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Abstract 

Background Bacterial small regulatory RNA (sRNA) plays a crucial role in cell metabolism and could be used as a new 
potential drug target in the treatment of pathogen‑induced disease. However, experimental methods for identifying 
sRNAs still require a large investment of human and material resources.

Methods In this study, we propose a novel sRNA prediction model called sRNAdeep based on the DistilBERT feature 
extraction and TextCNN methods. The sRNA and non‑sRNA sequences of bacteria were considered as sentences 
and then fed into a composite model consisting of deep learning models to evaluate classification performance.

Results By filtering sRNAs from BSRD database, we obtained a validation dataset comprised of 2438 positive 
and 4730 negative samples. The benchmark experiments showed that sRNAdeep displayed better performance 
in the various indexes compared to previous sRNA prediction tools. By applying our tool to Mycobacterium tuberculo-
sis (MTB) genome, we have identified 21 sRNAs within the intergenic and intron regions. A set of 272 targeted genes 
regulated by these sRNAs were also captured in MTB. The coding proteins of two genes (lysX and icd1) are implicated 
in drug response, with significant active sites related to drug resistance mechanisms of MTB.

Conclusion In conclusion, our newly developed sRNAdeep can help researchers identify bacterial sRNAs more pre‑
cisely and can be freely available from https:// github. com/ pyaja god/ sRNAd eep. git.
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Introduction
Bacterial small regulatory RNA (sRNA) refers to a 
class of non-coding RNA with around 50–500 nucle-
otides in length, which plays an important role in 

post-transcriptional gene regulation [1]. These sRNAs 
can regulate gene expression by targeting mRNAs, which 
can affect mRNA stability, translation, and transcrip-
tion termination. They can be divided into cis-encoded 
and trans-encoded sRNAs [2]. Cis-encoded sRNAs are 
transcribed from the same DNA strand as their target 
mRNA, while trans-encoded sRNAs are transcribed 
from a different DNA strand or a distant genomic loca-
tion from their target mRNA. Some bacterial sRNAs act 
as regulators of stress responses, virulence factors, and 
metabolic pathways [3]. Studying bacterial sRNAs has 
provided insights into the complex regulatory networks 
that bacteria employ to adapt to changing environments 
and optimize their survival strategies. Understanding 
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bacterial sRNAs may have implications for the develop-
ment of novel antimicrobial strategies and biotechnologi-
cal applications.

With the development of novel biometrics and deep 
learning algorithms, some techniques for the identifica-
tion of bacterial sRNAs have emerged. In 2017, Barman 
et  al. developed a support vector machine (SVM) with 
a k-mer encoded strategy to identify sRNAs in Salmo-
nella Typhimurium LT2 (SLT2) and achieved an accuracy 
of 88.35% [4]. In 2019, Eppenhof et  al. applied a set of 
effective features such as predicted secondary structure, 
open reading frame, and Rho-independent terminator, 
to identify bacterial small RNAs with machine learning 
classifiers [5, 6]. In 2021, Kumar et al. developed the tool 
PresRAT that combined RNA sequence and secondary 
structure features to identify sRNAs [7]. The identifi-
cation of sRNA is not satisfied because of two reasons. 
One reason is due to the low number of known sRNAs 
in bacteria, the other reason is some defects in convert-
ing sRNAs into features using k-mer strategy. Therefore, 
it leads to the traditional machine learning algorithms 
failing to learn its features effectively, and these algo-
rithms are prone to overfitting, resulting in poor model 
applicability.

By using Generative Adversarial Networks (GAN) algo-
rithm, the training samples can be well augmented to 
prevent overfitting. The GAN algorithm was proposed 
by Goodfellow et al. in 2014, which utilizes the confron-
tation between the generator and the discriminator to 
achieve the best fit [8]. The main advantage of GAN is in 
generating data but not in model prediction. Therefore, 
researchers often apply the GAN algorithm together with 
other deep learning algorithms, for example, Convolu-
tional Neural Network (CNN), in biological problems [9]. 
Tan et al. used the combination of GAN and CNN algo-
rithms to augment the ultrasound images of myositis, 
and then test the model in another independent dataset, 
achieving a high prediction accuracy of 92.23% [10].

In bioinformatics field, the k-mer feature is widely used 
to encode sequences with different lengths into a vec-
tor with fixed dimensions. However, the dimensionality 
of the generated feature vector increases rapidly when 
the k-value becomes large, which results in a very sparse 
vector [11]. To address the limitations of k-mer strat-
egy, the BERT (Bidirectional Encoder Representations 
from Transformers) model in natural language process-
ing (NLP) field was applied to extract features of sRNA 
sequences [12]. BERT model takes the position and order 
into account when encoding features. The DistilBERT 
is based on BERT with knowledge distillation and para-
metric quantity compression, which enables us to obtain 
results approximating BERT with limited resources [13].

