficiency. This yielded a set of
encoding weights for each voxel (number-of-voxels × 5920 reduced-
feature-dimensions).

Next, with these encoding weights and the 500 training images,
we compute the predicted response of every voxel to each image, and
compute the corresponding predicted RSM using Pearson correlation.
After computing each layer’s representational similarity via Pearson
correlationbetween the layer-predictedRSMand the target brainRSM,
we again select the most predictive layer on the basis of results from
the training set and compute this layer’s RSA correspondence to the
brain data using the held-out set of 500 test images. This test score
from the most predictive layer serves as the final veRSA score for the
target model.

We emphasize that this method contrasts with popular practices
in primate and mouse benchmarking, which treat predictivity of unit-
level univariate response profiles as the key outcome measure.
Because fMRI affords more systematic spatial sampling over the cor-
tex, rather than taking the aggregate of single voxel fits as our key
measure, we choose to treat the population representational geometry
over each ROI as the critical target for prediction. This multi-voxel
similarity structure provides different kinds of information about the
format of population-level coding than do individual units126. Com-
puting the veRSA metric does, however, yield individual voxelwise-
encoding models, the individual predictive accuracies of which we
collect and have available in addition to the cRSA and veRSA scores for
future analysis.

Statistical analysis
Opportunistic experiments. The statistical test for each targeted
model set comparison consisted of a linear fixed effects model with
brain-predictivity score (cRSA or veRSA, in units of rPearson) as the
outcome variable, and two additive effects: that of the experimental
manipulation and that of subject ID (to control for overall differences
in predictivity across subjects). In the case of the ImagNet1K versus
ImageNet21K comparison, a mixed effects model was used to capture
the within-model structure of the comparison, with an additional
random intercept for model ID. All linear fixed and mixed effects
models were fit using R’s ‘stats’127 and ‘lme4’128 packages, respectively.
Confidence intervals and p-values were estimated using R’s ‘para-
meters’ package129, which leverages a Wald t-distribution approxima-
tion (for fixed effects), and a Wald z-distribution approximation (for
random effects).

We provide each of these linear models (in R-style formulaic
pseudocode) below:

CNNs versus Transformers:

lm(Score ∼ ArchitectureClass + SubjectID, reference = CNN)
Taskonomy Encoders:
lm(Score ∼ Task + SubjectID, reference = Denoising)
Contrastive Self-Supervised Learning:
lm(Score ∼ TaskClass + SubjectID, reference = Non-Contrastive)
Language Alignment:
lm(Score ∼ TaskClass + SubjectID, reference = SimCLR)
ImageNet1K versus ImageNet21K:
lmer(Score ∼ DatasetSize + SubjectID+ (1|ModelID), reference =

ImageNet1K)
Objects, Faces, Places:
lm(Score ∼ Dataset + SubjectID, reference = ImageNet1K-Objects)
Notably, here we are treating subject-level variation as a fixed

effect, as there are only 4 subjects whose data contain all available
repetitions of the shared 1000 images. By implication, this means that
the statistical inferences that are supported by these tests only apply
within these 4 participants and not to the general population. On the
other hand, we train and test these encoding models on an order of
magnitude more brain data points than in prior datasets. Ultimately,
our statistical methods were constrained by the particular structure of
the NSD fMRI dataset, which prioritizes high-density within-subject
stimulus sampling (e.g. 10000 images for 1 subject) at the expense of
having a smaller overall number of subjects (e.g. the “Shared1000”
images for 4 subjects or the “Special515” for 8 subjects). See130,131 for
further discussion on the broader debate of fMRI experimental design.

Breakpoint analysis of model rankings. When analyzing variation
across all models, we use a breakpoint analysis132 to quantify the dis-
tinct visual elbows that appear in the rank-order of these models. This
piece-wise regression method estimates the origin and endpoint of
distinct linear sub-segments across anotherwise nonlinear trend.Here,
we perform this analysis using R’s ‘segmented’ package133, predicting
score bymodel rank, setting the soleψ hyperparameter (NBreakpoints) to
2, and computing confidence intervalswith the ‘gradient’method134 for
breakpoint interval estimation. We use the first breakpoint yielded by
this analysis (over the veRSAbrain-predictivity scores) todivide the full
set of models into the higher-ranking (‘top’) and lower-ranking (‘bot-
tom’) model sets that we use in several subsequent analyses.

Model-to-Model analysis. To compare the representations of our
surveyed models directly, we perform a model-to-model representa-
tional similarity analysis, comparing the RSMs from the most brain-
predictive layer of each surveyed model directly, with (as in cRSA) or
without (as in veRSA) the intermediate encoding of voxels. As in our
main analyses, we compute these RSMs with a first-order Pearson
correlation, then compare their flattened upper triangular portions
with a second-order Pearson correlation.

We reduce the dimensionality (for visualization’s sake) of the
resultant modelwise-RSM to 2 dimensions with classical multi-
dimensional scaling (MDS135), as implemented in R’s ‘stats’ package127.
To better visualize the representational similarities of distinct groups
of models in this reduced space, we draw convex hulls around each
group using R’s ‘ggforce’package136, with the relative concavity of each
hull set to 10.

Effective dimensionality. We compute the effective dimensionality
(ED) of each of our target layers using the formula proposed by Del
Giudice65: the squared sumof all eigenvalues, dividedby the sumof the
squared eigenvalues.

Note that we compute the ED of these representations both with
and without sparse random projection. In a noteworthy validation of
the JL lemma’s preservation of pointwise geometry, we find no
analytically-relevant difference in the measured value of ED as a
function of this dimensionality reduction (rSpearman =0.993 between
ED with and without SRP, across the layers we target here). Given this
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minimal difference, we use the effective dimensionality of the
randomly-projected representations in all main analyses, as thesewere
the feature spaces that were directly used in predicting the brain.

Our approach does differ from that of Elmoznino andBonner66, as
we perform no pooling or other forms of feature aggregation on our
targeted layers before computing the ED of these layers. See Supple-
mentary Information SI.2 for more detailed comparisons. We choose
not to do a pooling operation before calculating effective dimen-
sionality because (1) this is not a general operation that can be per-
formed on other kinds of (non-convolutional) architectures, and (2)
estimating the effective dimensionality over the same feature space
used to fit the brain responses seems preferable from the theoretical
standpoint of establishing a measure of model variation that mean-
ingfully abstracts over the details of model implementation.

Data availability
All data generated in this study have been deposited in our Project
GitHub: github.com/ColinConwell/DeepNSD/, and are available for use
under a GNU General Public License 3.0. Source data (and versioned
code) for the reproduction of all results in this publication (statistics,
figures, tables) are available at github.com/ColinConwell/DeepNSD/
publication. The brain data used in this analysis are a parse of the larger
Natural Scenes Dataset, which is publicly available for download at:
naturalscenesdataset.org/. Source data and code for reproducing all
statistics, figures, and tables are also available in the accompanying
source-data.zip file. Source data are provided with this paper.

Code availability
Code for the reproduction of these results is available at github.com/
ColinConwell/DeepNSD/publication.
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