In this study, we introduced a new sRNA prediction 
model based on the DistilBERT and TextCNN. We have 
compared our sRNAdeep with previous existing tools 
(PresRAT and sRNARanking) in the benchmark dataset 
and tested our performance in an independent dataset. 
To further verify the effectiveness of our tool, we applied 
sRNAdeep in Mycobacterium tuberculosis (MTB), a com-
mon drug-resistant bacterium with a high frequency 
of genomic mutation [14]. These experimental results 
showed that our newly developed tool achieved satisfac-
tory improvements in bacterial sRNA identification and 
explanation of drug-resistant mechanism in MTB.

Results
Data description
In this study, we retrieved bacterial sRNAs from BSRD 
database and collected 30,581 sequences with experi-
mental evidence. These sequences originated from 1033 
bacteria with different features. The distribution of sRNA 
number is illustrated in Fig. 1A. We found that the sRNA 
number of E. coli is the highest in current database. E. 
coli is a model bacterium in scientific research, thus its 
sRNAs were more easily found. The sRNA number of 
other bacteria, such as S. enterica, B. cereus, and Y. pestis 
is also very high.

In addition, a set of 29,566 protein-coding RNAs of 
common bacteria were obtained from NCBI and applied 
as negative samples. After filtering by criteria mentioned 
in “Material and methods” paragraph, the training set 
consisted of 9754 positive and 18,922 negative samples, 
while the testing set consisted of 2813 positive and 1239 
negative samples (Table  1). Subsequently, we have also 
calculated the GC proportion of each RNA sequence. 
In training set, 18.2%, 55.9%, and 25.9% sequences were 
classified into the groups of high, middle, and low GC 
proportion, respectively (Fig.  1B). In testing set, 18.8%, 
43.6%, and 37.6% sequences were classified into the 
groups of high, middle, and low GC proportion, respec-
tively (Fig. 1C).

The best length of k‑mer
We used machine learning models to test the perfor-
mance in different lengths of k-mer. Using a lower or 
higher k will result in underfitting or overfitting, respec-
tively. When k is taken as 1, each k-mer contains only one 
base and lacks contextual information, preventing the 
model from learning enough information and leading to 
underfitting. Similarly, when k is greater than 4, a propor-
tion of more than 80% of k-mers are missing in feature 
extraction process (Fig. 2). It leads to data sparsity, which 
may cause the model to rely too much on specific fea-
tures, leading to overfitting.
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Subsequently, we applied three machine learning 
models (logistic regression, random forest, support 
vector machine) to test the performance under different 
k-mer strategies (2-mer, 3-mer, 4-mer)  and the results 
were shown in Table  2. RF has the best performance 

under all values of k. When k is taken as 2, although 
the SPE of both LR and SVM can reach 0.8683 and 
0.8835, respectively, the value of SEN is only 0.5075 and 
0.4782. which is much smaller compared to the values 
of k equal to 3 and 4. The SEN value of RF is also much 
smaller than the value of SPE, which indicates that the 
identification of sRNA has a poor performance when k 
is equal to 2. When k is equal to 3, all the metrics of the 
model are much higher than the other two situations. 
Combining the results in Fig.  2, when k is equal to 3, 
the data sparsity is much smaller than that when k is 
4. Although the model with k = 4 exhibits superior per-
formance compared to that with k = 3, the sparse 4-mer 
count may result in severe overfitting [15]. This sug-
gests that it is more reasonable to take k as 3.

Fig. 1 The statistical information of sRNA in benchmark dataset. A Histogram of the sRNA distribution of the top ten bacteria. B The percentage 
of different GC proportions of sRNAs in training set. C The percentage of different GC proportions of sRNAs in testing set

Table 1 Statistical information of sample numbers in benchmark 
dataset

Dataset Positive sample Negative sample

Training set 9754 18922

Validation set 2438 4730

Testing set 2813 1239
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Three sequence‑encoded methods
In above paragraph, we have classified the data into train-
ing, validation, and  testing sets. The validation set was 
comprised of 2438 positive and 4730 negative samples. 
To select the suitable method for encoding sRNAs into 
numerical vectors, we compared the performance of 
three sequence-encoded methods (k-mer, TF-IDF, Distil-
BERT) on the validation set. The performance of 5-fold 
cross-validation was reported in Table  3. It was shown 
that the performance of DistilBERT method is distantly 
better than those of the other two methods (k-mer and 
TF-IDF). All seven performance indexes of DistilBERT 
method are higher than 0.9, especially for AUC and SPE, 
which reached 0.9620 and 0.9738, respectively. In con-
trast, the ACC values of the other two methods ( k-mer 
and TF-IDF) were significantly low, which were both 
less than 0.7. By DistilBERT method, we can reduce the 

misidentification rate while maintaining the accuracy 
rate in identifying sRNAs. Thus, we applied DistilBERT 
methods in the subsequent study.

Fig. 2 The proportion of missing k‑mer in different values of k. If a k‑mer was absent in the sequences, we denoted it as “missing k‑mer”

Table 2 Performance of different machine learning models with different lengths of k‑mer strategy. LR: logistic regression; RF: random 
forest; SVM: support vector machine; ACC: Accuracy; SEN: Sensitivity; SPE: Specificity; MCC: Matthew’s correlation coefficient; PRE: 
Precision; FSC: F1‑score; AUC: Area Under the Curve

Index 2‑mer 3‑mer 4‑mer

LR RF SVM LR RF SVM LR RF SVM

ACC 0.746 0. 9004 0.746 0.838 0.940 0.798 0.893 0.946 0.804

SEN 0.508 0. 8061 0.478 0.725 0.888 0.575 0.819 0.900 0.539

SPE 0.868 0. 9489 0.884 0.896 0.967 0.913 0.931 0.970 0.940

MCC 0.406 0. 7749 0.401 0.633 0.865 0.532 0.759 0.880 0.546

PRE 0.665 0. 8905 0.679 0.782 0.933 0.773 0.859 0.940 0.823

FSC 0.575 0. 8462 0.561 0.752 0.910 0.659 0.839 0.920 0.652

AUC 0.688 0. 8775 0.681 0.810 0.927 0.744 0.875 0.935 0.740

Table 3 Performance of three sequence‑encoded methods on 
sRNA. The abbreviations are the same as those in Table 2

Index k‑mer TF‑IDF DistilBERT

ACC 0.6562 0.6490 0.9659

SEN 0.7044 0.6813 0.9501

SPE 0.5627 0.5863 0.9738

MCC 0.2599 0.2577 0.9238

PRE 0.7576 0.7616 0.9489

FSC 0.7300 0.7192 0.9494

AUC 0.6335 0.6337 0.9620



Page 5 of 14Qian et al. BMC Genomics         (2024) 25:1021  

The performance of TextCNN algorithm
To test the performance of different strategies, we have 
compared the results of TextCNN, and TextCNN-GAN 
based on DistilBERT method. The detailed performances 
of  comparative  experiments are listed in Table  S1. The 
results show that the proposed TextCNN-GAN strat-
egy has more significant performance in five metrics: 
ACC, SEN, MCC, FSC, and AUC, compared to the only 
TextCNN strategy (Table  4). In particular, the average 
ACC and SEN of TextCNN-GAN strategy were 2.5% and 
4.28% higher than those of TextCNN, respectively.

There are two reasons for the performance improve-
ment of TextCNN-GAN strategy. One reason is that the 
GAN algorithm incorporates features of TextCNN that 
allow it to efficiently capture localized features in sRNA 
data. The other reason is that GAN algorithm enables the 
analysis of the features of sRNA sequences and generates 
new effective data based on these features, increasing the 
generalization ability of the model. The combination of 
these two factors improves the prediction performance 
of TextCNN-GAN strategy. On the other hand, the non-
sRNAs are very diverse and different, so it is difficult for 
GAN to generate sufficiently diverse samples, which will 
have an effect on the generalization ability of the model, 
resulting in higher SPE and PRE values for a TextCNN 
strategy than for TextCNN-GAN strategy. Based on these 
analyses, we selected TextCNN-GAN strategy in our 
sRNAdeep model.

Comparing results with other prediction tools
To demonstrate the validity of our model, sRNAdeep 
was used to compare with two previously published 
tools: PresRAT and sRNARanking. The PresRAT deter-
mines whether an RNA is sRNA by its secondary struc-
ture information in the collected sRNA dataset. The 
sRNARanking applied multiple features, such as open 
reading frame and promoter site, to predict putative 

sRNAs in a dataset called STL2. Because the best param-
eters of these two tools were not provided in the publi-
cation, thus we tested the performance of our sRNAdeep 
in their datasets, respectively. The results of comparative 
experiments in their datasets are shown in Fig. 3. It was 
indicated that sRNAdeep has better performance than 
PresRAT in sRNA identification of its datasets in three 
indexes (Fig. 3A). The sRNAdeep got a satisfied SPE value 
of 0.9082, while PresRAT got an SPE value of 0.8541. The 
ACC value of sRNAdeep was 0.8894 and the ACC value 
of PresRAT was 0.8508. The SEN of sRNAdeep is slightly 
smaller than PresRAT, but the running time of sRNA-
deep is much smaller than that of PresRAT. By compar-
ing the performance in STL2 dataset, our sRNAdeep got 
a satisfied AUC value of 0.8571 and sRNARanking got a 
relatively low AUC value of 0.656 (Fig. 3B). These results 
further indicated that our tool is more helpful in discov-
ering sRNAs.

Identified sRNA in MTB
To identify reliable sRNAs in MTB, the non-coding 
region of MTB genome was aligned against known sRNA 
sequences by BLAST with the threshold: alignment iden-
tity ≥ 80. Subsequently, the RNA sequences were dis-
criminated by our sRNAdeep, and 21 sRNAs remained 
(Table  5). The sequences of these sRNAs are shown in 
the Table S2. Notably, all these sRNAs are less than 200 
nucleotides, while four sRNAs are shorter than 50 nucle-
otides. MFEs of most sRNAs are all less than -20  kcal/
mol, indicating their inherent stability. Particularly note-
worthy is sRNA-1, which not only exhibits MFEs less 
than -60 kcal/mol but also possesses the smallest average 
MFEs, suggesting exceptionally strong stability in MTB.

Target genes regulated by sRNAs
To identify the genes regulated by sRNAs, we cal-
culated the binding possibility of RNAs and known 

Table 4 Performance of sRNA prediction by TextCNN‑GAN and TextCNN strategy

Index Strategy 1st‑Fold 2nd‑Fold 3rd‑Fold 4th‑Fold 5th‑Fold Mean ± SD

ACC TextCNN‑GAN 0.9706 0.9667 0.9538 0.9674 0.9595 0.9636 ± 0.0001

TextCNN 0.9571 0.9548 0.9344 0.9654 0.8813 0.9386 ± 0.0046

SEN TextCNN‑GAN 0.9772 0.9652 0.9438 0.9854 0.9563 0.9656 ± 0.0011

TextCNN 0.9513 0.9467 0.9122 0.9691 0.8347 0.9228 ± 0.0114

FSC TextCNN‑GAN 0.9788 0.9757 0.9660 0.9767 0.9704 0.9735 ± 0.0114

TextCNN 0.9685 0.9668 0.9507 0.9750 0.9071 0.9536 ± 0.0148

MCC TextCNN‑GAN 0.9310 0.9232 0.8968 0.9228 0.9074 0.9162 ± 0.0001

TextCNN 0.9025 0.8983 0.8598 0.9194 0.7680 0.8696 ± 0.0019

AUC TextCNN‑GAN 0.9664 0.9676 0.9602 0.9560 0.9616 0.9624 ± 0.0008

TextCNN 0.9607 0.9600 0.9484 0.9631 0.9109 0.9486 ± 0.0195
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genes in MTB by TargetRNA3. In this study, a total of 
272 target genes regulated by sRNAs were screened. 
The details of all genes are provided in Table S3. The 
sub-network of protein–protein interaction (PPI) of 
these 272 genes was retrieved from STRING data-
base. This PPI sub-network and sRNA-regulated-gene 

sub-network were put together to draw a full sRNA-
gene interaction network (Fig.  4). The obtained net-
work is composed of 290 nodes and 1662 edges in 
this study. Some sRNA could regulate a large number 
of genes in MTB. For example, four RNAs (sRNA-3, 
sRNA-5, sRNA-12, and sRNA-13) can regulate more 
than 100 genes. We further conducted the gene ontol-
ogy (GO) enrichment analysis of these 272 genes and 
the result is shown in Fig.  5A. The number of genes 
related to plasma membrane is much higher than in 
other categories, with more than 75 members. This 
result indicated that sRNA intends to regulate mem-
brane proteins, which may be involved in molecule 
transportation. A set of 15 genes (GYRA, RV2864C, 
GYRB, PONA2, STP, LYSX, ILES, TIG, BLAC, 
PONA1, MMPL3, RPOB, RECA, INIA, and RV0194) 
are related to response to antibiotics. This provides 
a new perspective on investigating drug resistance 
mechanism in Mycobacterium tuberculosis. The result 
of KEGG pathway analysis is shown in Fig.  5B. The 
number of genes related to “Microbial metabolism in 
diverse environments” is highest in this analysis with 
an extremely low p-value less than 0.05. In addition, 
although the number of genes related to “RNA degra-
dation” is small, the p-values of pathways are also less 
than 0.05. These results indicated that our identified 
sRNA could regulate critical genes in the metabolic 
pathways of this pathogen.

Possible active sites in MTB
PrankWeb was used to identify potential binding sites of 
important proteins encoded by targeted genes. [16]. A set 

Fig. 3 Comparative experimental results of sRNAdeep and PresRAT, sRNARanking. A Comparative analysis of sRNAdeep and PresRAT; B 
Comparative analysis of sRNAdeep and sRNARanking

Table 5 The details of sRNAs identified in MTB Genomes

Accession Length AT CG MFE (kcal/mol)

sRNA‑1 79 30.4% 69.6% ‑62.2

sRNA‑2 102 29.4% 70.6% ‑58.5

sRNA‑3 107 36.5% 63.6% ‑56.6

sRNA‑4 89 31.5% 68.5% ‑46

sRNA‑5 120 28.3% 71.7% ‑53.6

sRNA‑6 103 35.9% 63.1% ‑45.3

sRNA‑7 156 35.9% 64.1% ‑65.7

sRNA‑8 63 31.8% 68.3% ‑26.2

sRNA‑9 72 30.6% 69.4% ‑29.4

sRNA‑10 100 30.0% 70.0% ‑37.8

sRNA‑11 109 33.9% 66.1% ‑41.1

sRNA‑12 93 37.6% 62.4% ‑34

sRNA‑13 140 37.1% 62.9% ‑50.7

sRNA‑14 103 33.0% 66.0% ‑34.8

sRNA‑15 108 41.7% 58.3% ‑36.7

sRNA‑16 68 35.3% 64.7% ‑21.7

sRNA‑17 71 29.6% 70.4% ‑21.4

sRNA‑18 46 34.8% 65.2% ‑13.5

sRNA‑19 45 46.7% 53.3% ‑11.9

sRNA‑20 74 40.5% 59.5% ‑16.3

sRNA‑21 34 47.1% 52.9% ‑4.9
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of 7 targeted genes was found to encode proteins with 
active residue range (Table 6). These genes were regulated 
by different sRNAs. For example, sRNA-4 was found to 
regulate gene Rv3138c. The minimum free energy for 
sRNA-4 and Rv3138c binding was -138.58 kcal/mol with 
a p-value of 2.01E-11 and a binding probability of 0.9052. 
This indicated that the binding of sRNA-4 and Rv3138c 
was very stable in the biological process. This protein 
contained an active residue range (87 ~ 127) for ligand 
or enzyme binding. The accurate active sites of this pro-
tein are 92, 94, and 95. These active sites could be used 
for drug discovery in the treatment of Mycobacterium 
tuberculosis.

Discussion
Small regulatory RNAs (sRNAs) are short RNA mol-
ecules found in bacteria that typically range from 50 
to 500 nucleotides in length. They play crucial roles in 
post-transcriptional gene regulation by binding to target 
mRNAs, influencing their stability and translation effi-
ciency. Currently, emerging biological and deep learning 

methodologies have facilitated the detection of bacterial 
sRNAs. However, existing approaches encounter limita-
tions due to the scarcity of known bacterial sRNAs and 
challenges in converting sRNAs into effective features 
[17].

In this study, we retrieved known bacterial sRNAs from 
BSRD database and collected 30,581 sequences of 1033 
bacteria. Before putting raw RNA into the machine learn-
ing models, the RNA sequence should be encoded into 
a numeric vector. In bioinformatics field, the k-mer fea-
ture is widely used to encode RNA sequences with differ-
ent lengths into a vector with fixed dimensions. We used 
machine learning models to test the performance in dif-
ferent lengths of k-mer. The k in these machine learning 
models was chosen in 2, 3, or 4. When k is equal to 3, 
all the metrics of the model are much higher than in the 
other two situations, thus we take k as 3 in the sequence-
encoded model.

To compare the effectiveness of different models, we 
have compared three sequence-encoded models (k-mer, 
TF-IDF, DistilBERT) in sRNA identification. Results 

Fig. 4 The sRNA‑gene regulation network. The sRNAs were shown in yellow nodes and genes were shown in blue nodes
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showed that the performance of DistilBERT method is 
distantly better than those of other two methods (k-mer 
and TF-IDF). The dimensionality of the generated feature 

Fig. 5 Functional enrichment analysis of sRNA targeted genes. A Gene ontology analysis of targeted genes; B KEGG pathway enrichment 
of targeted genes. CC: cellular component; MF: molecular function; BP: biological process
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increases rapidly when the k value becomes large, which 
results in a very sparse vector. Our DistilBERT model 
could distantly capture information that spans the entire 
RNA sequence, which made our performance better.

In addition, there is a problem that the relatively small 
number of samples with known sRNAs leads to easy 
overfitting when using the model to train the samples. 
GAN is a powerful deep-learning framework designed 
for generating high-quality data [18]. The GAN algo-
rithms can effectively augment training samples, mitigat-
ing overfitting issues. The basic principle of GAN is to 
improve the quality of generated data through adversarial 
interactions between the generator and the discrimina-
tor. This dynamic process ensures that the generative 
power of the generator and the discriminative power of 
the discriminator are continuously improved [19].

The features generated by the DistilBERT model are 
combined and fed into the TextCNN model. TextCNN 
is a useful deep-learning algorithm for text classification 
tasks. In TextCNN model, sRNA can be viewed as a one-
dimensional image and a one-dimensional convolutional 
layer can be used to extract text features. TextCNN uses 
a one-dimensional convolutional layer and a maximum 
pooling layer to extract sequence features [20]. The fea-
tures of TextCNN are applied to perform convolutional 
operations on the output features of the GAN module.

To test the performance of different strategies, we have 
compared the results of different deep learning methods 
based on DistilBERT feature extraction strategy. Results 
show that TextCNN-GAN strategy is more suitable to 
ensure the accuracy rate of sRNAs with a reduced false 
recognition rate. Besides, sRNAdeep was used to com-
pare with two previously published tools (sRNARanking 
and PresRAT). Our sRNAdeep got a satisfied AUC value 
of 0.8571, while the AUC value of sRNARanking is 0.656. 
The ACC value of sRNAdeep was 0.8894, while the ACC 
value of PresRAT was 0.8508. The performance in the 

situation of different GC proportions was also tested. We 
have calculated the proportion of high, medium, and low 
GC proportions of sRNAs and non-sRNAs in the train-
ing and test sets, respectively. Results showed that the 
performances of sRNA identification in the groups of 
different GC proportions are similar (Table S4). We have 
also calculated the specific deviation of predicted sRNA 
and true sRNA numbers in different GC proportions. We 
found most of the deviation is very small in three groups 
with high, medium, and low GC proportions (Figure S1). 
This result showed our method is better than current 
existing method.

Subsequently, we applied our tool to identify sRNAs in 
the MTB genome. MTB could cause tuberculosis, one of 
the severe health challenges globally. The targeted genes 
of sRNAs were also predicted, and functional enrichment 
analyses were conducted. Notably, these genes are signifi-
cantly enriched in three GO terms: “cytosol”, “peptidogly-
can-based cell wall”, and “plasma membrane”. The cytosol 
is a part of the cytoplasm and refers to the fluid portion 
of the cytoplasm. Many drugs bind to proteins within the 
cytoplasm, and small molecules often target cytoplasmic 
proteins [21, 22]. Additionally, the impact of tetracycline 
on peptidoglycan-based cell wall proteins showed the 
complex interplay between cell wall composition and 
antibiotic resistance, presenting promising opportuni-
ties for therapeutic interventions [23]. Besides, the active 
sites of coding proteins of these genes were predicted by 
PrankWeb. Among these coding proteins, several pro-
teins exhibit effective active sites, such as lysX and icd1. 
The active sites of the lysX comprise residues 1093, 1094, 
and 1096. For the icd1 gene, active sites are identified 
at residues 258, 261, 262, and 280. In previous studies, 
mutations in lysX in MTB resulted in increased virulence 
and altered host–pathogen interactions [24].

Although our sRNAdeep performed well in this study, 
there are still some limitations of our work. One of the 

Table 6 Information of active sites in coding proteins of targeted genes

Accession Targeted gene Energy (kcal/mol) p‑value Probability Residue Range Active sites

sRNA‑1 Rv2061c ‑54.21 2.05E‑12 0.955 109–132 109

sRNA‑3 lysX ‑164.19 1.65E‑05 0.906 1093–1131 1093, 1094, 1096

sRNA‑4 Rv3181c ‑138.58 2.01E‑11 0.905 89–127 92,94,95

sRNA‑5 icd1 ‑105.24 8.36E‑04 0.763 245–282 258,261,262,280

sRNA‑6 Rv0810c ‑162.47 6.15E‑06 0.947 4–42 15,18,19

sRNA‑10 thiC ‑147.88 6.21E‑07 0.760 507–545 /

sRNA‑12 PE_PGRS50 ‑11.43 8.73E‑04 0.759 59–70 59,60,63

sRNA‑13 PE_PGRS50 ‑11.82 4.33E‑04 0.794 1408–1427 /

sRNA‑14 thiE ‑176.13 6.79E‑08 0.935 155–193 176 ~ 180,183

sRNA‑17 gpsI ‑105.24 3.60E‑13 0.945 570–608 /
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limitations is that the data source is single. The sRNAs 
were provided by BSRD database and non-sRNAs were 
retrieved from the coding regions of bacteria. Our 
method is actually learning to differentiate between 
protein-coding regions and sRNAs. The other limitation 
is that the performance of the untrained distilBERT is 
still not perfect, and a pre-trained large language model 
needs to be developed specifically for sRNA identifica-
tion in the future.

Conclusion
To effectively improve the prediction of bacterial sRNAs, 
a novel prediction tool called sRNAdeep is proposed in 
this study. This new tool not only applies the sequence-
encoded method DistilBERT but also integrates multiple 
deep learning methods to construct a composite model 
for bacterial sRNA identification. After preprocessing 
the dataset, a composite model consisting of TextCNN 
and GAN was constructed to learn the unique features 
obtained from the DistilBERT approach. Based on the 
output of TextCNN-GAN, a classification module con-
sisting of fully connected layers is employed to identify 
bacterial sRNA. Benchmark studies showed that sRNA-
deep outperformed the other sRNA prediction tools in 
terms of many indexes. In addition, by applying our tool 
to MTB genome, we have identified 21 sRNAs within the 
intergenic and intron regions. A set of 272 targeted genes 
regulated by these sRNAs were captured. The coding 
proteins of two genes (lysX and icd1) are found to impli-
cate in drug response of MTB, with significant active 
sites related to drug resistance mechanisms. In conclu-
sion, our newly developed sRNAdeep can help research-
ers identify bacterial sRNAs more precisely.

Materials and methods
Dataset retrieving
We retrieved known bacterial sRNAs from BSRD [25] 
and collected 30,581 sequences with experimental evi-
dence. These sequences originate from 1033 bacterial 
species. A set of 29,566 protein-coding RNAs of com-
mon bacteria were obtained from NCBI and applied as 
negative samples. On the basis of the obtained sRNAs 
and protein-coding RNAs, we generated the dataset to 
train and test our model by following steps: (1) Select 
sRNAs and coding RNAs with lengths ranging from 50 
to 500; (2) RNAs similar in testing and training set will 
be removed by BLAST sequence alignment; (3) 80% of 
the RNA will be selected as the training set and 20% as 
the testing set; (4) Encode these RNAs into word vectors 
with fixed length. 20% of the training set was used as the 
validation set in the fivefold cross-validation process.

To visualize our model for sRNA prediction, we draw 
an overall flowchart for this work, as shown in Fig.  6. 

The specific details of each process in this flowchart are 
described in the following sections.

Select the best length of k‑mer
Before the construction of our model, the length of k-
mer should be determined. For a given k, there are two 
ways of representing the RNA sequence feature. The first 
is expressed as the frequency of individual k-mer in the 
sRNA sequence. We take the example of a 3-mer of RNA 
with four nucleotide bases (A, C, G, and T) at each posi-
tion, we get, i.e. 64 3-mer features (AAA, AAC, AAA, 
AAT, ……, TTG, TTT). Then, the sRNA sequence can be 
represented as a 64-dimensional vector, with each dimen-
sion used to record the frequency of a particular 3-mer. 
After converting the sequences into fixed-length vectors, 
the k was determined by the performance of three tradi-
tional machine learning models (including Support Vec-
tor Machine (SVM), Random Forest (RF), and Logistic 
Regression (LR)). We implemented all machine learning 
models with scikit-learn (version 1.3.0) library of Python. 
For all three models, we used the default parameters in 
scikit-learn. The k in these machine learning models was 
chosen in 2, 3, or 4.

Test by three sequence‑encoded methods
In this study, we use a TextCNN-based model for sRNA 
identification. Before TextCNN performs the identifica-
tion task, we apply three sequence coding methods (k-
mer, TF-IDF, DistilBERT) to convert the RNA sequences 
into numerical vectors, and then feed them into the same 
TextCNN model to test the predictive effect of sRNA 
identification. The TF-IDF, which is abbreviated by Term 
Frequency-Inverse Document Frequency, is usually 
applied in document representations in the field of natu-
ral language processing (NLP) [26]. Term Frequency (TF) 
is to calculate the frequency of k-mer in sRNA sequences 
and Inverse Document Frequency (IDF) is to calculate 
the universal importance of k-mer. The IDF for a given 
k-mer is the total number of sRNA sequences divided by 
the number of sequences in which the k-mer occurs. The 
TF-IDF value is the TF value multiplied by the IDF value. 
Thus, TF-IDF tends to ignore common k-mer and retain 
important k-mer.

We treat each sRNA sequence in the dataset as sen-
tences in the text, and each k-mer as a word in that 
sentence. The sRNA sequences are then fed into the Dis-
tilBERT model, which consists of six encoder layers and 
768 hidden layers. In DistilBERT, [CLS] and [SEP] tags 
are first added to each RNA sequence to ensure that the 
sequence can be properly embedded into the DistilBERT 
model. This process DistilBERT generates the appropri-
ate token and position embedding for each k-mer so that 
the model can understand the following information in 
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the sequence. The next step is to process these embed-
ding vectors using the encoder layer. The encoder layer 
also uses distillation to simplify the multi-head and feed-
forward neural network sub-layers of DistilBERT to 
transform the embedding vectors of the input sequences 
into more compact feature representations in a more 
lightweight manner.

Test the performance of TextCNN algorithm
The output of final features from the last encoder layer 
of the DistilBERT model will be used as input for the 
TextCNN-GAN model. The model was trained on 
NVIDIA P100 GPUs, utilizing their 16  GB of graphics 
memory. TextCNN is a useful deep-learning algorithm 
for text classification tasks [27]. We augment the features 
generated by the DistilBERT model using a GAN algo-
rithm before inputting them into the TextCNN [28]. A 
generator for GAN was used that maps input features to 
hidden layers, which are then mapped to the final output 
features via two linear layers and an activation function. 
Each convolutional layer was followed by a ReLU activa-
tion function that allowed the network to better capture 
complex patterns and features in the text data. TextCNN 

then performed a maximum pooling layer on ReLU 
to obtain the most significant features and reduce the 
dimensionality of the output vector.

Subsequently, to solve the binary classification prob-
lem, a fully connected layer was finally used to act as the 
key classification module responsible for mapping the 
features to a space with two output nodes. This fully con-
nected layer learned more advanced feature representa-
tions during the training process, providing the model 
with the ability to effectively classify the input data. 
Throughout the network, this fully connected layer was 
the decision layer of the model, outputting the corre-
sponding class probabilities to complete the classification 
prediction of sRNA sequence data.

We use fivefold cross-validation (fivefold CV) on the 
training set and the value of ACC to adjust the hyperpa-
rameters of TextCNN. Many hyperparameters affect the 
computational results of the model. In this study, we take 
the number of convolutional kernels, the activation func-
tion of the convolutional layer, the pooling window size, 
and the dropout rate as the main tuning hyperparam-
eters. Optuna was used to optimize the parameters [29]. 
The hyperparameter details are shown in Table  7. The 

Fig. 6 Overall flowchart of our method. A Feature Encode by DistilBERT; B GAN model; C TextCNN model. The high‑dimension original figure can 
be found in the Supplementary Materials
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hyperparameters are optimized by the "Adam Optimizer" 
to find the parameters with the highest ACC in the valida-
tion dataset. The algorithm used an early stopping strategy 
to select the best-performing parameter.

Compare with other prediction tools
To further evaluate the performance of sRNAdeep in 
identifying bacterial sRNAs, we compared sRNAdeep 
with existing predictors. We selected current predic-
tion tools according to the following criteria: (1) the 
availability of a web server or a standalone version; (2) 
good performances in the identification of sRNAs and 
related genes; and (3) whether the output is an sRNA or 
a score. Thus, two prediction tools (sRNARanking and 
PresRAT) fulfill these criteria. The program packages of 
sRNARanking [6] (retrieved from https:// github. com/ 
Bioin forma ticsL abAtM UN/ sRNAR anking) and PresRAT 
[7] (retrieved from http:// www. hpppi. iicb. res. in/ presr at/ 
Downl oad. html) were provided for comparison.

We download a dataset from PresRAT containing 1174 
sRNA and 5869 non-sRNA sequences. We also down-
loaded a dataset from sRNARanking containing 163 posi-
tive instances and 489 negative instances. Based on this 
dataset, we retrained sRNAdeep and tested the perfor-
mance in these two datasets. Four indexes, i.e. sensitivity 
(SEN), specificity (SPE), accuracy (ACC), and area under 
the curve (AUC), were applied to evaluate the perfor-
mance of these three models.

Evaluation indexes in this study
To evaluate the classification performance of the sRNA-
deep predictor, we chose to compute seven metrics: 
SEN, SPE, ACC, AUC, Matthew’s correlation coefficient 
(MCC), precision (PRE), and F1-score (FSC). The seven 
metrics are defined as shown in Eq. (1):

(1)

SEN = TP

TP+FN

SPE = TN

TN+FP

ACC = TP+TN

TP+TN+FP+FN

MCC = (TP×TN )−(FP×FN )√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

PRE = TP

TP+FP

FSC = 2×SEN×PRE

SEN+PRE

AUC : AreaundertheROCCurve

Where TP and TN denote the number of sRNAs and 
non-sRNAs correctly identified by the predictor, respec-
tively, and FP and FN specifically denote the number of 
sRNAs and non-sRNAs that cannot be correctly identi-
fied by the predictor. AUC refers to the receiver operat-
ing characteristic curve.

Identify sRNAs in MTB
Mycobacterium tuberculosis (MTB) is one of the severe 
health challenges globally with high drug-resistance 
rates. In our previous studies, we have annotated protein 
function and identified single nucleotide variants related 
to the drug resistance mechanism of MTB [14, 30]. Cur-
rently, the sRNA of MTB remains unknown. The known 
sRNAs were aligned against non-coding region of MTB 
genome by BLAST to identify possible similar RNA 
sequences. Subsequently, our sRNAdeep was employed 
to discriminate if these sequences belong to sRNA.

Analysis target genes regulated by sRNAs
Identifying target genes regulated by sRNA is crucial for 
the treatment of tuberculosis. In this study, an effective 
tool, TargetRNA3, was applied to predict targets of sRNA 
[31]. The protein–protein interaction (PPI) network for 
sRNA-regulated genes was retrieved from STRING data-
base [32]. The topological characteristics of the network 
nodes are analyzed by the Cytoscape software [33]. Gene 
ontology (GO) function enrichment and pathway analysis 
of these genes were performed by DAVID website [34].

Abbreviations
ACC   Accuracy
AUC   Area Under the Curve
BERT  Bidirectional Encoder Representations from Transformers
CNN  Convolutional Neural Network
FSC  F1‑score
GAN  Generative Adversarial Network
GO  Gene ontology
LR  Logistic Regression
MCC  Matthew’s correlation coefficient
NLP  Natural language processing
RF  Random Forest
SEN  Sensitivity
SPE  Specificity
PRE  Precision
sRNA  Small regulatory RNA
SVM  Support Vector Machine
TF‑IDF  Term Frequency‑Inverse Document Frequency

Table 7 The details of hyperparameters in TextCNN

Model Hyperparameter Range

TextCNN Number of convolution kernels 32, 64, 128, 256, 512, 1024

Activation functions in convolutional layers None, relu, tanh, sigmoid

Max pooling size 2, 3, 4, 5

Rate of dropout layers 1e‑6 ~ 1e‑4

https://github.com/BioinformaticsLabAtMUN/sRNARanking
https://github.com/BioinformaticsLabAtMUN/sRNARanking
http://www.hpppi.iicb.res.in/presrat/Download.html
http://www.hpppi.iicb.res.in/presrat/Download.html
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